HomeMy WebLinkAboutLa Pine Demo Final Report Complete
1999 - 2005
Printed on Recycled Paper
Acknowledgements
The La Pine National Decentralized Wastewater Treatment Demonstration Project was funded by the US
Environmental Protection Agency and completed through a cooperative and collaborative effort between
the Deschutes County Environmental Health Division, Oregon Department of Environmental Quality and
US Geological Survey.
The principal author of this document was Barbara Rich, La Pine Project Coordinator. Significant
contributions to this report and the overall the project were provided by (in alphabetical order): Todd
Cleveland, Deschutes County EH; Mark Cullington, Oregon DEQ; Dan Haldeman, Deschutes County EH;
Steve Hinkle, US Geological Survey; Jill Johnson, Deschutes County EH; Janice Leber, Oregon DEQ; Dave
Morgan, US Geological Survey; and Rod Weick, Oregon DEQ.
Other contributers to the success of the La Pine Project include: Roger Everett, Deschutes County EH
(former EH director); Pauline Chu, Deschutes County EH (intern); Ed Woods, Oregon DEQ (former
manager); Bob Baggett, Oregon DEQ; Bijan Pour, Oregon DEQ; and the homeowners and advisory
committee members participating in the project.
Particular thanks go to Didi Malarkey for her thoughts, support and consideration throughout the years.
Graphics in this report were prepared by Barbara Rich during the La Pine Project and by the participating
vendors.
Abbreviations and Acronyms
BOD5 5-day biochemical oxygen demand
DEQ Oregon Department of Environemental Quality
mg/L milligrams per liter
NH4 ammonium
NO3 nitrate
TN total nitrogen
TP total phosphorus
TSS total suspended solids
USEPA Environmental Protection Agency
USGS US Geological Survey
La Pine National Decentralized Wastewater Treatment Demonstration Project
Table of Contents Page i
Table of Contents
Chapter Page
Table of Figures.......................................................................................................................................................iii
Table of Tables.......................................................................................................................................................vii
1. Abstract .................................................................................................................................................................1-1
2. Executive Summary...............................................................................................................................................2-1
3. Project Area Description........................................................................................................................................3-1
4. Field Test Program Development..........................................................................................................................4-1
Selection Processes, Agreements and Permits .......................................................................................................4-1
Homeowner selection.....................................................................................................................................4-1
Technology selection .....................................................................................................................................4-2
Permitting process..........................................................................................................................................4-4
Sampling and Analysis...........................................................................................................................................4-5
Sample parameters.........................................................................................................................................4-5
Preparation for sampling................................................................................................................................4-6
Preparation for sampling on the site...............................................................................................................4-7
Sampling procedures and equipment..............................................................................................................4-7
Personal protective equipment .......................................................................................................................4-9
Sample locations............................................................................................................................................4-9
Management and Education.................................................................................................................................4-20
Water Pollution Control Facilities (WPCF) permit requirements.................................................................4-20
Construction/installation permit requirements .............................................................................................4-21
Private service providers..............................................................................................................................4-22
Homeowner education..................................................................................................................................4-23
Service provider certification.......................................................................................................................4-24
Conclusion ...................................................................................................................................................4-25
References....................................................................................................................................................4-25
5. Control Systems: Septic Tank and Sand Filter Performance................................................................................5-1
Introduction ......................................................................................................................................... 5-1
Septic Tank Performance..................................................................................................................... 5-1
Sand Filter Performance ...................................................................................................................... 5-5
USGS study ........................................................................................................................................5-15
Conclusion..........................................................................................................................................5-16
References ..........................................................................................................................................5-16
6. Innovative System Performance............................................................................................................................6-1
Introduction ......................................................................................................................................... 6-1
Nitrogen-reducing systems.................................................................................................................. 6-1
Performance results ............................................................................................................................. 6-1
Page ii Table of Contents
AdvantTex™ AX-20 Wastewater Treatment System, Orenco Systems, Inc....................................... 6-7
AdvanTex RX-30 System, Orenco Systems, Inc................................................................................6-11
Amphidrome® Wastewater Treatment System, FR Mahoney & Associates .....................................6-15
Biokreisel Wastewater Treatment System, Nordbeton, NA ...............................................................6-19
Dyno2, North American Wetland Engineering/Reactor Dynamics, Inc.............................................6-23
EnviroServer, MicroSepTec, Inc. .......................................................................................................6-28
MicroFAST®, Bio-Microbics, Inc......................................................................................................6-32
IDEA BESTEP, Advanced Environmental Systems, Inc. ..................................................................6-37
Innovative trench designs, Wert and Associates, Inc..........................................................................6-42
Nayadic, Consolidated Treatment Systems, Inc. ................................................................................6-55
NiteLess, On Site Wastewater Management, LLC.............................................................................6-59
NITREX™ filter, University of Waterloo / Lombardo & Associates, Inc. ........................................6-64
Puraflo, Bord na Móna, Inc. ...............................................................................................................6-69
Conclusion..........................................................................................................................................6-73
References ..........................................................................................................................................6-73
7. Development of the Management Program Recommendation ..............................................................................7-1
8. Groundwater Quality and the Three-Dimensional Groundwater and Nutrient Fate and Transport Model............8-1
9. Loan Program........................................................................................................................................................9-1
10. Reporting.............................................................................................................................................................10-1
Appendix A: Forms and Supporting Documentation for Field Test Program Implementation..................................................A-1
Appendix B: Field Test Program Onsite System Data............................................................................................................... B-1
Appendix C: Field Test Program Drainfield Well Statistics and Monitoring Well Data ........................................................... C-1
Appendix D: Operation and Maintenance Advisory Committee Work Plan..............................................................................D-1
La Pine National Decentralized Wastewater Treatment Demonstration Project
Table of Figures Page iii
Figures
Chapter 3: Project Area Description
Figure 3-1. Study area ..............................................................................................................................................................3-4
Figure 3-2. Groundwater table based on 1994 synoptic water level measurements..................................................................3-5
Figure 3-3. General soil associations in the La Pine sub-basin.................................................................................................3-6
Chapter 4: Field Test Program Description
Figure 4-1. Example QAPP......................................................................................................................................................4-6
Figure 4-2. Chloride sample filtering equipment......................................................................................................................4-9
Figure 4-3. RX-30 System-R pipe vs. chamber BOD-5 data..................................................................................................4-11
Figure 4-4. RX-30 System-H2 pipe vs. chamber BOD-5 data................................................................................................4-12
Figure 4-5. RX-30 System-M pipe vs. chamber BOD-5 data.................................................................................................4-12
Figure 4-6. NITREX System-F pipe vs. chamber BOD-5 data...............................................................................................4-13
Figure 4-7. NITREX System-S pipe vs. chamber BOD-5 data...............................................................................................4-13
Figure 4-8. FAST System-P pipe vs. chamber BOD-5 data. ..................................................................................................4-14
Figure 4-9. RX-30 System-R pipe vs. chamber TSS data.......................................................................................................4-14
Figure 4-10. RX-30 System-H2 pipe vs. chamber TSS data.....................................................................................................4-14
Figure 4-11. RX-30 System-M pipe vs. chamber TSS data......................................................................................................4-15
Figure 4-12. NITREX System-F pipe vs. chamber TSS data. ..................................................................................................4-13
Figure 4-13. NITREX System-S pipe vs. chamber TSS data. ..................................................................................................4-13
Figure 4-14. FAST System-P pipe vs. chamber TSS data........................................................................................................4-14
Figure 4-15. RX-30 System-R pipe vs. chamber Total Nitrogen data......................................................................................4-18
Figure 4-16. RX-30 System-H2 pipe vs. chamber Total Nitrogen data....................................................................................4-18
Figure 4-17. RX-30 System-M pipe vs. chamber Total Nitrogen data. ....................................................................................4-19
Figure 4-18. NITREX System-F pipe vs. chamber Total Nitrogen data...................................................................................4-19
Figure 4-19. NITREX System-S pipe vs. chamber Total Nitrogen data...................................................................................4-20
Figure 4-20. FAST System-P pipe vs. chamber Total Nitrogen data........................................................................................4-20
Chapter 5: Control Systems: Septic tank and sand filter performance
Figure 5-1. Wastewater treatment process in conventional onsite systems...............................................................................5-1
Figure 5-2 System-B bottomless sand filter nitrogen species over time................................................................................5-11
Figure 5-3. System-B bottomless sand filter BOD-5 & TSS over time..................................................................................5-11
Figure 5-4. System-A bottomless sand filter nitrogen species over time................................................................................5-12
Figure 5-5. System-H3 bottomless sand filter nitrogen species over time..............................................................................5-12
Chapter 6: Innovative Onsite Wastewater Treatment Systems
Figure 6-1. Wastewater treatment process in nitrogen-reducing systems using (1) the septic tank as an oxygen-poor, carbon-
rich environment or (2) a separate process tank with an oxygen-poor, carbon-enriched environment..................................6-2
Figure 6-2 Rank, by Total Nitrogen, of all systems in the La Pine Project..............................................................................6-4
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page iv Table of Figures
Figure 6-3. Rank of all systems by Total Nitrogen, including TKN and Nitrate-Nitrite...........................................................6-4
Figure 6-4. Rank, by BOD-5, of all the systems in the La Pine Project....................................................................................6-5
Figure 6-5. Rank, by Total Suspended Solids, of the systems in the La Pine Project...............................................................6-5
Figure 6-6. Systems ranked by median fecal coliform reduction..............................................................................................6-6
Figure 6-7. Systems ranked by median E. coli reduction..........................................................................................................6-6
Figure 6-8. AdvanTex™ AX-20 filter media. ..........................................................................................................................6-7
Figure 6-9. Schematic of AdvanTex™ AX-20 system in Mode 3............................................................................................6-7
Figure 6-10. System-I AX-20 (Mode 3) effluent over time........................................................................................................6-8
Figure 6-11. System-T AX-20 (Mode 3) effluent over time.......................................................................................................6-9
Figure 6-12. System-M AX-20 (Mode 3) effluent over time......................................................................................................6-9
Figure 6-13. RX-30 textile filter...............................................................................................................................................6-11
Figure 6-14. RX-30 system schematic......................................................................................................................................6-11
Figure 6-15. System-H2 RX-30 effluent over time...................................................................................................................6-12
Figure 6-16. System-M RX-30 effluent over time....................................................................................................................6-13
Figure 6-17. System-R RX-30 effluent over time.....................................................................................................................6-13
Figure 6-18. Amphidrome system............................................................................................................................................6-15
Figure 6-19. Amphidrome schematic. ......................................................................................................................................6-16
Figure 6-20. System-AD Amphidrome effluent over time.......................................................................................................6-16
Figure 6-21. System-AG Amphidrome effluent over time.......................................................................................................6-17
Figure 6-22. System-P Amphidrome effluent over time...........................................................................................................6-17
Figure 6-23. Biokreisel system.................................................................................................................................................6-19
Figure 6-24. Biokreisel schematic............................................................................................................................................6-19
Figure 6-25. System-M Biokreisel effluent over time. .............................................................................................................6-20
Figure 6-26. System-G Biokreisel effluent over time...............................................................................................................6-20
Figure 6-27. System-H Biokreisel effluent over time...............................................................................................................6-21
Figure 6-28. Dyno2 vertical flow wetland................................................................................................................................6-23
Figure 6-29. Dyno2 schematic..................................................................................................................................................6-23
Figure 6-30. System-C Dyno2 effluent nitrogen species over time..........................................................................................6-25
Figure 6-31. System-C Dyno2 effluent BOD-5/TSS over time................................................................................................6-25
Figure 6-32. System-E Dyno2 effluent over time.....................................................................................................................6-26
Figure 6-33. System-N Dyno2 effluent over time. ...................................................................................................................6-26
Figure 6-34. MicroSepTec EnviroServer..................................................................................................................................6-28
Figure 6-35. EnviroServer schematic. ......................................................................................................................................6-30
Figure 6-36. System-H EnviroServer effluent quality over time..............................................................................................6-30
Figure 6-37. System-M EnviroServer effluent quality over time..............................................................................................6-31
Figure 6-38. Bio-Microbics, Inc. FAST® system.....................................................................................................................6-32
Figure 6-39. FAST® system schematic....................................................................................................................................6-33
Figure 6-40. System-R FAST effluent over time......................................................................................................................6-35
Figure 6-41. System-J FAST effluent over time.......................................................................................................................6-35
Figure 6-42. System-P FAST effluent over time......................................................................................................................6-36
La Pine National Decentralized Wastewater Treatment Demonstration Project
Table of Figures Page v
Figure 6-43. IDEA system process schematic..........................................................................................................................6-37
Figure 6-44. TSS samples from the IDEA system....................................................................................................................6-37
Figure 6-45. System-H IDEA effluent nitrogen species over time...........................................................................................6-39
Figure 6-46. System-H IDEA effluent over time......................................................................................................................6-39
Figure 6-47. System-L IDEA effluent over time......................................................................................................................6-40
Figure 6-48. System-Y IDEA effluent over time......................................................................................................................6-40
Figure 6-49. Innovative trench design A schematic..................................................................................................................6-42
Figure 6-50. System-B innovative trench design A (anoxic trench effluent)............................................................................6-43
Figure 6-51. System-K innovative trench design A (anoxic trench effluent)............................................................................6-43
Figure 6-52. System-P innovative trench design A (anoxic trench effluent)............................................................................6-44
Figure 6-53. System-B innovative trench design A (wood tube trench effluent)......................................................................6-44
Figure 6-54. System-K innovative trench design A (wood tube trench effluent)......................................................................6-45
Figure 6-55. System-P innovative trench design A (wood tube trench effluent)......................................................................6-45
Figure 6-56. System-B standard (control) trench effluent. .......................................................................................................6-46
Figure 6-57. System-K standard (control) trench effluent........................................................................................................6-46
Figure 6-58. System-P standard (control) trench effluent.........................................................................................................6-47
Figure 6-59. Example of dissolved oxygen in wood tube trench effluent.................................................................................6-47
Figure 6-60. Innovative trench design B schematic..................................................................................................................6-52
Figure 6-61. System-J innovative trench design B effluent......................................................................................................6-52
Figure 6-62. System-M innovative trench design B effluent....................................................................................................6-53
Figure 6-63. System-P innovative trench design B effluent. ....................................................................................................6-53
Figure 6-64. Nayadic unit cross-section. ..................................................................................................................................6-55
Figure 6-65. Nayadic system schematic. ..................................................................................................................................6-56
Figure 6-66. System-B Nayadic effluent over time..................................................................................................................6-56
Figure 6-67. System-D Nayadic effluent over time..................................................................................................................6-57
Figure 6-68. System-M Nayadic effluent over time. ................................................................................................................6-57
Figure 6-69. NiteLess system schematic...................................................................................................................................6-59
Figure 6-70. System-T NiteLess effluent over time..................................................................................................................6-60
Figure 6-71. System-P NiteLess effluent nitrogen species over time.......................................................................................6-61
Figure 6-72. System-L NiteLess effluent nitrogen species over time.......................................................................................6-61
Figure 6-73. System-P NiteLess effluent BOD-5/TSS over time.............................................................................................6-62
Figure 6-74. System-L NiteLess effluent BOD-5/TSS over time.............................................................................................6-62
Figure 6-75. NITREX filter during installation........................................................................................................................6-64
Figure 6-76. NITREX system schematic..................................................................................................................................6-65
Figure 6-77. System-S NITREX effluent nitrogen species over time.......................................................................................6-65
Figure 6-78. System-F NITREX effluent nitrogen species over time.......................................................................................6-66
Figure 6-79. System-S NITREX effluent BOD-5 and TSS performance over time. ................................................................6-66
Figure 6-80. System-F NITREX effluent BOD-5/TSS over time.............................................................................................6-67
Figure 6-81. System-S lined sand filter effluent over time.......................................................................................................6-67
Figure 6-82. Puraflo module.....................................................................................................................................................6-69
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page vi Table of Figures
Figure 6-83. Puraflo system schematic.....................................................................................................................................6-70
Figure 6-84. System-F Puraflo effluent over time....................................................................................................................6-70
Figure 6-85. System-M Puraflo effluent over time...................................................................................................................6-71
Figure 6-86. System-S Puraflo effluent over time....................................................................................................................6-71
Chapter 7: Development of the Management Program Recommendation
Figure 7-1. Existing permit process flow chart.........................................................................................................................7-4
Figure 7-2. The primary players in the maintenance program recommendation.......................................................................7-6
Figure 7-3. Recommended maintenance program produced by the O&MAC..........................................................................7-7
Chapter 8: Groundwater Quality and the Three-dimensional Groundwater and Nutrient Fate and Transport
Model
Figure 8-1. Background groundwater quality...........................................................................................................................8-3
Figure 8-2. TN and chloride concentrations over time in Well 2054........................................................................................8-4
Figure 8-3. Spatial changes in DO concentrations on a site......................................................................................................8-6
Figure 8-4. La Pine area nitrate data from real estate transactions, 1989-2003. .....................................................................8-11
Appendix A: Forms and Other Supporting Documents for Field Test Program Implementation
Figure A-1. Field test program application form......................................................................................................................A-2
Figure A-2. Property owner informational meeting agenda. ....................................................................................................A-4
Figure A-3. Innovative system field test request for proposals.................................................................................................A-6
Figure A-4. Wastewater sampling procedures..........................................................................................................................A-8
Figure A-5. Groundwater sampling procedures........................................................................................................................A-9
Figure A-6. Sampling follow-up activities. ............................................................................................................................A-11
La Pine National Decentralized Wastewater Treatment Demonstration Project
Table of Tables Page vii
Tables
Chapter 3: Project Area Description
Table 3-1. A timeline of groundwater protection work in the region leading to and through the La Pine Project...................3-2
Chapter 4: Field Test Program Description
Table 4-1. Sample collection device used to sample different effluent discharge points.........................................................4-8
Table 4-2. Correlation coefficients for comparative sampling from the effluent pipe vs. the collection chamber. ...............4-10
Chapter 5: Control Systems: Septic tank and sand filter performance
Table 5-1. Septic tank effluent quality summary statistics......................................................................................................5-3
Table 5-2. Household with two-compartment tank with high BOD-5 and O&G....................................................................5-4
Table 5-3. Percent of the samples and septic tanks that exceeded Oregon's residential waste strength definition. .................5-4
Table 5-4. Hydraulic and organic loading rates for the bottomless sand filters in the La Pine Project....................................5-8
Table 5-5. Hydraulic and organic loading rates for the lined sand filters in the La Pine Project.............................................5-9
Table 5-6. Potential and actual mass loading from bottomless sand filters in the La Pine Project..........................................5-9
Table 5-7. Bottomless sand filter effluent statistics...............................................................................................................5-10
Table 5-8. Reductions achieved by bottomless sand filters in the La Pine Project................................................................5-13
Table 5-9. Reductions achieved by lined sand filters in the La Pine Project.........................................................................5-14
Table 5-10. Frequency of sand filter effluent concentrations for fecal coliforms....................................................................5-14
Table 5-11. Climate conditions in Douglas County and the La Pine Project study area, Oregon............................................5-15
Chapter 6: Innovative Onsite Wastewater Treatment Systems
Table 6-1. La Pine Project performance criteria......................................................................................................................6-2
Table 6-2. AX-20 performance statistics...............................................................................................................................6-10
Table 6-3. Correlation coefficients for fecal coliform reduction vs. flow rate in RX-30 systems.........................................6-12
Table 6-4. RX-30 effluent performance statistics..................................................................................................................6-14
Table 6-5. Amphidrome performance statistics.....................................................................................................................6-18
Table 6-6. Biokreisel performance statistics..........................................................................................................................6-22
Table 6-7. Dyno2 performance statistics...............................................................................................................................6-27
Table 6-8. EnviroServer performance statistics.....................................................................................................................6-29
Table 6-9. FAST® system performance statistics.................................................................................................................6-34
Table 6-10. Estimated alkalinity requirements indicated by IDEA effluent quality................................................................6-38
Table 6-11. IDEA BESTEP performance statistics.................................................................................................................6-41
Table 6-12. Innovative trench design A standard trench effluent performance statistics. .......................................................6-48
Table 6-13. Innovative trench design A (wood tube) performance statistics...........................................................................6-49
Table 6-14. Innovative trench design A (anoxic trench) performance statistics......................................................................6-50
Table 6-15. AX-20 performance statistics in design A...........................................................................................................6-51
Table 6-16. Innovative trench design B performance statistics...............................................................................................6-54
Table 6-17. Nayadic performance statistics.............................................................................................................................6-58
La Pine National Decentralized Wastewater Treatment Demonstration Project
viii Table of Tables
Table 6-18. Alkalinity requirements for the NiteLess systems................................................................................................6-60
Table 6-19. NiteLess performance statistics............................................................................................................................6-63
Table 6-20. NITREX system performance statistics...............................................................................................................6-68
Table 6-21. Puraflo effluent performance statistics.................................................................................................................6-72
Chapter 7: Developing a Management Program Recommendation
Table 7-1. Operation and Maintenance Advisory Committee representation..........................................................................7-2
Table 7-2. The results of the "pros and cons" brainstorming and multi-voting session...........................................................7-5
Chapter 8: Groundwater Quality and the Three-dimensional Groundwater and Nutrient Fate and Transport
Model
Table 8-1. Network monitoring well summary statistics.........................................................................................................8-2
Table 8-2. Changing DO conditions from anoxic to oxic in a monitoring well.......................................................................8-4
Table 8-3. Variable oxic conditions in monitoring wells on a single property........................................................................8-7
Table 8-4. Well 2140 concentrations over time.......................................................................................................................8-8
Table 8-5. Overall water quality statistics for drainfield monitoring wells. ...........................................................................8-9
Table 8-6. Water quality statistics for drainfield monitoring wells located in the oxic portion of the aquifer.......................8-10
Table 8-7. Summary of synoptic drinking water well sampling, 1999-2001.........................................................................8-12
La Pine National Decentralized Wastewater Treatment Demonstration Project
Abstract Page 1-1
Chapter 1: Abstract
The La Pine region of south Deschutes County and northern Klamath County in Central Oregon has seen significant
increases in development pressures particularly over the last twenty years. Part of the pressure stems from the
platting of large subdivisions made up of small one-half to one-acre lots that were marketed with no promise of
basic services like improved roads or assurance that wastewater could be treated on site. Deschutes County
Community Development Department recognized the issues facing the region and undertook an in-depth planning
process, the Regional Problem Solving Project (RPS) in 1996. One of the issues discussed and investigated during
this time was the issue of how do deal with wastewater treatment regionally and the effects of development on the
prime drinking water aquifer underlying the region. As a result of the significant public opinion that onsite
wastewater treatment options should be pursued instead of centralized sewer options because of economic, social
and environmental reasons, Deschutes County, the Oregon Department of Environmental Quality (Oregon DEQ)
and the US Geological Survey developed the work program that became the La Pine National Decentralized
Wastewater Treatment Demonstration Project. The US Environmental Protection Agency funded Oregon DEQ to
undertake the project with $5.5 million in 1999 to complete four main tasks:
1. field test denitrifying onsite wastewater treatment systems;
2. develop an onsite system maintenance structure;
3. perform groundwater investigations and develop a three-dimensional (3-D) groundwater and nutrient
fate and transport model; and
4. establish a loan program to replace or retrofit failing or inappropriately located onsite systems.
This report includes the findings of the tasks listed above in addition to detailing the organizational and
administrative work involved in completing the tasks. Describing the organizational and administrative work was
seen as potentially beneficial to other organizations or agencies wishing to undertake similar activities.
The groundwater investigations have found significant existing nitrogen pollution and the 3-D model has predicted
extensive future contamination of the aquifer. The model also predicted, based on the field performance of
denitrifying systems in the project, that contamination could be slowed or stopped using onsite wastewater treatment
technologies, and that, as the region is retrofitted with denitrifying technologies, the existing contamination would
be flushed from the groundwater system via existing natural discharge points.
The field test program, in addition to identifying systems that can remove a large proportion of the nitrogen in
residential wastewater, found that conventional systems are not protecting the aquifer from nitrate contamination.
Conventional systems that were previously thought to denitrify up to 50% of the nitrate discharged from septic tanks
were found to achieve significantly less denitrification when process and environmental variables were accounted
for. Onsite systems were the focus of this project because of existing public feedback specifying the use of onsite
systems and state rules which significantly limit the extension or creation of sewers outside urban growth
boundaries.
The maintenance program structure developed by the county/state appointed advisory committee paralleled EPA’s
level 3 program from the voluntary national decentralized system management guidelines. As a result, critics may
question the need to engage in such a lengthy process to develop a structure that had already been imagined. In this
case, the value of the public process is in reaching and engaging a set of stakeholders that will ultimately help
support regulatory proposals as they move through the public participation process related to rulemaking and then
implementation.
The development of a loan program was dependent upon all of the preceding tasks. The field test identified systems
that were available to solve groundwater problems and that would meet the intent of the loan program to protect and
improve groundwater quality by upgrading failing or inappropriately located systems. However, state rules that
allowed the use of nitrogen reducing systems for single family residences were not effective until March 2005 .
Technologies and systems approved for use under the new rule did not start entering the market until after the
effective date of the rule. The maintenance program, while the structure has been identified and portions placed into
statewide rule, was not fully functional at the local level until at least a year after the effective date of the portion of
the rule that requires certification of maintenance providers (March 1, 2006). The groundwater study and model
have identified potential high risk areas, and the optimization model has undergone updates so that it will more
accurately identify appropriate treatment standards for the 96 management areas in the sub-basin.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 1-2 Abstract
Overall, the La Pine National Decentralized Demonstration Project experienced tremendous success in the tasks that
have been completed. Project staff have received positive feedback from the numerous presentations on the project
and its findings at venues around the country. Future work planned for the region includes further work with the
groundwater/optimization model as a planning/management tool, implementation of a pollution credit trading
program, and expansion of the loan program. Information from this project contributed to revisions to the statewide
onsite rule to allow more options for onsite systems used at the residential scale, implement maintenance
requirements, and require certification of service providers. The region and the variety of issues involved warrant
continued observation and attention as the tools and experience gained from the national demonstration project are
applied locally.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Executive Summary Page 2-1
Chapter 2: Executive Summary
The region encompassed by southern Deschutes County and northern Klamath County in Central Oregon has seen
significant increases in development pressures over the last twenty years. Part of the pressure stems from the
platting of large subdivisions prior to the development of land use regulations in Oregon. The subdivisions consist
of small one-half to one-acre lots that were originally marketed nationally with no promise of basic services like
improved roads, fire protection, or assurance that wastewater could be treated on site. The mere platting of these
lots has created unrealistic expectations about the intensity or type of development that can be supported by the
physical environment of the region.
Deschutes County Community Development Department recognized the issues facing the region and initiated an in-
depth planning process, the Regional Problem Solving Project (RPS), in 1996. One of the issues discussed and
investigated during this time was the issue of onsite wastewater treatment and the effects of development on the high
quality drinking water aquifer (shallow and unconfined) underlying the region. During this process, public opinion
clearly stated that onsite wastewater treatment options should be pursued instead of centralized sewers because of
economic, social and environmental reasons. Further, in 1997, the US Environmental Protection Agency stated in a
report to the US Congress that, “adequately managed decentralized wastewater treatment systems can be a cost-
effective and long-term option for meeting public health and water quality goals, particularly for small towns and
rural areas.” (US EPA, 1997) As a result, the Oregon Department of Environmental Quality, Deschutes County,
and the US Geological Survey developed the work program that became the La Pine National Decentralized
Wastewater Treatment Demonstration Project. The US Environmental Protection Agency funded the project with
$5.5 million in 1999 to undertake four main tasks:
1. field test denitrifying onsite wastewater treatment systems;
2. develop an onsite system maintenance structure;
3. perform groundwater investigations and develop a three-dimensional groundwater and nutrient fate
and transport model; and
4. establish a loan program to replace or retrofit failing or inappropriately located onsite systems.
The project’s final report includes findings of the tasks listed above in addition to detailing the organizational and
administrative work involved in completing the tasks. Describing the organizational and administrative work was
seen as potentially beneficial to other organizations or agencies wishing to undertake similar activities in other areas.
The Problem
The La Pine Project study is located in an area where nitrogen contamination is a concern because of rapidly
draining soils overlying a shallow, unconfined aquifer that is the only source of drinking water for the region. To
further study the effects of onsite systems on groundwater quality, monitoring well networks of three to four wells
were installed around each onsite system participating in the field test. The Oregon Department of Environmental
Quality monitored these wells monthly for a year and then quarterly for the remaining two years of the test period.
The monitoring well network associated with the field test system included almost 200 wells. The information
provided by these wells was augmented by data from a drinking water well monitoring network that was slightly
over 200 wells during the largest sampling event. The wells in the drinking water network were sampled between
two and four times during the project.
The groundwater investigation showed that groundwater in the region is becoming contaminated by discharges from
residential onsite systems and, particularly, that nitrate levels in the groundwater are increasing and that the source
of nitrate is human residential sewage. (Hinkle, 2007)
Groundwater investigations have shown that by 2005 the amount of nitrogen loaded to groundwater by the existing
population of conventional onsite systems already exceeded the sustainable loading for a maximum nitrate
concentration of 10 mg/L NO3-N. In other words, by 2005, there was already enough pollution in the groundwater
that drinking water wells will exceed 10 mg/L NO3-N in many portions of the region. The 3-D model developed for
the region has shown that contamination of the aquifer will continue to increase over time. The model also
predicted that, based on the field performance of denitrifying systems in the project, contamination could be slowed
or stopped using onsite wastewater treatment technologies, and that, as the region is retrofitted with denitrifying
technologies, the existing contamination would be flushed from the groundwater system via existing natural
discharge points or attenuation mechanisms. (Morgan, 2007)
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 2-2 Executive Summary
A Solution
The innovative system field test program comprised one of the largest efforts of the La Pine Project in terms of
funds, personnel and time. The program ultimately included 49 sites that were sampled monthly for a year and
bimonthly or quarterly for an additional two years. Sample parameters for the field test included field and analytical
parameters with a focus on nitrogen species. Therefore, the sampling plan included total Kjeldahl nitrogen,
ammonium, and nitrate-nitrite. The separate nitrogen species show how well the treatment system accomplishes the
different stages of the primary treatment and nitrification/denitrification processes.
The 5-day bio-chemical oxygen demand (BOD5), total suspended solids (TSS) and bacteria analyses provide a basic
characterization of wastewater quality. The chloride analysis provided a way to account for dilution (from
precipitation or irrigation) or concentration (by evaporation) in systems that are open to the atmosphere. Chloride
data can also provide an indication that residential sewage is the source of the nitrogen because humans are a
significant source of chloride. Chloride’s utility may be limited in those areas near saltwater bodies or where
roadway salting is common in the winter. Total alkalinity is a useful diagnostic parameter because the nitrification
process for a milligram (mg) of ammonia consumes a maximum of 7.14 mg of alkalinity. (Crites and
Tchobanoglous, 1998; Burks and Minnis, 1994)
Fats, oils and grease samples were taken from septic tanks but no other location in the treatment stream because the
project team used this parameter primarily in the evaluation of septic tank effluent against the definition of
residential waste strength that was currently in the Oregon regulations (Oregon DEQ, 2000). This parameter was
also used when troubleshooting systems’ performance, however, the advanced treatment systems were not required
to reduce fats, oils and grease as part of the demonstration project.
Performance data from the field test of conventional systems illustrate that sand filter systems are not capable of
reducing total nitrogen in septic tank effluent more than about 25%. Several innovative systems tested during the La
Pine Project showed significant nitrogen reducing capabilities, including one system that achieved a maximum
reduction of about 95% from septic tank effluent.
The sampling program included a small demonstration of the efficacy of sampling from the collection chamber
following treatment units versus the discharge pipe of the units themselves. The findings of this portion of the
sampling program indicate that the nitrogen species taken from the pump chamber following a treatment unit are
representative of the effluent sampled directly from the treatment unit effluent pipe.
On average, the waste strength from twenty households falls within the Oregon definition for residential septic tank
effluent on all parameters except oil and grease (O&G). The maximum concentrations recorded, however, greatly
exceed the definition and the magnitude of the mean concentrations for BOD5 and TSS indicate that a significant
number of samples exceed Oregon’s residential waste strength definition. The statistics for the different tank
designs indicates that two-compartment tanks perform significantly better (99% confidence level) than single-
compartment tanks for TSS reduction. BOD5 reduction in two-compartment tanks is slightly better than single
compartment tanks but only to the 70% confidence level. The O&G concentrations in the two compartment tanks
are actually significantly higher than in single compartment tanks.
Insurance for the Onsite Solution
The maintenance program structure developed by the county/state appointed advisory committee appeared to be
similar to the EPA’s level 3 program from the voluntary national decentralized system management guidelines. As
a result, critics may question the need to engage in such a lengthy process to develop a structure that had already
been imagined. In this case, the value of the public process is in reaching and engaging a set of stakeholders that
will ultimately help support concepts and ideals of the structure as it moves forward to rulemaking and then
implementation.
During the demonstration project, the development of a robust maintenance program was identified as an important
component of any water quality protection program using advanced treatment systems to achieve environmental
goals. The maintenance program not only serves to ensure that program goals are met over the long term but also as
an insurance policy for the homeowner to help protect their significant investment in an essential household service.
The maintenance program, while the structure was identified and portions placed into rule, is not a holistic program
at the local level. One of the primary gaps is the lack of required maintenance for all onsite systems. For example,
sand filters and pressure distribution systems have been left out of the maintenance program, which creates a
La Pine National Decentralized Wastewater Treatment Demonstration Project
Executive Summary Page 2-3
disincentive for homeowners to use systems with added treatment capabilities. This also makes it difficult for
potential service providers to enter the profession because the population of systems that they would serve has been
limited by not requiring maintenance on these systems, even though the control panels and pumps are similar to
what are commonly used in advanced treatment systems.
One Way to Make the Solution Viable
The development of a loan program was dependent upon all of the preceding tasks. The field test identified systems
that were capable of solving groundwater problems. One way to encourage homeowners to protect groundwater is
to create financial incentives, including low-interest loans, to use advanced treatment systems. Two factors delayed
the implementation of the loan program. First, widespread use and access to advanced treatment systems did not
begin until implementation amendments to the statewide onsite rules beginning in 2005. Since that time, the market
for advanced treatment systems providing nitrogen reduction has developed slowly, and currently, Deschutes
County has listed two proprietary and one non-proprietary systems as nitrogen-reducing systems. Second,
Deschutes County undertook a work program in 2005 to adopt a county rule to require the use of nitrogen-reducing
systems in the region. This effort diverted significant staff time that would otherwise have established the loan
program. The county is currently planning to establish the loan program in coordination with a third party
administrator that also uses Community Development Block Grants to fund low-income housing rehabilitation. This
existing program also issues loans for onsite system repairs and upgrades and was seen as a natural partner for the
county in issuing low interest loans in keeping with the La Pine Project goals and objectives.
Conclusion
Overall, the La Pine National Decentralized Demonstration Project experienced tremendous success from the work
undertaken. Project staff have received positive feedback from the numerous presentations on the project and its
findings at venues around the country. Future work planned for the region includes further work with the
groundwater/optimization model as a planning/management tool, implementation of a pollution credit trading
program, development of local maintenance program, and expansion of the loan program. Information from this
project contributed to allowing more innovative onsite systems, maintenance requirements, and certification of
service providers by state rule in December 2004. In addition, this project will continue to provide critical
information that may affect regulatory standards in the future. The region and the variety of issues involved warrant
continued observation and attention as the tools and experience gained from the national demonstration project are
applied locally.
References
Burks, B.D. and M.M. Minnis. 1994. Onsite Wastewater Treatment Systems. Hogwarth House, Limited, Madison,
WI.
Crites, R., and G. Tchobanoglous. 1998. Small and Decentralized Wastewater Management Systems. McGraw-
Hill, Boston, MA.
Hinkle, S.R., J.K. Bohlke, J.H. Duff, D.S. Morgan, R.J. Weick, 2007. Aquifer-scale controls on the distribution of
nitrate and ammonium in groundwater near La Pine, Oregon, USA. Journal of Hydrology, 333, 486-503.
Morgan, D.S., S.R. Hinkle, R.W. Weick, 2007. Evaluation of Approaches for Managing Nitrate Loading from On-
Site Wastewater Systems near La Pine, Oregon. Scientific Investigations Report 2007-5237, 66 p.
US Environmental Protection Agency (US EPA), 1997. Response to Congress on Use of Decentralized Wastewater
Treatment Systems. EPA 832-R-97-001b. US Environmental Protection Agency, Washington, DC.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Project Area Description Page 3-1
Chapter 3: Project Area Description
Description of Study Area
The two major unincorporated communities within the La Pine Project study area (Figure 3-1) are Sunriver and La
Pine. These communities lie approximately 13 and 25 miles south of the city of Bend, respectively. The study area
encompassed approximately 125 square miles and extended from Benham Falls north of Sunriver to the Deschutes
County line south of La Pine. The major water bodies in the study area include the Deschutes, Little Deschutes, Fall
and Spring rivers.
Most development in the study area occurred in a 20-mile long corridor of US Highway 97. The area is
predominantly residential with an urban density in a rural region. Most residential lots were one-half to 1 acre in
size. In the northern portion of the study area, most development occurs west of the Deschutes River and between
the Deschutes and Little Deschutes rivers west of US Highway 97. In the southern portion, development was
predominantly west of the Little Deschutes River, with exceptions around Wickiup Junction (approximately 3 mile
north of La Pine) and within La Pine city limits.
A septic tank effluent, gravity discharge (STEG) sewer system was installed in the business district of La Pine in the
early 1990’s. Sunriver has its own sewer system. In addition, the Oregon Water Wonderland subdivision between
the Deschutes and Little Deschutes rivers just south of Sunriver and the River Meadows subdivision west of the
Deschutes River and south of Oregon Water Wonderland have small community sewers and wastewater treatment
facilities. Information about the nitrogen reduction capabilities of these systems was not readily available at the
time of this writing. Wastewater in all remaining areas is disposed by individual onsite wastewater treatment
systems.
Land Use / Demographic Setting
The La Pine region of central Oregon spans southern Deschutes County and northern Klamath County and includes
a significant portion of the upper Deschutes River watershed. The region has inherited significant issues in the form
of platted subdivisions that pre-date land use law and which include high densities that are required to be served by
onsite wastewater systems and individual water supply wells. The level of services in these areas (e.g. fire, police,
roads, water, and sewage) are significantly different than what a similar neighborhood in an urban are would
receive.
The groundwater quality in southern Deschutes County, Oregon is threatened by nitrate contamination from onsite
system discharge. (Hinkle, 2007; Morgan, 2007) There are 15,000 lots of one-half to one-acre in size that were
platted in the 1960s and 1970s, prior to the enactment of Oregon’s land use planning laws, located within a 125
square mile corridor near the scenic Deschutes River and the smaller Little Deschutes River. Without an
understanding of the high water table or the aquifer’s water quality, and with no promise of infrastructure, these lots
were marketed nationally to prospective buyers. There are currently between 5,800-6,000 improved lots in the La
Pine region study area served with conventional onsite systems and individually owned drinking water wells. Most
of these wells draw from the most vulnerable upper 100 feet of the aquifer.
The major environmental, wildland/residential interface, and infrastructure issues facing the region were identified
in a public process undertaken by Deschutes County in 1996. The Regional Problem Solving (RPS) Project laid the
groundwork for the La Pine National Decentralized Wastewater Treatment Demonstration Project (La Pine Project)
by investigating solutions to the issues and gaining public consensus on the appropriate course of action. Because
the La Pine sub-basin of the Upper Deschutes River is underlain by a shallow unconfined aquifer that serves as the
only drinking water source, a primary issue identified by the RPS project was that of protecting the region’s drinking
water from the impacts of onsite wastewater systems. The county contracted with an engineering firm to study the
expansion or creation of centralized sewers in the area in the late 1990’s. Public feedback to the results of the study
indicated that the county should pursue an onsite wastewater treatment option because the public found sewers to be
economically and socially infeasible. In addition, existing state laws limit centralized wastewater treatment systems
in unincorporated areas. As a result, the Oregon Department of Environmental Quality (DEQ), in cooperation and
coordination with Deschutes County and the US Geological Survey (USGS), obtained funding from the US
Environmental Protection Agency (EPA) to define onsite wastewater treatment tools and mechanisms to protect the
region’s groundwater. A short history of the work undertaken in the region related to groundwater protection is
provided in Table 3-1.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 3-2 Project Area Description
Projected buildout will occur in 10 to 15 years if the 1990 to 2005 building rate continues. Based on these
projections, there will be 26,000 people occupying approximately 9,700 homes served by onsite systems by 2025.
Continual reliance on conventional onsite systems would cause nitrate concentrations to exceed federal and state
drinking water standards (10 mg/L) over large areas within the community.
Table 3-1. A timeline of groundwater protection work in the region leading to and through the La Pine Project.
Year Action
1982 La Pine Aquifer Study finds high nitrate levels in the groundwater underlying what is now the city
of La Pine.
1986 La Pine core area sewered (STEG system).
1994 Oregon DEQ finds increasing nitrate levels outside of the La Pine area.
1996 Deschutes County receives Regional Problem Solving grant to identify problems and evaluate
solutions.
1997 Sewer feasibility study for the region
1998 Public feedback to pursue onsite systems as a solution
1999 Oregon DEQ receives $5.5 million La Pine National Demonstration Project grant
1999-2004 Field sampling to measure groundwater quality and nitrogen reducing system performance
Three-dimensional groundwater and nutrient fate and transport model developed, calibrated and
future scenarios run.
2005 Oregon DEQ amends state rule to allow counties to issue permits for the use of nitrogen reducing
systems for individual residences.
Hydrogeologic Setting
The La Pine subbasin encompasses approximately 640 square miles. The Cascade Range bounds the study area on
the west and the Newberry volcano on the east. Volcanic rocks form the northern and southern boundaries of the
subbasin. A volcanic north-south trending ridge of small shield volcanoes and lava flows is present through the
central portion of the La Pine subbasin.
The soils in the region are highly porous and permeable with no intervening layer protecting the aquifer. These
young pumice soils are relatively low in organic matter and show rapid downward movement of water from
precipitation and septic effluent. The groundwater characteristics include temperatures that are among the lowest in
the state, generally 42.5 ◦F (6 ◦C) to 48.2 ◦F (9 ◦C) and high dissolved oxygen content (3 mg/L to 6 mg/L). The water
table ranges in depth from less than two feet to about thirty feet below land surface. Recharge occurs from
infiltration of precipitation and averages 2.0 inches per year. Groundwater discharges by way of the Deschutes and
Little Deschutes Rivers, evapotranspiration, and wells. Groundwater velocities are low and, at the water table,
groundwater is generally oxic. However, at depths ranging from near zero to more than fifty feet below the water
table groundwater becomes suboxic, a boundary where nitrate denitrifies. Denitrification thus keeps portions of the
La Pine aquifer essentially nitrate-free, but the oxic portions remain vulnerable to nitrate contamination from onsite
systems, the primary anthropogenic source of nitrogen. (Hinkle, 2007; Morgan 2007)
The La Pine subbasin consists of volcaniclastic deposits. These valley fill deposits are underlain by Miocene-
Pliocene volcanic ash a substantial thickness of Quaternary valley fill sediment of alluvial (fluvial) and lacustrine
(lake) origin, flow tuffs, volcaniclastic sediments, and lava flows (Sherrod and Smith, 1989). Miocene-Pliocene and
Quaternary age lavas interfinger with the valley fill deposits along the subbasin margins. The valley fill sediments
are covered by 3 to 5 feet of pumice from the Holocene eruption of Mount Mazama.
Groundwater occurs in most of the rocks in the La Pine subbasin. The underlying bedrock of fractured lava,
interflow zones, and coarse-grained volcaniclastic sediments, are generally highly productive (Caldwell, 1997). The
shallow Quaternary fine to coarse sand, fine to coarse gravel and cinder fluvial deposits are particularly productive.
Most wells in the study area are screened in these fluvial deposits. Less permeable silts and clays comprise much of
the lacustrine deposits. In some areas of the subbasin, the lacustrine deposits overlie and are intercalated with the
fluvial deposits. Lacustrine deposits are exposed in bluffs along portions of the Deschutes River (Cameron and
La Pine National Decentralized Wastewater Treatment Demonstration Project
Project Area Description Page 3-3
Major, 1987). Because of the intercalated and discontinuous nature of the fluvial and lacustrine deposits, the La
Pine aquifer is considered unconfined.
Groundwater table elevation measurements indicate groundwater flow is generally northeastward west of the
Deschutes River and Northwestward east of the Little Deschutes River (Figure 3-2). In the northern portion of the
study area, regional groundwater flow becomes northeastward. Stream gauging measurements for the Deschutes
and Little Deschutes rivers indicated the rivers gain in flow (Friday and Miller, 1984;Moffatt, et. all, 1990; Gorman,
1996 unpublished data). The source of the gain is groundwater discharge. Spring River and Fall River originate
from springs in the volcanic rocks indicating the productivity of the fractured volcanic rocks.
Soils
Soils have been formed on the airfall pumice deposits from the eruption of Mt. Mazama about 6,700 years ago. This
pumice covers an older soil (paleosol) that developed on alluvium in the basin. The general soil profile is consistent
throughout the basin and appears not to have been influenced by erosional activities except in areas adjacent to the
existing river channels and within recent flood plains.
The texture of the pumice material varies from that of gravelly coarse sand to a loamy (soils with rapid or very rapid
permeability). The buried soil horizon which underlies the pumice deposits range from 10 inches to 3 feet thick and
consist of loamy material, texture varying from fine sandy loam to silt loams. The materials, which underlie the
buried soil horizons, are typically coarse-grained gravels and sands with discontinuous lenses of silt and clay,
associated with the top of the alluvial deposit.
A recent soil survey (NRCS, unpublished report) indicates broad areas that have a distinctive pattern of soils, relief,
and drainage. Tutni-Sunriver-Cryaquolls Association occurs on pumice-mantled stream terraces and flood plains.
Shanahan-Steiger and Lapine Associations occur on pumice-mantled and lava plains and hills (Figure 3-3).
Tutni soils are on stream terraces. These soils are more than 60 inches deep to bedrock and are somewhat poorly
drained. They have a very dark grayish brown loamy coarse sand surface layer; a mottled, dark grayish brown very
gravelly coarse sand substratum; and a very dark grayish brown sandy loam buried layer. Depth to a seasonal high
water table is 18 to 48 inches.
Sunriver soils are on stream terraces. These soils are more than 60 inches deep to bedrock and are somewhat poorly
drained. They have a very dark gray sandy loam surface layer; a mottled, light brownish gray coarse sand subsoil;
and a mottled, very dark gray sandy loam buried layer. Depth to a seasonal high water table is 24 to 48 inches.
Cryaquolls are on flood plains. These soils are more than 60 inches deep to bedrock and are poorly drained and very
poorly drained. They have a dark brown silt, silt loam, or gravelly loamy sand surface layer; a very dark gray,
mottled sandy loam, loam, silt loam, or loamy sand subsoil; and a very dark gray sand substratum. A seasonal high
water table is at the surface to a depth of 24 inches below the surface. These soils are subject to rare flooding. Of
minor extent in this unit are Wickiup soils on stream terraces,
Steiger soils are more than 60 inches deep to bedrock and are somewhat excessively drained. These soils have a
dark grayish brown loamy coarse sand surface layer, a pale yellow gravelly coarse sand substratum, and a dark
yellowish brown loam buried layer. Depth to buried layer is 40 to 60 inches or more.
Lapine are more than 60 inches deep to bedrock and are excessively drained soils formed in pumice and ash. These
soils have a very dark grayish brown and dark brown gravelly loamy coarse sand surface layer and a very pale
brown and light gray gravelly to extremely gravelly coarse sand substratum.
Shanahan soils are more than 60 inches deep to bedrock and are somewhat excessively drained. These soils have a
dark brown loamy coarse sand surface layer, a yellowish brown and brown loamy coarse sand and coarse sand
substratum, and a dark brown loam and gravelly sandy loam buried layer. Depth to the buried layer is 20 to 40
inches.
Climate
According to the Oregon Climate Service, the La Pine region, which is in the rain shadow of the Cascade range, has
a high desert climate. The average elevation of the La Pine region is about 4,200 feet above mean sea level. The
Wickiup Dam NOAA weather station is at an elevation of 4,360 feet above mean sea level and most closely
represents the La Pine region temperature and rainfall conditions. Summer (June-August) mean monthly maximum
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 3-4 Project Area Description
and minimum temperatures for the period of 1961 to 1990 at the Wickiup Dam weather station range from 80 to 42
oF, respectively (27 to 6 °C). Winter (December – March) monthly maximum and minimum temperatures range
from 46 to 17 oF (8 to –8 °C). Extreme temperatures are not unusual for the region, ranging from >100 to –30 oF
(>38 to –34 °C).
Monthly maximum and minimum precipitation for summer and winter ranges from <0.7 inches to >3.68 inches.
The mean annual precipitation ranges between 14 and 21 inches. Snowfall during winter months is common with
monthly means of 19 to 22 inches. The frost free period can vary from 10 to 50 days.
Figure 3-1: Study area
La Pine National Decentralized Wastewater Treatment Demonstration Project
Project Area Description Page 3-5
1720000 1740000 1760000
gp y
1720000 1740000 1760000
Oregon Stateplane Coordinate System (Easting)
-40000
-20000
0
20000
40000
60000
80000
100000
Oregon stateplane Coordinate System (Northing)-40000
-20000
0
20000
40000
60000
80000
100000
4265
42494250
4245
4225
4227
4219
42184203
4219
4230
4229
4225 4196
4212
4219
4211
4212
4196
4184
4179
42644265
4177
4177
4174
4183
4170
4166
4167
4169 4169
4185
416441654161
4158
4165
4156
4136
4261
4242
4217
4223
4220
4224
4232
4221
4226
4214
4195
4161
4168
4201
4198
4152
4183
4175
4186
4207
4206 4210
4217 4200
4241
4213
4195
Masten Rd.
Burgess Rd.
Pringle
Butte SouthSouth Century Rd.S. Century Rd.
State Park Rd.
Anns
Butte
Pistol
Butte
Sitkum
Butte
La Pine
Wickiup
Jct.
Sunriver
R11ER10ER9E
M2
M2'
Flowpath modelling cross-section
Oregon Department of Environmental Quality
Symbols
T23S
T22S
T21S
T20S
T19S
Benham Falls
Model Boundary
43o55'00"43o55'00"
121o22'30"121o37'00"
43o32'30"43o32'30"
121o22'30"
Sunriver-La Pine
Groundwater Modelling
Study
N
121o37'30"
1994 SHALLOW
GROUNDWATER
STATIC LEVEL
ELEVATIONS
Model study area boundary
Shallow wells (50 feet deep)
with static water level
elevation (feet above msl)
4
2
4
0
Shallow static water level
elevation contour (feet
above msl); contour interval
is 5 feet; measured 9/94
4240ModelBoundary
Scale: Oregon Stateplane Coordinate
System - North (in Feet)
La Pine State Park
M1
M1'
M2
M2'
File: Gw-contr(5-15-98)
May 1998
Figure 3-2. Groundwater table based on 1994 synoptic water level measurements.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 3-6 Project Area Description
1680000 1700000 1720000 1740000 1760000
1680000 1700000 1720000 1740000 1760000
Oregon Stateplane (North) Coordinate System
-40000-20000020000400006000080000100000-40000-20000020000400006000080000100000Oregon Stateplane Coordinate System -North (Northing in Feet)Sunriver
1
1
2
2
2
2
1
3
Key
Tutni-Sunriver-Cryaquolls Association1
2 Shanahan-Steiger Association
3 Lapine Association
Study Area Boundary
La Pine
Basin
General
Soil Map
Grid:
Oregon Stateplane-
North Coordinate
System (in Feet)
Base Map: MacLeod and Sherrod, 1992, Reconnaissance geologic map of the west half of the Cresent 1o
by 2o Quadrangle, central Oregon, USGS Map I-2215.
Deschutes County
Environmental Health
Division
Oregon
Department of
Environmental Quality
DataSource:
Natural Resource
and Conservation
Service, unpublished
data
La Pine
Approximate contact of general
soil unit
Figure 3-3. General soil associations in the La Pine sub-basin.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Project Area Description Page 3-7
References
Caldwell R. R., 1997, “Chemical study of the regional ground-water flow and ground-water/surface-water
interaction in the Upper Deschutes Basin, Oregon.” U.S. Geological Survey Water-Resources Investigation Report
97-4233.
Cameron, K. A. and Major, J. J., 1987, “Reconnaissance investigation of sediment distribution, erosion, and
transport in the upper Deschutes River, Deschutes County, Oregon, November 1986.” U.S. Geological Survey
Water-Resources Investigation Report 87-4114.
Friday, J., and Miller, S., 1984, “Statistical summaries of streamflow data in Oregon: Volume 1 – eastern Oregon.”
U.S. Geological Survey Open-File Report 84-454.
Hinkle, S.R., J.K. Bohlke, J.H. Duff, D.S. Morgan, R.J. Weick, 2007. Aquifer-scale controls on the distribution of
nitrate and ammonium in groundwater near La Pine, Oregon, USA. Journal of Hydrology, 333, 486-503.
Moffatt, R. L., Wellman, R. E., and Gordon, J. M., 1990, “Statistical summaries of streamflow data in Oregon:
Volume 1 – Monthly and annual streamflow, and flow-duration values.” U.S. Geological Survey Open-File Report
90-118.
Morgan, D.S., S.R. Hinkle, R.W. Weick, 2007. Evaluation of Approaches for Managing Nitrate Loading from On-
Site Wastewater Systems near La Pine, Oregon. Scientific Investigations Report 2007-5237, 66 p.
Norgren, G.H. and others, 1969, “General soil map report of the Deschutes drainage basin, Oregon.” U.S.
Department of Agriculture, Soil Conservation Service.
Oregon Climate Service, 1999, www.ocs.orst.edu. Zone 5, NOAA Wickiup Dam station.
U.S. Department of Agriculture, Natural Resource and Conservation Service, 1999, unpublished data of the La Pine
Basin soils.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Field Test Program Development Page 4-1
Chapter 4: Field Test Program Development
Introduction
The innovative system field test program comprised one of the largest efforts of the La Pine Project in terms of
funds, personnel and time. The program ultimately included 49 sites that were sampled monthly for a year and
bimonthly or quarterly for an additional two years. Groundwater monitoring well networks were installed around
each onsite system participating in the field test and monitored monthly for a year and then quarterly for the
remaining two years. This relatively straightforward plan was complicated by the significant set of legal
requirements that needed to be fulfilled because of the interactions between private property owners, vendors, and
agencies involved in the project. The following is a list of the types of agreements and contracts required for the
field test:
• Contracts between Deschutes County and the vendors for the system installation portion of the project;
• Contracts between Deschutes County and the property owners establishing expectations and the extent of
liability for the duration of the project;
• Permits issued to the property owners by DEQ to establish the requirements for onsite system operation;
and
• Contracts between the homeowners and the service providers for onsite system maintenance.
The project team relied heavily on Deschutes County’s legal counsel and the DEQ’s permitting process in order to
create a binding but responsive relationship between the project staff and the property owners.
Between all of these various agreements, a significant portion of the first year was spent establishing agreements,
screening homeowners and technologies and establishing the sampling infrastructure.
Selection Processes, Agreements and Permits
Homeowner selection
The La Pine Project field test program depended on finding cooperative homeowners to participate in this research-
oriented project. As such, the project team advertised for participants in several ways. The solicitation took place
over two years and included a written application, an interview/information meeting, and a site visit. Advertisement
of the opportunity to participate in the field test included:
• Word of mouth from Deschutes County Community Development Department (CDD) staff.
Deschutes County CDD includes the Building, Planning and Environmental Health Divisions and provides
“one-stop shopping” for almost all permits needed to develop property in Deschutes County. This method
of advertising produced the largest number of applicants, possibly because the sanitarians working in the
study area were closely involved in the La Pine Project and were aware of situations where the onsite
systems needed repairs or replacement.
• Word of mouth from homeowners already participating in the La Pine Project.
Several new applicants were notified of the opportunity to participate in the project by friends, neighbors or
relatives. This turned out to be a surprisingly effective way to advertise the project and the need for
participants in the field test program.
• Print media
The project team issued a series of press releases to advertise the project and the field test program.
Subsequently the local papers published stories on the project and it goals. This form of advertising was
not as effective as hoped because the project team could not necessarily control the points highlighted in
the story. As a result the field test program was sometimes overshadowed by other elements of the La Pine
Project that the particular reporter involved found the most interesting at the moment.
• Direct mailing.
The county mailed a newsletter for another purpose to the study area residents that included the
advertisement for the field test program. This method appears to have had limited success because a few
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 4-2 Field Test Program Development
area residents aware of the newsletter and the information it contained observed the trash cans at the local
post office were full of the newsletters from that mailing shortly after it was delivered.
• Web page.
While the request for participants was posted on the web page before any articles were published, this
method produced no “cold” applications. The project team and Deschutes County staff used the web page
primarily as a source of information to which they could refer people with whom they were already in
contact.
Recommendations for advertising a similar project: given the effectiveness of word of mouth in the study
area, a more effective advertisement method could have included notices given at the community centers,
churches and other public places in the study area. A more organized involvement of the current project
participants would have expanded the use of that network to advertise the project as well.
Property owners interested in participating in the field test were required to complete an application form (Appendix
A, Figure A-1) and participate in an interview/informational meeting. Project staff provided information on the
goals and objectives of the field test program and the overall La Pine Project, the expectations for the homeowners
and the responsibilities of the project, the innovative systems selected for participation, and example permits and
contracts.
The first round of homeowner meetings took place at the county office. During the second round of selections, the
project staff met with property owners on the site. The second approach worked better because it seemed to make
homeowners more comfortable and project staff were able to familiarize themselves with the property earlier in the
process. In several instances, the homeowners were able to provide information (e.g. water test results or well
construction information) that they may not have thought to bring with them to the county offices.
As mentioned earlier, the project staff provided examples of the permits and contracts and a list of discussion topics
covered during the meeting. Property owners signed this agenda (Appendix A, Figure A-2) at the end of the
meeting to confirm their participation in the meeting. The signed agenda turned out to be a useful tool at a later date
when a few property owners claimed that certain issues had not been discussed prior to their agreeing to participate
in the field test. While these property owners were a small fraction of the total participants, the fact that project staff
could show them their signatures on the agenda and review particular issues helped circumvent potential disputes.
The primary selection criteria turned out to be the physical characteristics of the site. In certain circumstances, more
attention should have been paid to the manner in which the potential participants interacted with the project or
county staff. A few of the property owners, while not completely uncooperative, were not as pleasant to work with
on a recurring basis either because of a slight belligerence towards public employees or because they were skeptical
of the need for advanced wastewater treatment. The fact that these persons actually agreed to participate in such a
project was unexpected given their apparent skepticism. Overall, however, the application process appeared to
create a self-selected group of participants who were interested in the outcome of the study and willing to cooperate.
The permit issued for the field test will be discussed in more detail below. Specifically in terms of homeowner
agreements, however, the permit for innovative systems established a requirement for maintaining a contract with a
service provider designated by the vendor. The contract between Deschutes County and the property owner (called
a License by the County) established the duration of the project, the duties of the Licensee (the County) and the
Licensor (the property owner), and the condition that would lead to default. The County recorded this license
agreement on the chain of title for the property on which the onsite system was installed. The presence of this
document on the title was helpful because it prompted prospective buyers to contact project staff to learn about the
project and the terms of involvement. Two owners were so supportive of the project that they ensured that
prospective buyers learned about the project to help make sure the field test was successfully completed. Having the
license agreement recorded on the chain of title created a valuable educational opportunity for prospective
homeowners during the time of sale. Prospective buyers otherwise may not have been aware of the requirements of
the wastewater treatment system they were purchasing with their home.
Technology selection
The initial step taken to involve vendors and designers of innovative onsite systems was to solicit proposals from the
national onsite professional community. This solicitation consisted primarily of a Request for Proposals (RFP) in
publications like the Small Flows Quarterly or the National Onsite Wastewater Recycling Association (NOWRA)
La Pine National Decentralized Wastewater Treatment Demonstration Project
Field Test Program Development Page 4-3
journal. Some contacts with vendors were made on a personal basis at national meetings. The RFP was published
over 2 years and the second RFP published in the Small Flows Quarterly is provided as an example in Appendix A,
Figure A-3.
About eight proposals were received during the first round of solicitation. The project team established a
Technology Review Committee (TRC) consisting of two project team members (1 each from DEQ and Deschutes
County) and three professionals from the national decentralized wastewater treatment community. The other
members included a consultant, a regulator and a university researcher.
The TRC process was only partially successful. The members of the committee external to the La Pine Project
provided valuable feedback on the first set of proposals received. During the second round of solicitation, the
participation from these committee members declined. Decisions on the proposals for the second round of proposals
were made almost entirely by the project team due to difficulties experienced obtaining feedback from the external
TRC members. It is unclear at this point why the difficulty existed because there is no indication that interest in the
success or results of the demonstration project had declined.
During the review process, each reviewer received a copy of the complete application package submitted by the
vendor or manufacturer. The reviewer’s charge was to evaluate the proposal against the project’s performance
criteria and decide whether the proposal met one of the following four criteria:
1. Information provided was sufficient and met the performance standards as advertised.
2. Information provided was sufficient and did not meet the performance standards as advertised.
3. Information provided was insufficient and additional information as specified should be furnished.
4. Information provided was insufficient and additional information was not warranted.
In general, the proposal solicitation process was successful given the wide variety of systems that participated in the
field test program. Early in the process, project staff invested a considerable amount of time discussing the project
goals with potential participants. Interestingly, some prospective applicants had to be assured that the field test
welcomed a diversity of system types because a rumor implied the project was biased towards regional vendors.
Ultimately, the list of participating manufacturers, vendors and designers was varied and represented a wide
spectrum of wastewater treatment methodologies including: forced aeration processes, packed bed filters,
sequencing batch reactors and rotating biological contactors. The treatment units or designs field tested during the
La Pine Project were:
• Advantex® – RX-30 and AX-20:
Orenco Systems, Inc., 814 Airway Avenue, Sutherlin, OR 97479
(800) 348-9843 x 218
http://www.orenco.com/ots/ots_index.asp
• Amphidrome®:
FR Mahony & Assoc., Inc., 273 Weymouth St., Rockland MA 02370
(781) 982-9300
http://www.frmahoney.com/frmahony.htm
• Biokreisel®:
Nordbeton North America, Inc., P.O. Box 470858, Lake Monroe, FL 32747
(407) 322-8122
http://www.nordbeton.com/biokreiselnna.htm
• Dyno2™:
Reactor Dynamics, Inc., P.O. Box 758, Forest Lake, MN 55025-0758
(651) 225-5070
http://www.reactordynamics.com/HOMEPAGE.htm
• EnviroServer:
MicroSepTec Inc., 26601 Cabot Road, Laguna Hills, CA 92653
(949) 855-3500
http://www.microseptec.com/
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 4-4 Field Test Program Development
• FAST®:
Bio-Microbics, Inc., 8450 Cole Parkway, Shawnee, KS 66227
(800) 753-3278
http://www.biomicrobics.com/
• IDEA BESTEP:
Advanced Environmental Systems, Inc., P.O. Box 50356, Sparks NV 89435
(775) 425-0911
http://www.aeswastewater.com/
• Innovative Trench designs (three):
Steve Wert & Associates, Inc., 2590 NE Courtney Dr., Suite 1, Bend OR 97701
(541) 617-9100
• NAYADIC:
Consolidated Treatment Systems, Inc., 1501 Commerce Center Drive, Franklin OH 45005
(937) 746-2727
http://www.consolidatedtreatment.com/nayadic.asp
• NiteLess:
On Site Wastewater Management, LLC, 16 Stonebridge Road, Cherry Hill, NJ 08003
(856) 751-8455
http://www.oswm.com/index.htm
• NITREX™ filter:
Lombardo Associates, Inc., 49 Edge Hill Road, Newton, MA 02467
(617) 964-2924, Fax: (617) 332-5477
http://www.lombardoassociates.com/nitrex.shtml
• Puraflo® system:
Bord Na Mona, P.O. Box 77457, Greensboro NC 27417
(800) 787-2356
http://www.bnm-us.com/
Permitting Process
The onsite program permitting process in Oregon required the systems participating in the La Pine Project be
permitted in one of two ways. The control systems, called “conventional systems” for the purposes of this report,
included standard tank and drainfield, pressure distribution, and sand filter (bottomless and lined) systems,
represented the typical systems permitted and inspected by the county environmental health staff. Permits for these
systems were construction permits with scheduled inspections to confirm the installer’s adherence to the prescriptive
standards contained in onsite rules. These permits are finalized with the completion of construction and do not have
a “life” beyond the construction phase apart from any requirements that might have been included on the Certificate
of Satisfactory Completion (CSC) issued for the system. The county onsite regulators have the authority to add
conditions to the CSC; however, the rules at the time did not allow the CSC to be revoked, which limited the
enforcement actions available to the permitting agency. Revocation of a CSC would essentially revoke approval of
an onsite system, a compliance issue that could be recorded in the permit file and disclosed at time of sale.
Sand filter systems have some O&M requirements specified in rule and, in this case, the permitting agency must
specify the O&M requirements on the CSC. Again, however, there is no means of revoking the CSC and using this
as a tool to achieve compliance.
The DEQ issued permits the innovative systems participating in the project using a Water Pollution Control Facility
(WPCF) permit, which is an operating permit. This permit process was designed for systems with:
• “Flows greater than 2,500 gpd;
• Greater than residential waste strength;
• Sand filter serving a commercial facility;
• Recirculating gravel filters; and
• Aerobic treatment facilities that don’t meet the prescriptive standards in the rule.”
La Pine National Decentralized Wastewater Treatment Demonstration Project
Field Test Program Development Page 4-5
The innovative systems participating in the La Pine Project fell within the final category because the definition in
rule for “Aerobic Sewage Treatment Facility” was “a sewage treatment plant that incorporates a means of
introducing air and oxygen into the sewage to provide aerobic biochemical stabilization during a detention period.
Aerobic sewage treatment facilities may include anaerobic processes as part of the treatment system.” All of the
innovative systems selected for participation in the field test met this definition and included forced aeration
processes, packed bed filters, sequencing batch reactors and rotating biological contactors.
The requirements for the innovative systems permit application process resulted in significant project staff
involvement. And, because the DEQ typically uses this permit exclusively for commercial facilities, the permit
contains relatively legalistic language with significant monitoring and reporting requirements. The language
constituted a barrier to most homeowners participating in the La Pine Project and the monitoring and reporting
requirements would have been a major financial burden. The typical permit specified influent and effluent
standards, a sampling schedule, a contract with a service provider, and an annual compliance fee ($300 during the
La Pine Project). Annually, the sum of these costs could approach $1,000 if only one sampling event was required,
but the permit typically required quarterly sampling, which would have caused the annual compliance costs to
approach $2,000. Additional costs may have been incurred under other circumstances because an applicant for a
WPCF permit typically hired a consultant to develop the application materials and follow the permit through the
process.
The project team understood that the existing WPCF permit would not be viable in the long-term for permitting
innovative systems for residential use. Ultimately the use of this permit would establish a disincentive to use
innovative systems and/or an incentive to sewer the rural areas of the state. The annual costs associated with the
WPCF permits can be at least triple the monthly cost of sewer service in nearby cities. For example, in Bend,
Oregon, about 20 miles north of the La Pine Project study area, the monthly sewer bill is about $20 for an annual
total of about $240. (City of Bend, personal communication, 2005)
The process described above was required by the onsite regulations in effect at the time. In March 2005, the DEQ
revised the state regulations to establish the process for approving innovative onsite technologies and to facilitate the
permitting process for the systems at the local level (DEQ, 2005).
Sampling and Analysis
Existing studies or protocols developed for sampling onsite wastewater systems were scarce when the La Pine
Project began work. This section contains a discussion of the analyses chosen for the sampling program and the
sampling procedures used in the La Pine Project. The primary source of information was the procedures used in
sampling municipal wastewater treatment plants and industrial pretreatment processes. Onsite wastewater treatment
systems turned out to be sufficiently different from municipal and industrial; therefore, the La Pine Project Team
defined some alternative methods of obtaining representative data and also provided initial testing of a hypothesis
that grab sampling produced nearly identical results for most parameters as composite sampling.
Sample parameters
Defining the sample parameters depends largely on the local situation and contaminants of concern. The La Pine
Project study is located in an area where nitrogen contamination is a concern due to the presence of an unconfined
drinking water aquifer, the shallow depth to the water table, and rapidly draining soils. Therefore, one of the most
important sample sets to take is the individual nitrogen species. This includes total Kjeldahl nitrogen, ammonium,
and nitrate-nitrite. A separate analysis for nitrite may be warranted if there are difficulties troubleshooting the
treatment process. The separate nitrogen species show how well the treatment system accomplishes the different
stages of the primary treatment and nitrification/denitrification processes.
The 5-day bio-chemical oxygen demand (BOD5), total suspended solids (TSS) and bacteria analyses provide a basic
characterization of wastewater quality. The chloride analysis provided a way to account for dilution (from
precipitation or irrigation) or concentration (by evaporation) in systems that are open to the atmosphere. Chloride
data can also provide an indication that residential sewage is the source of the nitrogen because humans are a
significant source of chloride. Chloride’s utility may be limited in those areas near saltwater bodies or where
roadway salting is common in the winter. Total alkalinity is a useful diagnostic parameter because the nitrification
process for a milligram (mg) of ammonia consumes a maximum of 7.14 mg of alkalinity. Typically, less alkalinity
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 4-6 Field Test Program Development
than the theoretical quantity is used because of the nitrogen used in building cell bodies, but the 7.14 mg/L provides
a conservative means to determine if the nitrification process is alkalinity limited. (Crites and Tchobanoglous, 1998;
Burks and Minnis, 1994)
Fats, oils and grease samples were taken from septic tanks but no other location in the treatment stream because the
project team uses this parameter primarily in the evaluation of septic tank effluent against the definition of
residential waste strength that was currently in the Oregon regulations (Oregon DEQ, 2000). This parameter is also
used when troubleshooting systems’ performance, however, the advanced treatment systems were not required to
reduce fats, oils and grease as part of the demonstration project.
Figure 4-1 lists the parameters taken during sampling for the La Pine Project and the methods used to analyze the
samples. This figure provides an example of the page dedicated to each property in the Quality Assurance Project
Plan (QAPP) that specified the parameters taken at each location on the site. Each site could vary from the standard
set of parameters but the baseline typically remained the same.
Site:
Address:
System Type:
Start-up Date: First Samples:
SAMPLE POINT
Septic Tank
Effluent (STE)
Treatment unit
Effluent
Groundwater
Monitoring Well
(GW)
Groundwater
Monitoring Well
(GW)
Groundwater
Monitoring Well
(GW)
Groundwater
Monitoring Well
(GW)
Analytical
Method
Lat: Lat: Lat: Lat: Lat: Lat:
Long: Long: Long: Long: Long: Long:
LASAR # LASAR # LASAR # LASAR # LASAR # LASAR #
DEQ ID: DEQ ID: DEQ ID: DEQ ID:
ANALYTE Drainfield Well
BOD5 X X X 5210 B
Total Alkalinity XX X 2320 B
TSS XX X 2540 D
Total Phosphorus XX 4500-P E
TKN XX X X X X 351.2
Ammonia as N XX X X X X 4500-NH3 H
Nitrate+Nitrite as N XX X X X X 353.2
Chloride XX X X X X 4500-Cl C
Fats, Oil & Grease X 1664
E. Coli X X (X) (X) (X) (X) 9213 D*
Fecal Coliform X X (X) (X) (X) (X) 9213 D*
Bottle Types X, STP, R, DP, C P, R, DP, C R, DP, C R, DP, C R, DP, C P, R, DP, C
Frequency 1st yr: monthly 1st yr: monthly quarterly quarterly quarterly 1st yr: monthly
2nd yr: 2-3 month 2nd yr: 2-3 month 2nd yr: 2-3 month
3rd yr: 2-3 month 3rd yr: 2-3 month 3rd yr: 2-3 month
12/11/2002 (S:\CDD\ehealth\EPA Grant\work plan\LaPine QAPP)
Amendment to ONSITE WASTEWATER SYSTEMS SAMPLE ANALYSIS PLAN, Appendix 1
La Pine National Decentralized Wastewater Demonstration Project
Deschutes County, Oregon
* Monitoring Wells denoted (X) = Coli-lert bacteria screen to be performed at Deschutes Co. If POSITIVE result, then
bacteria sample to OHD until 3 consecutive NEGATIVE results.
Figure 4-1. Example QAPP page.
Preparation for sampling
The preparation for sampling was as important as the sampling activity itself. In general, the more details attended
to during preparation for sampling, fewer mistakes were made during the sampling event. Obviously, sampling is
expensive so fewer mistakes equates with greater integrity of the dataset because of the increased confidence level in
the quality of the work performed and the fewer missed sample events.
Deschutes County established a small lab in one of the County buildings, which served as the base the sampling
activities. This space was separated from the Environmental Health Division offices in order to provide storage for
sampling equipment and supplies, an area for equipment maintenance, and adequate ventilation to minimize odor
complaints caused by sample preparation and clean up operations.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Field Test Program Development Page 4-7
Long-term sampling warranted using portable meters instead of test kits when taking field parameters (dissolved
oxygen, conductivity, temperature, pH) to ensure consistency and lower overall operating costs. We calibrated the
pH and DO/conductivity meters at the beginning of each sampling day, which was a more stringent schedule than
required by the equipment manufacturers. However, the project team felt this approach was more defensible over
the long term, especially as the sampling events became less frequent towards the end of the project. The
DO/conductivity meters were also calibrated to the altitude of the sampling site upon arrival because the elevation of
the lab (located in Bend) was significantly lower than the south Deschutes County area (4,200 feet above mean sea
level).
Sample bottles are prepared for the event by separating them into sets by sampling location and recording the bottle
identification numbers on the field/chain of custody forms in advance. The sampling teams bound the bottles into
sets using rubber bands or by using a dedicated bucket for each location. Creating bottle sets before the start of the
sample day ensured there were enough bottles to complete the day’s sampling and recording the bottle numbers
before arrival on the site dramatically reduced the number of transcription errors.
Preparation for sampling on the site
Two people typically comprised the wastewater sampling team where each person performed the same task (reading
meters, taking samples, opening components, etc.) to ensure consistency in procedure. While a single person could
perform the sampling tasks alone, this division of duties was also the most efficient in terms of the amount of time
spent on a site. For example, the team member that usually operated the meters also set up the sample table, the
meters, set the bottles next to each sample location and records field observations. At the same time, the other team
member opened the component lids, unloaded the sampling devices and clean up station, and filled the sample
bottles.
The sampling team used a small folding table for the meters and sample preservation. The table required frequent
cleaning and sanitizing but the ergonomic advantages outweighed this relatively minor reduction in time efficiency.
Groundwater sampling employed 1-2 persons depending on the sampling schedule. The most efficient arrangement
for groundwater sampling tended to be individuals working on a site or on individual wells on a site rather than
dividing the sampling activities.
Sampling procedures and equipment
Procedures – the sampling procedures are provided in the Quality Assurance Project Plan for the project. The
wastewater sampling procedure is provided in Appendix A, Figure A-4. Groundwater sampling and sampling
follow-up procedures are also provided in the appendix as Figures A-5 and A-6, respectively. Each procedure was
formatted to be easily replicated and laminated for field use in the event that additional personnel needed to be
trained.
The primary approach used to sample wastewater treatment systems was to sample from “clean” to “dirty.”
Sampling began at the location where effluent discharged from the treatment train into the environment and then
continued up stream to the septic tank or primary processing tank. For example, sampling a packed bed filter system
including a lysimeter in the dispersal field would begin with the lysimeter, then the effluent pipe of the packed bed
filter and, last, the septic tank. This ensured that a downstream or “cleaner” sample was not inadvertently
contaminated with upstream or “dirty” effluent.
Equipment - apart from the fundamental question of where and how to sample, there was the more basic question of
what kind of equipment should, or shouldn’t be used. Some of these conclusions were drawn through trial and error
and some as a matter of practicality or safety. The sample collection tools used at different types of sample sites are
summarized in Table 4-1.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 4-8 Field Test Program Development
Table 4-1. Sample collection device used to sample different effluent discharge points.
Equipment Sampling site Comment
Dedicated
disposable Teflon
bailer
Septic tank effluent
– gravity discharge
Each site requiring a bailer was assigned a dedicated bailer that was
cleaned/sanitized after each use and replaced quarterly.
Dipper Septic tank effluent
– screened pump
vault
NOTE: Particular care was required to avoid disturbing the attached
growth on the side of the screened vault or on the floats and to avoid
disrupting the operation of the floats
Treatment unit
discharge pipe
Dippers were used when the system discharged frequently enough and
in great enough volume to collect effluent during a sample visit. Basic
protocol was not to force the system to discharge prematurely.
Pump chamber
following the
treatment unit
This was the sample site of last resort because the bacteria data from
this site was not representative of what the treatment unit discharged.
This location was typically used for extremely low flow households.
Bucket Treatment unit
discharge pipe
The clean/sanitized bucket was left at those treatment unit effluent pipes
that did not discharge frequently enough or did not discharge a large
enough quantity during a sampling visit. The bucket is left so that it
performs as a flow through cell until the sample is collected. The
collection period is typically 2-24 hours.
Lysimeter or Sand
Filter Effluent
The bucket was left for a period of a day to several days and used as a
flow through cell. Typically lysimeter or sand filter effluent was not
discharged fast enough for the sample to be collected during the sample
visit.
All equipment was scrubbed and washed with detergent and then sanitized using a bleach solution. The project team
discussed the potential for the chlorine bleach to confound the sample results, in particular the bacteria results.
However, the team decided that, while the risk was minimal because of the length of time between uses, rinsing the
sampling equipment in the effluent before sampling and always taking the bacteria samples last could further
minimize the effects on sample results from residual sanitizer.
All wastewater sample collection equipment was cleaned and sanitized before leaving the site. Three five-gallon
buckets with lids were carried in the sampling vehicle for detergent wash, rinse, and sanitizer. The dipper, bailer,
bucket, and sludge judge were scrubbed, rinsed, and sanitized before leaving the site. This practice ensured that the
equipment met the minimum contact time with the sanitizer and was ready for use at the next site.
The chloride samples required filtration prior to shipping to the lab for analysis. Normal procedure (derived from
standard monitoring well sampling procedures) was to filter in the field; however, filtration in the field required the
use of a peristaltic pump and an in-line filter. This approach not only increased the quantity and kinds of equipment
required for sampling but also posed a significantly higher risk for the sampling personnel to come into contact with
wastewater. Septic tank effluent and some treated effluents clog in-line filters quickly, which caused significant
pressure build up in the pump line. The result was often a high-pressure stream of effluent and an unhappy sampling
team when the hose clamps failed. As an alternative, the sampling team took the unfiltered samples to the
Deschutes County lab space where they used a filter holder with a receiver and funnel. This filter is operated with a
peristaltic pump providing a vacuum so that the effluent is pulled through the filter rather than pushed as with the in-
line filters. This method also allowed the sampling team to pre-filter the effluent with a large pore filter paper.
(Figure 4-2) The main complaints with this method were odor complaints from neighbors in the building where the
lab was located; these were significantly reduced when the ventilation was improved. The advantages to this
approach included a safer process and significantly lessened costs for materials.
Because most of the wastewater sampling equipment was cleaned in the field, clean up in the lab consisted primarily
of servicing any meters or other equipment as required, packing samples for shipping to the analytical lab,
completing paperwork, and restocking supplies. Groundwater monitoring required more clean up in the lab because
the tubing required cleaning and sanitizing that could not be accomplished in the field.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Field Test Program Development Page 4-9
All samples were shipped overnight to ensure the analyses could begin promptly and minimize conflicts with sample
holding times. The samples contained in glass bottles required particular care in packing (bubble wrap or other
protective packing) and all samples required refrigeration (reusable blue ice packs).
Personal Protective Equipment
The primary method of ensuring personal
protection during sampling was to avoid
splashing or spraying wastewater.
Groundwater monitoring posed significantly
fewer risks because microbiological hazards
were minimal. Groundwater monitoring
hazards were also limited by proper lifting
and carrying techniques, appropriate care
when using extension cords for the
peristaltic pumps, and attentiveness when
dealing with property owner or
neighborhood domestic animals. Gloves
and proper hand washing techniques and
eye/face protection were some of the
personal protective equipment used to
protect sampling team members. Overall,
the foremost concern during wastewater
sampling was the potential for effluent
splashing or spilling during sampling. Using a dipper with a six or nine-foot handle greatly minimized the potential
for sampling personnel to come in contact with effluent. Bailers were slightly more risky to use, particularly
because they were used almost exclusively for septic tank sampling, but careful technique minimized the potential
for splashing. In addition, some sampling personnel preferred to use a face shield and apron during sampling for
greater protection.
Boots are particularly important if concrete riser lids are present or if the native wildlife warrants it. During winter
sampling, boots with insulated soles were essential protection from snow or ice. Appropriate cold weather gear was
essential because the wastewater sampling could not stop for inclement weather, in fact, this data can be important
in determining whether or not the treatment units are sensitive to environmental conditions
Sample locations
Identifying representative sample locations included a discussion on the different approaches to taking samples and
types of sampling devices to use. The project team adhered to the primary goal of the La Pine Project (evaluate the
performance of advanced treatment systems for nitrogen reduction) when designing the sampling approach.
Therefore, the septic tank evaluation, while a valuable study in and of itself, remained a supporting effort to the
primary goal. As a result, the project team decided to focus on septic tank effluent, rather than raw wastewater
influent to septic tanks or primary processing tanks, in order to best characterize the influent quality that the
innovative treatment units received. Septic tank effluent quality from the La Pine Project is discussed in Chapter 5.
The project team also considered how results might differ between sample locations, in particular what differences
might exist between free-flowing grab samples taken from the discharge pipe of the treatment units and grab
samples taken from the pump chamber following the treatment units. To test the hypothesis, the sampling team took
a series of side-by-side samples from the effluent pipes of three different types of treatment units and the pump
chambers following the treatment units for a total of six systems over a six to ten month period. The sampling team
collected the effluent pipe sample by waiting for the normal discharge cycle to occur. The chamber sample was
collected by dipping the sample from the pump chamber following the treatment unit’s effluent discharge pipe. The
data, in the form of correlation coefficients, are presented in Table 4-2 and data plots are provided in Figures 4-3
through 4-20.
Figure 4-2. Chloride sample filtering equipment.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 4-10 Field Test Program Development
Table 4-2. Correlation coefficients for comparative sampling from the effluent pipe vs. the collection chamber.
System type System name BOD-5 TSS TN Fecal E. coli
RX-30 System-R 0.99 0.64 0.99 0.91 0.94
RX-30 System-H2 0.22 0.72 0.99 0.96 0.09
RX-30 System-M 0.64 -0.20 0.79 -0.21 -0.23
NITREX System-F 0.99 0.92 0.99 0.06 0.01
NITREX System-S 0.98 0.61 0.99 0.48 0.28
FAST System-P 0.89 0.98 0.97 0.98 0.98
A question also raised during sampling program design concerned the possible compositing effects of the septic
tank, treatment unit and other components of onsite wastewater treatment systems. In most of the single-pass septic
tanks, the household daily flow ranged between 4% and 20% of the tank volume with average flow being 10% of the
tank volume. Potentially, this is a composite, or blending, of the number of days that is equivalent to the residence
time in the tank or chamber. Unfortunately, the project team could not warrant the extra expense and effort required
to use composite samplers to test the hypothesis that the septic tank and treatment unit (if present) are compositing
devices. This could be a valuable avenue of investigation in the future because if it proves to be true it would
maximize the resources of service providers or local jurisdictions that are sampling onsite systems.
The correlation coefficients shown in Table 4-2 provide a comparison of samples taken from the collection chamber
following the treatment device versus grab samples taken from the treatment unit effluent pipe. In most cases, the
collection chamber sample quality correlated highly with the effluent pipe sample for BOD-5. Two exceptions, the
System-M and System-H2 RX-30 units showed discrepancies in the results. The field observation records show
significant upsets in the operation of System-M during this sample period. The records for System-H2 showed some
non-specific issues (solids sloughing from the treatment process) that suggested operational upsets with this system
as well. Apart from these issues, it appears the most consistent results between the two sample locations were the
BOD-5 and TN. The total nitrogen pipe vs. chamber sampling results were highly correlated with the one poor
correlation produced by the system with numerous operational upsets.
Total suspended solids pipe vs. chamber results were not as consistently correlated with each other although
typically a correlation coefficient of greater than 0.7 is considered a good correlation. The differences may be due to
difficulties in sampling the chamber without disturbing the attached growth on the chamber walls and pump fittings
in those cases where the TSS is higher in the chamber than from the pipe. Higher results from the pipe samples may
indicate settling in the pump chamber.
The bacteria results did not correlate well between sampling locations and were highly variable across the six
systems. The project team expected the bacteria results would not be representative when sampling from the
chamber because of either die off or growth, depending on the conditions in the chamber. Additionally, standard
operating procedures for wastewater sampling require that bacteria samples be taken as grab samples from,
typically, a free flowing sample stream. (Sams [Bush], 2003) This sample location could be of benefit when the
system’s evaluation focuses on potential impacts to the immediate environment rather than strictly the performance
of the treatment system.
Figures 4-3 through 4-8 show the BOD-5 data for all six systems. A visual inspection of the data illustrates a high
correlation for this parameter over time. Again, the data for Systems H2 and M indicate the difficulties these
systems experienced during the sampling period. Generally, however, data from the chamber follows the trend of
the pipe discharge in both cases, which implies that the chamber data is a good indicator of performance of the
system. Systems-R, -F, and –S show such high correlations and strong relationships over time that there is no
practical difference between sampling the effluent pipe or pump chamber. One possible reason for this is the
effluent is blended as it moves through the septic tank. The effluent was further blended during the treatment
process in the unit itself. As stated previously, the extent to which this blending can be relied upon to produce a
representative sample warrants further investigation.
The TSS data was variable over the six systems. In general, the trend of the chamber data follows that of the pipe
data as shown in Figures 4-9 through 14. However, in several instances, there were considerably higher levels of
TSS in the chamber vs. the pipe. This may have been caused by sampling error if the sampler dislodged attached
La Pine National Decentralized Wastewater Treatment Demonstration Project
Field Test Program Development Page 4-11
growth from the walls of the chamber or the pump fittings or by suspended growth if the effluent in the chamber was
of such a quality as to support secondary growth. There are also several instances when there was greater TSS in the
pipe sample than the chamber. This could be due to settling of solids in the pump chamber. Figure 4-11 illustrates a
time when the pipe effluent was higher than the pump chamber effluent by approximately 10 mg/L. From the chart
it appears that there was a significant difference in the quality of the effluent taken from the pump chamber. The
negative correlation of the data points to a poor relationship between sampling results from the two locations.
However, when the first three months data is removed from the data set, the correlation is good for the remainder of
the sample record (r = 0.77). Based on these data, the project team felt that the TSS results from the chamber were
not as representative of the quality of effluent that the advanced treatment unit produced.
The total nitrogen data provided in Figures 4-15 through 4-20 show the highest correlations of the study. At each
site, nitrogen data from the pump chamber correlated strongly with the effluent pipe data regardless of the systems’
performance or operational history. The lowest correlation of the group, System-M at r = 0.79, was caused by
significant differences between the first set of sampling results of the record. While this r-value was lower than the
rest of the systems studied, it is still considered a high correlation according to conventional statistical methods
(Osborn, 2003). These methods typically consider r>0.70 to be highly correlated. When the first set of data was
removed from the calculation for System-M, the correlation coefficient of the sampling period equals 0.96,
equivalent to the correlations produced by the other systems.
Given these results, the project team believed that total nitrogen data was representative of the systems’ performance
and of the quality of effluent discharged to the dispersal field independent of whether the sample was taken from the
effluent pipe or the pump chamber following the treatment unit. Originally, the project team hypothesized that
additional nitrogen reduction would occur in the pump chamber because of the attached and suspended growth
commonly observed in pump chambers. However, given the lack of difference between the results, additional
nitrogen reduction did not occur and the compositing nature of the upstream components appeared to have more
effect on the results.
System-R BOD5 Chamber vs. Pipe over time
0
2
4
6
8
10
12
14
16
18
20
11/13/200012/13/20001/13/20012/13/20013/13/20014/13/20015/13/2001mg/LChamber BOD5
Pipe BOD5
System-R BOD5 scatter plot
0
2
4
6
8
10
12
14
16
18
02468101214161820
Chamber (mg/L)Pipe (mg/L)P BOD5
Linear (P BOD5)
r = 0.99
r2 = 0.98
Figure 4-3. RX-30 System-R pipe vs. chamber BOD-5 data
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 4-12 Field Test Program Development
System-H2 BOD5 Chamber vs. Pipe over time
0
5
10
15
20
25
11/15/200012/15/20001/15/20012/15/20013/15/20014/15/20015/15/2001mg/LChamber BOD5
Pipe BOD5
System-H2 BOD5 scatter plot
0
5
10
15
20
25
024681012141618
Chamber (mg/L)Pipe (mg/L)r = 0.22
r2 = 0.05
Figure 4-4. RX-30 System-H2 pipe vs. chamber BOD-5 data.
System-M BOD5 Chamber vs Pipe over time
0
2
4
6
8
10
12
14
16
12/12/20001/12/20012/12/20013/12/20014/12/20015/12/20016/12/2001mg/LChamber BOD5
Pipe BOD5
System-M BOD5 chamber vs. pipe
0
2
4
6
8
10
12
14
16
18
0 50 100 150 200 250
Chamber (mg/L)Pipe (mg/L)BOD-5
Linear (BOD-5)
r = 0.64
r2 = 0.41
Figure 4-5. RX-30 System-M pipe vs. chamber BOD-5 data.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Field Test Program Development Page 4-13
System-F BOD5 over time
0
50
100
150
200
250
300
12/26/2000 1/26/2001 2/26/2001 3/26/2001 4/26/2001 5/26/2001mg/LChamber BOD5
Pipe BOD5
System-F BOD5 scatter plot
0
50
100
150
200
250
300
0 50 100 150 200 250 300
Chamber (mg/L)Pipe (mg/L)P BOD5
Linear (P BOD5)
r = 0.99
r2 = 0.98
Figure 4-6. NITREX System-F pipe vs. chamber BOD-5 data.
System-S BOD-5 over time
0
20
40
60
80
100
120
140
160
180
12/26/2000 1/26/2001 2/26/2001 3/26/2001 4/26/2001 5/26/2001mg/LChamber BOD5
Pipe BOD5
System-S BOD5 scatter plot
0
20
40
60
80
100
120
140
160
180
0 20 40 60 80 100 120 140 160 180
Chamber (mg/L)Pipe (mg/L)P BOD5
Linear (P BOD5)
r = 0.98
r2 = 0.96
Figure 4-7. NITREX System-S pipe vs. chamber BOD-5 data.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 4-14 Field Test Program Development
System-P BOD5 chamber vs. pipe over time
0
5
10
15
20
25
30
35
40
45
2/7/20013/7/20014/7/20015/7/2001mg/LChamber BOD5
Pipe BOD5
System-P BOD Scatter plot
0
5
10
15
20
25
30
35
40
45
0 5 10 15 20 25 30 35
Chamber (mg/L)Pipe (mg/L)P BOD5
Linear (P BOD5 )
r = 0.89
r2 = 0.79
Figure 4-8. FAST System-P pipe vs. chamber BOD-5 data.
System-R TSS chamber vs. pipe over time
0
1
2
3
4
5
6
7
8
9
10
11/13/200012/13/20001/13/20012/13/20013/13/20014/13/20015/13/2001mg/LChamber TSS
Pipe TSS
System-R TSS scatter plot
0
1
2
3
4
5
6
01234567Chamber (mg/L)Pipe (mg/L)P TSS
Linear (P TSS)
r = 0.64
r2 = 0.41
Figure 4-9. RX-30 System-R pipe vs. chamber TSS data.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Field Test Program Development Page 4-15
System-H2 TSS chamber vs. pipe over time
0
5
10
15
20
25
30
11/15/200012/15/20001/15/20012/15/20013/15/20014/15/20015/15/2001mg/LChamber TSS
Pipe TSS
System-H2 TSS scatter plot
0
2
4
6
8
10
12
14
16
18
20
0 5 10 15 20 25 30
Chamber (mg/L)Pipe (mg/L)P TSS
Linear (P TSS)
r = 0.72
r2 = 0.52
Figure 4-10. RX-30 System-H2 pipe vs. chamber TSS data.
System-M TSS Chamber vs. Pipe over time
0
10
20
30
40
50
60
70
11/13/0012/13/001/13/012/13/013/13/014/13/015/13/016/13/01mg/LChamber TSS
Pipe TSS
System-M TSS Scatter Plot
0
2
4
6
8
10
12
14
16
18
20
0 10203040506070
Chamber (mg/L)Pipe (mg/L)P TSS
Linear (P TSS)
r = -0.20
r2 = 0.04
Figure 4-11. RX-30 System-M pipe vs. chamber TSS data.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 4-16 Field Test Program Development
System-F TSS over time
0
5
10
15
20
25
30
35
40
45
50
12/26/2000 1/26/2001 2/26/2001 3/26/2001 4/26/2001 5/26/2001mg/LChamber TSS
Pipe TSS
System-F TSS scatter plot
0
2
4
6
8
10
12
14
0 5 10 15 20 25 30 35 40 45 50
Chamber (mg/L)Pipe (mg/L)P TSS
Linear (P TSS)
r = 0.92
r2 = 0.85
Figure 4-12. NITREX System-F pipe vs. chamber TSS data.
System-S TSS over time
0
2
4
6
8
10
12
14
16
18
12/26/2000 1/26/2001 2/26/2001 3/26/2001 4/26/2001 5/26/2001mg/LChamber TSS
Pipe TSS
System-S TSS scatter plot
0
2
4
6
8
10
12
14
0 2 4 6 8 10 12 14 16 18
Chamber (mg/L)Pipe (mg/L)P TSS
Linear (P TSS)
r = 0.61
r2 = 0.37
Figure 4-13. NITREX System-S pipe vs. chamber TSS data.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Field Test Program Development Page 4-17
System-P TSS chamber vs. pipe over time
0
5
10
15
20
25
30
2/7/2001 3/7/2001 4/7/2001 5/7/2001mg/LChamber TSS
Pipe TSS
System-P TSS scatter plot
0
5
10
15
20
25
30
0 5 10 15 20 25Chamber (mg/L)Pipe (mg/L)P TSS
Linear (P TSS)
r = 0.98
r2 = 0.96
Figure 4-14. FAST System-P pipe vs. chamber TSS data.
System-R TN Chamber vs. Pipe over time
0
5
10
15
20
25
30
35
40
11/13/200012/13/20001/13/20012/13/20013/13/20014/13/20015/13/2001mg/LChamber TN
Pipe TN
System-R TN scatter plot
0
5
10
15
20
25
30
35
40
0 5 10 15 20 25 30 35 40Chamber (mg/L)Pipe (mg/L)P TN
Linear (P TN)
r = 0.99
r2 = 0.98
Figure 4-15. RX-30 System-R pipe vs. chamber Total Nitrogen data.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 4-18 Field Test Program Development
System-H2 TN chamber vs. pipe over time
0
5
10
15
20
25
30
11/15/200012/15/20001/15/20012/15/20013/15/20014/15/20015/15/2001mg/LChamber TN
Pipe TN
System-H2 TN scatter plot
0
5
10
15
20
25
30
5 7 9 1113151719212325
Chamber (mg/L)Pipe (mg/L)Total Nitrogen
Linear (Total Nitrogen)r = 0.99
r2 = 0.98
Figure 4-16. RX-30 System-H2 pipe vs. chamber Total Nitrogen data.
System-M TN chamber vs. pipe
0
10
20
30
40
50
60
70
80
11/13/200012/13/20001/13/20012/13/20013/13/20014/13/20015/13/20016/13/2001mg/LChamber TN
Pipe TN
System -M TN Scatter Plot
0
10
20
30
40
50
60
20 30 40 50 60 70 80
Chamber (mg/L)Pipe (mg/L)Total Nitrogen
Linear (Total Nitrogen)
r = -0.79
r2 = 0.62
Figure 4-17. RX-30 System-M pipe vs. chamber Total Nitrogen data.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Field Test Program Development Page 4-19
System-F TN over time
0
5
10
15
20
25
30
35
40
45
12/26/2000 1/26/2001 2/26/2001 3/26/2001 4/26/2001 5/26/2001mg/LChamber TN
Pipe TN
System-F TN scatter plot
0
5
10
15
20
25
30
35
40
0 5 10 15 20 25 30 35 40 45
Chamber (mg/L)Pipe (mg/L)P TN
Linear (P TN)
r = 0.99
r2 = 0.98
Figure 4-18. NITREX System-F pipe vs. chamber Total Nitrogen data.
System-S TN over time
0
5
10
15
20
25
12/26/2000 1/26/2001 2/26/2001 3/26/2001 4/26/2001 5/26/2001mg/LChamber TN
Pipe TN
System-S TN Scatter plot
0
2
4
6
8
10
12
14
16
18
20
0 2 4 6 8 101214161820
Chamber (mg/L)Pipe (mg/L)P TN
Linear (P TN)
r = 0.99
r2 = 0.98
Figure 4-19. NITREX System-S pipe vs. chamber Total Nitrogen data.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 4-20 Field Test Program Development
System-P TN chamber vs pipe over time
0
10
20
30
40
50
60
70
2/7/2001 3/7/2001 4/7/2001 5/7/2001mg/LChamber TN
Pipe TN
System-P TN scatter plot
30
35
40
45
50
55
60
30 35 40 45 50 55 60 65
Chamber (mg/L)Pipe (mg/L)P TN
Linear (P TN)
r = 0.97
r2 = 0.94
Figure 4-20. FAST System-P pipe vs. chamber Total Nitrogen data.
Management and Education
Onsite System Maintenance: A demonstration project within the demonstration project
This section reviews the approach taken in the La Pine Project to ensure that the innovative and control onsite
systems were properly maintained for at least the duration of the project and, if successful, in perpetuity. As we
found, the operation and maintenance program existing in Oregon during the La Pine Project provided only part of
the mechanism needed to ensure that onsite system maintenance was completed in a timely and professional manner.
In illustrating the existing situation, this section outlines the baseline from which the La Pine Project started, lessons
learned during the project, and possible alternative approaches. The approach described below was allowed by the
onsite regulations in effect at the time. In March 2005, the DEQ revised the state regulations to establish the process
for approving innovative onsite technologies and to facilitate the permitting process for the systems at the local level
(DEQ, 2005).
Water Pollution Control Facilities (WPCF) Permit Requirements
The Oregon Administrative Rules (OARs) in effect at the beginning of the La Pine Project (DEQ, 2000) provided
the starting point from which the La Pine Project developed the demonstration maintenance program. There were
several provisions in the rule that the project team applied to the 49 systems and property owners participating in the
project.
Section 340-071-0130, General Standards, Prohibitions and Requirements, specifically stated that,
“all systems shall be operated and maintained so as not to create a public health hazard or cause water
pollution. Those facilities specified … as requiring a [Water Pollution Control Facilities] WPCF permit
shall have operation and maintenance requirements established in the permit.”
La Pine National Decentralized Wastewater Treatment Demonstration Project
Field Test Program Development Page 4-21
Each property owner in the La Pine Project receiving an innovative treatment system was required to obtain a
WPCF permit from the DEQ. Each property owner receiving a standard septic tank and gravity drainfield, pressure
distribution system or bottomless sand filter obtained a construction/installation permit from the county.
(Construction/installation permits are discussed below.)
OAR 340-071-0162, Permit Application Procedures – WPCF Permits, stated that applicants wishing to obtain a
WPCF permit must identify the person responsible for operation and maintenance activities before the permit can be
issued. Ultimately, however, the responsible person was the property owner. There were few or no specifications in
the rule for the minimum type of maintenance or the minimum information to be included in the operation and
maintenance manual for the system. The intent behind these omissions was to allow the rule to remain flexible and
adapt to different wastewater treatment technologies. Manufacturers or vendors of advanced treatment units were
required to specify maintenance schedules and activities and these requirements were incorporated into the permit
by reference.
The WPCF permit language used for the La Pine Project systems included the following as a compliance condition:
“Compliance Conditions and Schedules
1. The permittee shall, at all times, maintain a contract with the manufacturer’s authorized
representative to operate, manage and implement preventative maintenance practices or
corrections at the frequencies pursuant to the Department-approved O&M Plan for the permitted
sewage treatment and disposal system. A copy of this contract shall be provided to the
Department within 30 days of the issuance date of this permit.”
The homeowner had a definite requirement to report the O&M activities and other occurrences related to the onsite
system. Unfortunately, there was not a corresponding method by which to require or otherwise enforce the
maintenance performance or reporting requirements on the service provider. The contract for the maintenance
existed between the homeowner and the service provider and, with few service providers available, the homeowner
had little recourse if the service provider did not perform adequately. In most instances, the homeowner was
uninformed as to whether the service provider was performing the appropriate service or not because of the lack of
reporting to the homeowner or the permitting agency. Typically, the county’s first approach to enforcement was to
obtain voluntary compliance first and take more stringent action if voluntary compliance was not forthcoming. The
county first attempted to obtain voluntary compliance and only recommended more stringent action if unsuccessful.
However, the demonstration project found that there was little practical recourse for enforcement action if the
homeowners were powerless to improve the basic underlying competence of their particular service provider or
service providers in general. This became a particular issue in the La Pine Project where there was only one service
provider trained by the vendor to maintain their systems. Homeowners in these situations often felt coerced into
paying service providers because 1) they had no choice, and/or 2) they were not convinced that the service providers
were actually providing them with a service of value (Operation and Maintenance Advisory Committee members,
personal communications).
Construction/Installation Permit Requirements
The systems installed under a construction/installation permit had to meet the statewide standards whether a contract
county or the state issued the permit. The construction specifications for standard tank and drainfield systems and
pressure distribution systems were prescribed in rule. During the La Pine Project, property owners were required to
enter into contracts with a service provider but specific requirements were not prescribed in conjunction with any of
these systems.
Sand filter construction was also prescribed in rule and OAR 340-071-0305, Sand Filter System Operation and
Maintenance, provided operation & maintenance guidelines for these systems. This section included specific
recommendations in terms of inspection schedules and the levels of sludge and scum accumulation at which the
septic tank should be pumped. This section also included this language:
“Operation and Maintenance Standards for All Sand Filters. The owner/purchaser of a sand filter system
shall assume the continuous responsibility to preserve the installation as near as practical in its “as built”
state. This responsibility includes the control or erosion of any “mound,” the control and removal of
large perennial plants, the fencing out of livestock and the control of burrowing animals.”
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 4-22 Field Test Program Development
The latter provisions are an example of how specific the rule is for sand filters; including a fee that allows the
permitting agency to cover the costs of inspections. However, few jurisdictions in Oregon have implemented this
rule. Reasons commonly cited included an unwillingness to impose an additional fee on the regulated population,
inadequate staff levels, too few sand filters to make the effort worthwhile, and the fear of liability for the outcome of
the inspections. Some jurisdictions believed that they were infringing on the private sector if they provide
inspections of this nature. The corollary to this last concern was that although OAR-340- 071-0305 allows for an
inspection, the work that may be required as a result of the inspection would be undertaken by the private sector for
completion. Common concerns cited by jurisdictions included the associated uncertainty that the work performed
would be adequate (because of the lack of specified maintenance activities) or if the person hired was competent
(because, as stated earlier, no basic educational requirements or certification were needed to become an onsite
system service provider at that time).
During the La Pine Project, the only means of enforcing the O&M provisions in either the WPCF or the construction
permit program was the Notice of Non-compliance/civil penalty route. There was no opportunity to stimulate
voluntary compliance in advance. One recommendation of the O&M Advisory Committee (appointed by Oregon
DEQ and Deschutes County and funded by the La Pine Project) was to require time of sale inspections for properties
served by onsite systems (Chapter 7). This would create an incentive where the permitting agency could waive or
significantly lower the agency’s time of sale inspection fee if the system had been maintained appropriately and the
records were up to date. The second incentive would be the easier closing process and fewer potential repairs
required by the permitting agency if the system had been properly operated and maintained over its life.
As a result of the difficulties encountered when requesting reports of service providers participating in the La Pine
Project, the onsite systems appeared to be inconsistently maintained. Only two or three service reports were
submitted and the copies of the few service contracts (executed between the homeowners and the service providers)
received by the project team did not state that any reports, to the homeowners or the permitting agency, would be
provided.
Private service providers
In an effort to increase the level of expertise at the local level, the La Pine Project team required each vendor
participating in the project to train a local maintenance or service provider on the system installed. The service
provider became the local designated representative for maintaining that type of system. At the time the majority of
systems were installed, there was one person already working as an onsite system service provider in Central
Oregon. This person was selected by several vendors to become the designated service provider for their system. In
other cases, the vendors worked with installers of the systems to train them on the maintenance activities required
for their systems. In both instances the vendors typically worked with the designated service provider during or
shortly after installation of the system to review the maintenance requirements. The information was also typically
provided in a manual or other hard copy format.
The non-proprietary control systems were treated in different manners. The septic tank and drainfield systems were
turned over to the homeowner with educational materials on what should and should not be put down the drain and
with recommendation schedules for pumping the septic tank or primary processing tank. The pressure distribution
and sand filter system owners were required to have a contract with a service provider for annual service visits. The
state or county offices provided the requirements for maintenance of these systems upon request.
A fundamental requirement missing from this scenario was a provision in the rule or the permit requiring the service
provider to meet basic educational requirements for maintaining onsite systems. The ability of any person wishing
to maintain onsite systems was taken at their word. The result was that several service providers were servicing
systems without basic knowledge of how onsite systems were supposed to work beyond the hydraulics of making
water flow down gradient. This lack was even more problematic with advanced treatment systems. For example,
project staff encountered difficulties discussing problems a denitrifying system was having because the service
provider was convinced that the system was not performing because the anoxic process was not working properly.
Project staff tried to point out that the field measurements indicated that the aerobic process wasn’t functioning. The
service provider did not seem to understand the biologic process needed properly aerated (nitrified) wastewater
before the anoxic portion of the cycle could denitrify the effluent. This highlights a significant barrier, which could
affect any jurisdiction seeking to implement innovative wastewater treatment units. Onsite system professionals,
including regulators, should have an academic understanding of the biological processes contained in the various
treatment systems.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Field Test Program Development Page 4-23
The service providers working on the La Pine Project systems tended to have multiple businesses, the most common
combination being that of onsite system installer and service provider. Others included residential excavation and
construction and stormwater drainage system maintenance. The installer/service provider business model, at first
review, appeared to be a logical approach because the installers are familiar with onsite system designs and
components. The combination of businesses did not work well in practice in the demonstration project because the
installers tended to focus first on their installation jobs and secondly on the maintenance needs of the systems under
their care. As a result, maintenance activities tended to become a reaction to alarms or other events with the system
and proactive maintenance was overlooked. Again, the lack of service records makes understanding the interplay in
these situations difficult. It is unclear if the informal nature of training most service providers received contributed
to an informal attitude towards maintenance. The lump sum payment received by some service providers may also
have devalued the preventative service visits because the actual cost of performing service exceeded the amount
collected for the initial two-year warranty for NSF certified systems (NSF, 2000) due to travel time or other factors.
Homeowner Education
Homeowner education efforts during the La Pine Project met with somewhat limited success from the time that
onsite system design choices were made through long-term operating choices. The La Pine Project team noted that
consumers tended to choose the cheapest available package when it came to onsite system installations. This
tendency prevailed even when a poor choice at the design phase could have deleterious effects on long–term home
life and household function. Part of this mindset may have been due to the fact that many homes in the area are built
on speculation or that many homeowners seemed to place a low value on a household system that was installed as
much out of sight as possible. Several of the homeowners participating in the field test program asked about
performing maintenance on their own system. When asked why they were interested in this activity, all of the
homeowners stated that the primary reason was to save the cost of hiring an independent maintenance provider. At
the time, the cost of the maintenance contract ranged between $150 and $300 per year. As homeowners learned
what was required to properly maintain an onsite system, interest in undertaking the activity waned dramatically
because, in the words of one homeowner, they were not interested in “getting to know their sewage that well.”
At the time the La Pine Project was conducted, no minimum educational standards were required of installers to
enter the business. As a result, many installers did not have basic understanding of how onsite systems operate in
terms of the wastewater treatment processes that occur within the treatment system and the soil dispersal site. No
standards for basic educational requirements or certification within the installer community meant that there was no
minimum standard for bids on installation. This affects homeowners and installation quality because homeowners
typically request bids from installers and accept the lowest cost without questioning the quality of the bid. This was
not necessarily a failing of the homeowner but instead indicated a role for the regulatory agency to improve the
educational and credential requirements for onsite wastewater professionals. This role could be a cornerstone in a
robust customer service oriented program because the agency could provide important information on what should
be included in a good bid, basic provisions to watch for in a service provider contract and basic operating needs of
onsite systems.
The La Pine Project team believed that homeowner education would be essential to the success of a long-term
maintenance program. Therefore, the project team included the following steps in working with homeowners
participating in the project.
1. Individual meetings. Each homeowner participating in the innovative treatment system field test program
met with project staff individually for an information sharing session. Each meeting included discussion of
project goals, expectations for their participation, permit conditions and the contract to be executed
between the property owner and Deschutes County. In addition, project staff included information on the
kinds of treatment systems they might receive and their operating requirements.
2. Written information. After the initial meeting and once participation was assured by completion of all
pertinent legal agreements, the participant received a binder which included the permit, contract with the
county, general O&M information, and specific information about the system they were to receive. The
binder also included log sheets for noting alarms and observations, and space was provided for the service
provider contract, as-built drawings and other pertinent information for their site or system.
3. Site visits. Once the system was installed, the sampling team visited the property monthly for the first year.
This visit became an important point of contact with many of the property owners and a significant amount
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 4-24 Field Test Program Development
of education took place in this fashion. Because of differing work schedules, this approach did not reach
all property owners.
4. Direct mailings. Occasionally, project staff sent informational mailings to the property owners. This
occurred irregularly and was generated more out of need or opportunity than any planned process. For
example, when the county developed a new brochure on the use of anti-bacterial products, the property
owners received a copy directly by mail. Each property owner also received a midterm report to describe
the system and its operation, performance data to date, and the cost of their system and monitoring wells.
Many of the homeowners participating in the project were conscientious and appreciated the information and service
the project provided. A number of homeowners, however, either did not understand or read the information that was
provided. A common example was the use of “every flush” toilet bowl cleaners. Project staff mailed information to
all the participating homeowners and advised them not to use these products because of manufacturer specifications
or because of water quality effects (see for example, Figure 6-76) in systems exposed to them. However, the
sampling team still observed several sites where the treatment system and, on one site, the lysimeter one foot below
the drainfield discharged effluent that was distinctly blue in color despite efforts to work with the homeowner to
avoid these products during the test period.
Homeowner education might have been more effective if the service providers had taken a more active role. The
service providers have the opportunity each time they visit sites to give the homeowner substantive feedback on the
performance of the system and potential impacts of different activities. Service providers are a non-regulatory
presence paid by the homeowners and a third party source of information. There is potential, as certification
programs develop, to foster a strong sense of customer service in service providers so that they actively work to help
homeowners understand potential impacts, including financial impacts, of their actions.
The service providers participating in the La Pine Project systems did not appear to provide much organized
homeowner education. Some service calls were accompanied by verbal reports to the La Pine Project team, but
written reports were rare to non-existent even after repeated requests for information. In addition, homeowners
often asked project staff how their system was working because they did not get reports from the service providers.
Because there was no certification or license required, there was no way for the permitting agency or the homeowner
to divest non-performers of the ability to continue to work. Other feedback received from homeowners included
concern about the lack of bond required for service providers as there was for installers and septic tank pumping
services. This lack caused the homeowners to feel their investment was at risk if the service provider damaged the
system.
An issue highlighted earlier related to the two year warranty required for NSF certification can also impact
homeowner perceptions on the value of service providers because the homeowners tended to view the first two years
of service as free (the fee was actually included in the price of the system). As a result, they undervalued the service
they received during that period, particularly when the service provider did not give significant feedback to the
homeowner on the system’s performance. Homeowners also tended to forget that the service contract should be
extended after the warranty period or complained because they felt the contract was not worth the price. The
vendors that were candid about the maintenance requirements of the system and made contact frequently with the
homeowner had more success in keeping the systems maintained beyond the warranty period. However, this latter
scenario tended to occur only with those products where vendors provided service rather than using a third party.
This outcome highlights the need for service providers to educate homeowners about the value of their product.
Service Provider Certification
The service providers working in Oregon under the rules in place during the La Pine Project had no requirement to
obtain a license, bond or certification, as has been mentioned above. Therefore, no minimum education was
required to enter the business, which meant that there were service providers working with limited knowledge of
how onsite systems, conventional or advanced, treat wastewater. Many providers had a working knowledge of the
hydraulics involved or the control panel of a system but did not comprehend the biological processes. This inhibited
their ability to provide appropriate service, particularly when an advanced treatment system process was
compromised.
The lack of a license or certification also meant that there were no minimum standards for a job well done. And if a
job was not well done, there was no recourse to prevent that service provider from continuing to work. This has
been a recurring theme in this section because of homeowner concerns stated to the La Pine Project team about
La Pine National Decentralized Wastewater Treatment Demonstration Project
Field Test Program Development Page 4-25
minimum qualifications and consumer protection. The lack of a certification program also removed an incentive or
obligation for the regulatory agency to follow up on the work of a service provider.
In March 2005, the DEQ revised the state regulations to establish a certification program for onsite system service
providers. Certification for service providers in Oregon is required after March 1, 2006. (DEQ, 2005)
Conclusion
Sampling onsite wastewater treatment systems originates in the standard operating procedures for sampling larger
centralized or municipal systems but different approaches are required to accommodate the differences in process.
Further examination is necessary to determine the standard operating procedures for sampling onsite systems that
will support a long-term sustainable monitoring program for permitting authorities and private constituents. The
suite of sample parameters taken from a system will largely be driven by site-specific or regional environmental and
public health concerns. The La Pine Project, located in a nitrogen sensitive area, concentrated on BOD-5, TSS and
nitrogen as the primary constituents for evaluating the systems’ performance. A secondary suite of parameters
provided further information on the quality of system performance or troubleshooting for underperforming systems.
These parameters included bacteria, total alkalinity, chloride, and the field parameters of DO, pH, conductivity and
temperature.
The type of sampling equipment can be an important factor in the ease and safety of sampling an onsite wastewater
system. Consistency of technique and personnel can directly impact the quality and reliability of the dataset.
Dataset quality also relies upon using consistent and representative sampling stations. A grab sample from the pump
chamber following the treatment unit correlated strongly to the end of the pipe discharge for BOD-5 and total
nitrogen and relatively well for TSS. Therefore, if no other option is available, sampling from the pump chamber
can be substituted for the effluent pipe sample if necessary. Bacteria results from the pump chamber are suspect and
standard procedure should be to sample from the effluent pipe if the quality of the effluent discharged from the
treatment is desired. However, the quality of effluent discharged to the environment may be better characterized by
samples from the pump or collection chamber following the treatment unit. In general, the La Pine project team
decided to take grab samples from the effluent pipe leaving the treatment unit to represent the performance of that
unit whenever possible and at least for the bacteria samples if the total sample suite could not be taken from free
falling effluent.
The hypothesis that septic tanks, treatment units and pump chambers have a compositing effect on the effluent needs
to be tested with side-by-side comparative sampling. The potential financial benefit to the homeowner, permitting
agency and maintenance service provider of a representative alternative to composite sampling would be significant.
The La Pine Project used private sector services providers with a regulatory requirement for service imposed on the
homeowners. This scenario contained the three stakeholders shown in national onsite system management models
(Otis, 2003). However, the link between the regulatory agency and the service providers was not adequate. This
link, while creating another layer of regulation on the service provider, can establish a mechanism to foster
consumer protection in the onsite industry by providing a means of constructive or code enforcement feedback to
service providers. This could also help build homeowner confidence in the quality and value of the service
provided. The La Pine Project found that private sector service providers have the potential to perform well as long
as there is a minimum level of education and professional integrity. The other link missing in this demonstration
was that of regulatory requirements for maintenance on conventional systems (standard tank and drainfield, pressure
distribution and sand filter systems). The experience described was influenced by the onsite regulations in effect at
the time. In March 2005, the DEQ revised the state regulations significantly (DEQ, 2005).
References
Burks, B.D. and M.M. Minnis. 1994. Onsite Wastewater Treatment Systems. Hogwarth House, Limited, Madison,
WI.
Converse, J.C. 2004. Effluent Quality From ATUs and Packed Bed Filters Receiving Domestic Wastewater Under
Field Conditions. In Proceedings of the 10th National Symposium of Individual and Small Community Sewage
Systems. American Society of Agricultural Engineers, St. Joseph, MI.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 4-26 Field Test Program Development
Crites, R. and G. Tchobanoglous, 1998. Small and Decentralized Wastewater Management Systems. McGraw Hill,
Boston, MA.
NSF, 2000. Residential wastewater treatment systems, NSF International, Ann Arbor, MI.
Oregon DEQ (Department of Environmental Quality), 2000. Oregon Administrative Rule, Chapter 340, Division
71, Onsite Sewage Disposal.
Oregon DEQ (Department of Environmental Quality), 2003. Draft Changes to OAR Chapter 340, Division 071 and
Division 073.
Oregon DEQ (Department of Environmental Quality), 2005. Oregon Administrative Rule, Chapter 340, Division
071, Onsite Wastewater Treatment Systems and Division 073, Construction Standards.
Osborne, J.W. 2003. Effect Sizes and the Disattenuation of Correlation and Regression Coefficients: Lessons from
Educational Psychology. In Practical Assessment, Research & Evaluation. Downloaded from PAREonline.net,
9/1/2004.
Otis, R.J., 2003. Performance Codes: What Does It Take to Make Them Work? In Proceedings of the 12th
Northwest On-Site Wastewater Treatment Short Course and Equipment Exhibition. University of Washington,
Seattle, WA.
Sam, G.L. (J. Bush). 2003. Effluent Sampling for Residential Treatment Systems. In Proceedings of the 2003
Conference of the National Onsite Wastewater Recycling Association. NOWRA, Edgewater, MD.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Control Systems: Septic Tank and Sand Filter Performance Page 5-1
Chapter 5: Control Systems: Septic tank and sand filter performance
Introduction
The field test program of the La Pine Project included a significant effort applied to sampling conventional onsite
systems, including standard gravity tank and drainfields, pressure distribution and sand filter systems. These
systems provided a benchmark against which the performance of innovative systems and the monitoring well
sampling results can be compared. This work also increased baseline knowledge system performance for
comparison against other work performed in the field.
Conventional systems have been found to be contaminating groundwater in the region (Hinkle et al, 2007; Morgan
et al, 2007) because these systems provide primary treatment in the septic tank and discharge nitrogen-rich effluent
to the drainfield or sand filter where it becomes transformed from ammonium to nitrate and is discharged to the
environment. Nitrification process are described in more detail in texts like Burks & Minnis (1994) and Crites &
Tchobanoglous (1998). Figure 5-1 provides a simplified illustration of the biochemical processes that occur in a
conventional system using trenches or a sand filter for nitrification.
Figure 5-1. Wastewater treatment process in conventional onsite systems.
Septic Tank Performance
The field test program of the La Pine Project included a significant effort applied to sampling septic tank effluent.
The septic tank population included 20 single-pass septic tanks that are all 1,500 gallons in volume except for one
single compartment tank that is 1,000 gallons in volume. The tank population was evenly split between one
compartment and two compartment tanks where the two compartment tanks are configured as a 1000-gallon primary
chamber and a 500-gallon discharge chamber.
The data from this study were used to review the waste strength coming from single-family households and to
provide a benchmark for the performance of the denitrifying systems in the field test. Several of the denitrifying
systems employed a recirculating process to return nitrified effluent to the carbon-rich environment of the primary
processing tank for denitrification. As a result, the project team could not easily monitor the influent waste strength
and, therefore, directly calculate the percent reduction achieved by these systems. The larger single-pass septic tank
population provides a reasonable estimate of waste strength in order to produce this kind of performance review.
In this section, septic tank performance is evaluated using total nitrogen instead of total Kjeldahl nitrogen (TKN).
The nitrogen in the septic tank effluent is comprised primarily of TKN with minimal nitrate present. The project
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 5-2 Control Systems: Septic Tank and Sand Filter Performance
team reviewed the total amount of nitrogen leaving the septic tanks to determine if total nitrogen (TN) would be a
better representation of effluent quality than TKN. The statistics for TKN are indistinguishable from the statistics
for TN because the dominant nitrogen species in septic tanks is TKN. Because there is no statistical difference
between TKN and TN in septic tank effluent, the project team decided to use the TN results to be consistent with the
performance standards for the denitrifying treatment system study. The data provided in the tables in this paper are
a subset of total parameters taken as part of the field test program. The full dataset is provided in Appendix B and
C.
In this section, the Oregon residential waste strength definition will be used as an example of the applicability and
limitations of a concentration based performance standard. [Note: the analysis lends itself to any pertinent
residential waste strength definition.] Oregon’s definition, contained in the statewide onsite rule (OAR 340-071-
0100(126)) requires:
"Residential Strength Wastewater" means septic tank effluent that does not typically exceed five-
day biochemical oxygen demand (BOD5) of 300 mg/L; total suspended solids (TSS) of 150 mg/L;
total Kjeldahl nitrogen (TKN) of 150 mg/L; oil & grease of 25 mg/L; or concentrations or
quantities of other contaminants normally found in residential sewage. (Oregon DEQ, 2005)
Table 5-1 provides the summary statistics for the single pass septic tank population in the La Pine Project. Each
tank was sampled monthly for the first year and then bimonthly or quarterly for the next two years. Each tank was
sampled at the same time that the wastewater treatment unit and/or the lysimeter and/or the drainfield monitoring
well was sampled to facilitate the overall performance review of the treatment unit or the receiving environment.
(Section 8) Table 5-1 provides the statistics in terms of the total population of tanks sampled and also by number of
compartments. The table includes the mean and median values for the total population and the geometric mean.
The geometric mean may be a useful tool in this circumstance as the data for the individual tanks is slightly skewed.
The geometric mean is also useful to reduce the effect of varying sample sizes. Converse (2004) applied this
method in order to better compare data from sample sets with significantly different sample sizes (between 31 and
517). The sample size effect is lessened in this study because the counts are similar.
The discussion in the remainder of this section focuses on the BOD5, TSS, TN and O&G. The remaining statistics
reported in Table 5-1 (total phosphorus, bacteria, and temperature) are provided as a baseline for the denitrifying
systems discussion in Section 6 of this report.
On average, the waste strength from the twenty households falls within the Oregon definition for residential septic
tank effluent on all parameters except oil and grease (O&G). The maximum concentrations recorded, however,
greatly exceed the definition and the magnitude of the mean concentrations for BOD5 and TSS indicate that a
significant number of samples exceed the residential waste strength definition. The statistics for the different tank
designs indicates that two-compartment tanks perform significantly better (99% confidence level) than single-
compartment tanks for TSS reduction. BOD5 reduction in two-compartment tanks is slightly better than single-
compartment tanks but only to the 70% confidence level. The O&G concentrations in the two-compartment tanks
are actually significantly higher than in single-compartment tanks.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Control Systems: Septic Tank and Sand Filter Performance Page 5-3
Table 5-1. Septic tank effluent quality summary statistics.
All single pass septic
tank effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Oil &
Grease
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Temp
(C)
Mean 261 94 66 11 35 1.5E+07 5.4 9.5E+06 5.3 15.1
Geometric Mean 225 63 62 10 29 2.3E+05 5.1 1.6E+05 5.0 15.0
Median 240 62 63 10 28 1.9E+05 5.3 1.4E+05 5.1 15.2
Standard Deviation 136 149 22 5.6 28 7.3E+07 1.4 5.2E+07 1.3 4.4
Minimum 22 ND 8.6 0.1 2.5 ND 0.3 ND 0.3 3.1
Maximum 1000 1900 233 96 280 7.7E+08 8.9 7.4E+08 8.9 25.3
Count 428 427 427 429 415 429 429 429 429 430
95% Confidence Level 13 14 2.1 0.5 2.7 6.9E+06 0.1 4.9E+06 0.1 0.4
99% Confidence Level 17 19 2.8 0.7 3.5 9.1E+06 0.2 6.5E+06 0.2 0.6
All 1-compartment
septic tank effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Oil &
Grease
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Temp
(C)
Mean 265 119 64 11 33 1.8E+07 5.5 1.2E+07 5.3 15.4
Geometric Mean 222 76 60 9.6 27 2.8E+05 5.2 1.9E+05 5.0 14.8
Median 250 71 62 10 27 2.0E+05 5.3 1.5E+05 5.2 15.6
Standard Deviation 146 195 20 6.9 25 7.8E+07 1.3 6.1E+07 1.3 4.4
Minimum 22 10 8.6 0.1 2.5 ND 0.3 ND 0.3 3.1
Maximum 1000 1900 160 96 280 7.7E+08 8.9 7.4E+08 8.9 25.3
Count 231 231 230 232 223 232 232 232 232 233
95% Confidence Level 19 25 2.6 0.9 3.3 1.0E+07 0.2 8.0E+06 0.2 0.6
99% Confidence Level 25 33 3.4 1.2 4.3 1.3E+07 0.2 1.0E+07 0.2 0.8
All 2-compartment
septic tank effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Oil &
Grease
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Temp
(C)
Mean 255 64 69 11 38 1.2E+07 5.3 6.5E+06 5.2 14.8
Geometric Mean 228 52 64 10 32 2.0E+05 5.0 1.4E+05 4.9 14.3
Median 240 53 64 10 30 1.7E+05 5.2 1.3E+05 5.1 14.7
Standard Deviation 124 44 24 3.3 31 6.6E+07 1.4 3.8E+07 1.3 4.4
Minimum 44 ND 27 2.3 2.5 ND 0.3 ND 0.3 3.6
Maximum 730 340 233 23 191 7.2E+08 8.9 5.0E+08 8.7 24.5
Count 197 196 197 197 192 197 197 197 197 197
95% Confidence Level 17 6.2 3.4 0.5 4.4 9.3E+06 0.2 5.4E+06 0.2 0.6
99% Confidence Level 23 8.2 4.4 0.6 5.8 1.2E+07 0.3 7.1E+06 0.2 0.8
Residential Waste
Strength Definition < 300 < 150 < 150 < 25
ND = non detect
A review of the summary statistics for individual residences indicates that some households produce significantly
higher waste strength on average. Table 5-2, for example, was a household with a two-compartment tank where the
septic tank effluent greatly exceeded the waste strength definition on average. It is unclear, based on the
homeowner’s survey responses and other observations, what caused the high waste strength in this household. Two
possible causes are that one family member was taking up to four different prescription medications during the test
period and the water use was extremely low for a household of 5 persons (mean = 124 gpd; median = 97 gpd).
An important policy implication is highlighted here in the situation where property owners could be penalized for
practicing good water conservation measures because these practices can cause the onsite system to receive higher
than residential strength wastewater. For example, Oregon rule (OAR 340-071-0130(15)(b)(B)) states that an onsite
system receiving greater than residential strength wastewater must be permitted using a Water Pollution Control
Facilities Permit (WPCF), a process typically used to administer commercial onsite systems. As a result, any home
found to be discharging greater than residential waste strength effluent is required to be on a WPCF permit. The
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 5-4 Control Systems: Septic Tank and Sand Filter Performance
property owner would then be subject to significant annual monitoring and reporting requirements and an increased
annual compliance fee. However, if we adjust the mass load of the BOD5 produced by this family (mean = 156
lb/yr, median = 135 lb/yr) to illustrate what the BOD5 concentration would be if that load were delivered in 225
gallons per day (GPD) on average (225 GPD is the average design flow for a single family residence in Oregon),
then the septic tank would be discharging BOD5 concentrations between 200 and 230 mg/L, well within the
residential waste strength definition. This example illustrates the value and the need to examine the mass load and
not solely the concentration discharged by a facility in order to obtain a true picture of the treatment system’s
performance.
Table 5- 2. Household with two-compartment tank with high BOD5 and O&G.
Innov. Trench-B
System-M STE
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Oil &
Grease
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Temp
(C) GPD
Mean 439 97 74 11 108 9.8E+05 5.5 7.7E+05 5.4 17.7 124
Geom. Mean 414 80 74 11 99 3.4E+05 5.5 2.4E+05 5.3 17.4 115
Median 450 85 75 11 108 2.0E+05 5.3 1.3E+05 5.1 16.7 97
Standard Dev. 125 75 11 1.9 43 1.3E+06 0.7 1.1E+06 0.7 3.7 59
Minimum 117 31 54 7.3 29 1.4E+04 4.1 1.5E+04 4.2 12.8 84
Maximum 570 340 96 15 191 5.0E+06 6.7 4.2E+06 6.6 24.5 300
Count 15 15 15 15 15 15 15 15 15 15 14
95% Conf. Level 69 42 6.1 1.1 24 7.4E+05 0.4 6.4E+05 0.4 2.0 34
99% Conf. Level 96 58 8.4 1.5 33 1.0E+06 0.6 8.8E+05 0.6 2.8 47
The twenty septic tanks in the La Pine Project represented a diverse group of residents from single young or retired
persons to families of six. The sites included residents on long-term antibiotics or chemotherapy drugs to people
who didn’t take any prescription drugs or use potent household cleaners. While this diversity creates a difficulty
when trying to determine how the one-compartment tank population compares to the two-compartment tank, the La
Pine Project team believes that the diversity is representative of the population in general. Given that, Table 5-3
provides another method of showing how the sample population compares to the residential waste strength
definition. This table provides the percent of all septic tank effluent samples that exceeded the residential waste
strength definition and the percent of the septic tanks that exceed the definition on average.
In general, the two-compartment tanks performed better than the single compartment tanks on a per sample basis on
all parameters except O&G. (The 2% of samples exceeding reported for TN in two-compartment tanks is not a
statistically significant difference between the two populations.) When the individual septic tanks are compared,
however, there is no difference in the performance for BOD5. When the population of tanks serving households
where long-term prescription drugs are used is removed from the data, the statistics change significantly. In all
cases, two-compartment tanks perform better than one-compartment tanks on all parameters and none of the tanks
exceed the waste strength definition for BOD5.
Table 5-3. Percent of the samples and septic tanks that exceeded Oregon’s residential waste strength definition.
Percent of all samples exceeding Percent of tanks exceeding
Entire septic tank population BOD5 TSS TN O&G BOD5 TSS TN O&G
All STE (20 tanks) 33% 11%1%58%30%5%0% 70%
1-compartment STE (10 tanks) 39% 17% 0% 54% 30% 10% 0% 30%
2-compartment STE (10 tanks) 27% 4%2%63%30%0%0% 80%
Percent of all samples exceeding Percent of tanks exceeding Septic tanks with no
prescription drugs BOD5 TSS TN O&G BOD5 TSS TN O&G
All STE (9 tanks) 24% 16%1%37%22%11%0% 44%
1-compartment STE (5 tanks) 31% 25% 1% 59% 40% 20% 0% 60%
2-compartment STE (4 tanks) 13% 4%1%6%0%0%0% 25%
La Pine National Decentralized Wastewater Treatment Demonstration Project
Control Systems: Septic Tank and Sand Filter Performance Page 5-5
Overall, it appears that the two-compartment septic tanks performed better than single compartment tanks on total
suspended solids even when considering the median or geometric mean values. The BOD5 reduction is slightly
better but the difference is not statistically significant. A large number of septic tanks served residences where at
least one person in the household is taking prescription medication for a long period of time.
The only parameter for which the Oregon residential waste strength definition appears to be consistently valid is for
total nitrogen or total Kjeldahl nitrogen. This result was unexpected because one hypothesis was that the waste
strength was greater because of water conserving fixtures. If that were the case, however, the TN results would have
been much higher because of the lack of dilution. It appears that the waste strength may be more strongly
influenced by chemically or biologically reactive inputs to the systems than water conserving fixtures. Also, given
that eleven of the twenty single-pass septic tanks included in the project serve residents taking some kind of long-
term prescription drug (four are families with children or young couples and seven are retired persons), chemically
or biologically reactive inputs may be present in a significant proportion of the population in general.
Sand Filter performance
The La Pine Project monitored the performance of three bottomless and two lined sand filters as part of the field test
program. The sampling for these systems occurred at the same frequency as the denitrifying systems in order to
create a baseline of information for the performance of sand filters and as a benchmark for the performance of the
denitrifying systems. The septic tank and sand filter effluent were sampled for chlorides in order to be able to
correct for the effects of dilution from precipitation or irrigation. The sample location for the bottomless sand filter
consisted of a 10 to 12 foot long and 10 to 12 inch diameter half-pipe placed at the sand/soil interface to intercept
the effluent percolating through the sand bed below one of the distribution laterals. The sample location for the
lined sand filter consisted of an access port in the discharge pipe of the sand filter where a small sump collected
effluent for sampling purposes.
Table 5-4 provides the hydraulic and organic loading rates for the three bottomless sand filters in the La Pine
Project. Table 5-5 provides the hydraulic and organic loading rates for the two lined sand filters in the study. The
sand filters are designed for a hydraulic loading rate of 1.25 gpd/ft2 and the actual mean and median loading rates
are 0.3 gpd/ft2, with even the range of hydraulic loading rates from 0.02-0.6 gpd/ft2 staying well below the design
rate.
The organic loading rate, however, is more difficult to discuss because there are few standards for organic loading.
The Oregon onsite rule, for example, does not explicitly state an organic loading rate. A hydraulic loading rate is
provided in terms of a maximum number of gallons that may be applied to a unit of land (0.5 to 1 acre depending on
soil type) but an organic load is not specified for any wastewater treatment systems other than proprietary treatment
devices. Some onsite professionals try to derive an organic loading standard based on the residential waste strength
definition and the design flow rates for single family residences (DEQ, 2005). Using total nitrogen as an example, if
the residential waste strength definition and the average and maximum design flow rates are applied, the maximums
provided in Table 5-6 result. When these results are compared to the actual TN loading rates measured in the
bottomless sand filters studied in the La Pine Project, the calculated TN mass load becomes meaningless, because
rather than providing a minimum standard for performance, it could be construed as allowing an increase in the mass
load applied to an individual lot.
Summaries of bottomless sand filter performance are provided in Tables 5-7 and 5-8, an example of a performance
curve is provided in Figures 5-2 though 5-5, and the reductions achieved by lined sand filter are provided in Table 5-
9. The data provided in Tables 5-8 and 5-9 and Figure 5-3 show that bottomless sand filters achieved large
reductions in BOD5 and TSS concentrations from septic tank effluent. Lined sand filters (Table 5-9) performed
comparably for BOD5 but the TSS results were significantly higher. These results are produced by sampling error
because the design of the sampling port for the lined sand filter allowed soil and other detritus from the top of the
sand filter to contaminate the samples.
The bacteria reductions were also high overall despite two individual high results (>100,000 CFU/100 ml) reported
for System-B and System-A. These two extremely high results were not replicated and, therefore, it is unclear
whether this is an indication of actual performance or the result of a sampling error. Table 5-10 provides the
frequency with which the sand filters in the La Pine Project discharged various concentrations of fecal coliform. In
general, the sand filters perform well as 94% of samples were less than 400 CFU/100 ml.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 5-6 Control Systems: Septic Tank and Sand Filter Performance
The phosphorus data shows that these sand filters achieved approximately 70% reduction on average. This may be a
result of the sand used in sand filter construction in the La Pine region and this level of reduction may not be
achievable in other regions where the sand used is of a different composition.
The nitrogen species data for the three bottomless sand filter systems are provided in Figures 5-1, 5-3 and 5-4.
Overall the systems produced completely nitrified effluent from the beginning of the sample record. System-H3
(Figure 5-5) provided one exception in December 2002 and February 2003 when it discharged elevated ammonium
and lowered nitrate concentrations. This effluent quality coincided with a field observation during the December
2002 sampling event that the sand filter effluent was tinged blue. The project team contacted the homeowners
shortly after this sampling event to remind them not to use “every flush” toilet bowl cleaners/deodorizers and the
sand filter effluent returned to normal over the next two to four months. These products contain potent anti-bacterial
agents that affect the biological organisms that treat wastewater.
There is little nitrogen reduction achieved by bottomless sand filters in this study, between 7 and 12%, based on the
mean and median values, respectively. Lined sand filters appeared to have higher denitrification rates (Table 5-9)
but the differences in TN in the sand filter effluent from the two types of sand filters is not statistically significant
(99% confidence level). This result is different than the results commonly quoted by onsite professionals in Oregon
because an early study of sand filter performance in the state indicated that sand filters achieved nearly 50%
reduction in total nitrogen (Oregon DEQ, 1982; also referred to in Ronayne et al, 1984). There are two fundamental
differences between the study reported in 1982 and the La Pine Project: the geographical and climate conditions and
the sampling program design. Both of these factors have an influence on the reported nitrogen reduction from the
1982 study and which were accounted for in the La Pine Project.
An early hypothesis for the difference in performance between the two studies is the difference in climate and
physical conditions of the test sites. The 1982 study involved four sand filters installed in Douglas County in
Western Oregon. The general climate conditions of the two areas are presented in Table 5-11. The weather data for
the La Pine Project study area represents the years during which the sand filters were sampled (beginning late 2000
and ending in late 2003) while the weather information from Douglas County was taken from the county website
because the 1982 report does not provide the weather or ambient conditions during that study period. In general, the
La Pine Project study area experienced lower temperatures during the winter months and comparable summer high
temperatures than Douglas County. The diurnal temperature range is also greater in the La Pine region, representing
lower overnight temperatures, even in the summer months. Total precipitation is nearly three times greater in
Douglas County than in the La Pine study area. (Douglas County, 2005; Sunriver weather station, written
communication)
The first hypothesis as to why sand filters perform better in Douglas County vs. the La Pine Project area is that the
climate differences adversely impact denitrification. The literature shows that denitrification rates are temperature
dependent in that denitrification declines when the temperature declines (Sutton et al, 1975; Lewandowski, 1982;
Crites et al, 1998). Figure 5-2 plots the high and low temperatures against the nitrogen species concentrations in the
effluent for a bottomless sand filter in the La Pine Project. The figure shows an apparent correlation between the
temperature fluctuations and the nitrogen concentrations although the calculated correlation is relatively poor (r =
0.6). On closer review, however, the nitrogen concentrations decline when the temperatures decline which implies
that nitrogen concentrations in the effluent are reduced more at low temperatures rather than at higher temperatures
as would be expected. Given the body of work performed on the temperature relationship for denitrification,
denitrification does not appear to be the operative mechanism affecting the change in seasonal nitrogen
concentrations in these systems.
Figure 5-2 also provides the sand filter effluent temperature (taken from the half-pipe lysimeter at the sand/soil
interface). The sand filter effluent temperature parallels the ambient temperatures reported for the overall study
area, possibly because the collection time required (24-72 hours) to obtain sufficient sample volume for analyses is
long and thus allowed the sample to be strongly influenced by ambient temperatures. A better indicator of the
temperature within the sand filter might be the septic tank effluent temperature as this is the temperature of the
effluent that is dosed to the sand filter. However, when the charted data is reviewed, the septic tank temperature also
parallels the ambient temperatures but moderates the low values so that the effluent rarely cooled to less than 50˚F.
This is a temperature at which denitrification rates should be extremely low; however, the lowest temperature
periods still coincide with the lowest nitrogen concentrations of the sample record. Figures 5-4 and 5-5 provide the
nitrogen species and temperature plots of the data for System-H3 and System-A respectively, which are similar to
the chart for System-B.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Control Systems: Septic Tank and Sand Filter Performance Page 5-7
This data does not appear to support the hypothesis that the colder overall climate conditions adversely affect
denitrification in the La Pine Project sand filters. Hinkle et al (2008) describes additional La Pine Project work on
the characterization of nitrogen reduction processes in sand filters. This work included an evaluation of the nitrogen
isotopes contained in septic tank and sand filter effluent samples, which indicates that denitrification, rather than
ammonium adsorption, occurs in mature sand filters; ammonium adsorption may dominate the nitrogen reduction
capacity of sand filters during the sand filter maturation period. Further investigation is required to define the
reasons why sand filters would appear to perform better during the cold periods of the year.
The second difference between the two studies is influenced by the interplay between precipitation and sampling
program design. The 1982 DEQ study took place in a region that receives an average of 34 inches of precipitation,
primarily rainfall, per year. The La Pine Project study area received an average of 13 inches per year during the
study period, most of which fell in the form of snow. The USGS estimates (Morgan et al, 2008) that between 1-2
inches of the total annual precipitation reaches the water table, which indicates that most of the precipitation
evaporates, transpires or discharges to surface water. As a result, onsite wastewater system effluent is not greatly
diluted as it is dispersed in the soil absorption field. The sand filters in both the La Pine Project and the 1982 DEQ
study were designed and installed so that the filter is unprotected from rainfall or snowmelt infiltrating the sand bed.
In order to account for any dilution (or evaporation) effects, the La Pine Project sampling program required chloride
analyses for the septic tank and treatment process effluent samples. The 1982 DEQ study did not include chloride
analyses in the sampling plan and so any dilution effects cannot be accounted for in the reported results. Other
commonly used references for nitrogen reduction in sand filters (Crites et al, 1998; US EPA, 2002) do not indicate
whether the compiled data is corrected for dilution effects, therefore it is difficult to directly compare other warm
climate installations with the 1982 study results. Other studies of sand filter performance in the Midwest (Converse
et al, 1999) indicate that chloride samples were taken in conjunction with the other parameters in the study. This
study in particular used the chloride results to define increased dilution in the winter and spring months over the
summer months. However, no correction for dilution in the sand filter or soil absorption data was reported.
The La Pine project data indicate that sand filters achieve some denitrification. The effect of seasonal temperature
changes on denitrification is unclear and the effects of dilution can be corrected to define the actual concentration of
TN discharged to the environment. The 1982 DEQ study implies that sand filters achieve nearly 50% nitrogen
reduction, but without correcting these results for dilution it is impossible to say whether the reduction is due to
dilution or denitrification.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 5-8 Control Systems: Septic Tank and Sand Filter Performance
Table 5-4. Hydraulic and organic loading rates for the bottomless sand filters in the La Pine Project.
All bottomless sand
filters
Daily flow rate
(gpd)
Hydraulic
loading rate
(gpd/ft2)
BOD5
(mg/L) BOD5 (lb/yr)
TN
(mg/L)
TN
(lb/yr)
Total
Phosph.
(mg/L)
Total P
(lb/yr)
Mean 122 0.3 3.0 0.9 51 19 3.5 1.2
Geometric Mean 102 0.3 N/A N/A 56 13 3.1 1.0
Median 109 0.3 1.5 0.6 50 19 3.1 1.2
Standard Deviation 54 0.1 6.6 1.6 29 10 1.5 0.7
Minimum 6.5 0.02 ND 0.0 ND 0.4 0.9 0.1
Maximum 223 0.6 50 12 151 37 8.2 3.5
Count 60 60 60 56 66 60 64 59
95% Confidence Level 14 0.04 1.7 0.4 7.0 2.6 0.4 0.17
99% Confidence Level 19 0.005 2.3 0.6 9.3 3.5 0.5 0.23
System-H3
Daily flow rate
(gpd)
Hydraulic
loading rate
(gpd/ft2)
BOD5
(mg/L) BOD5 (lb/yr)
TN
(mg/L)
TN
(lb/yr)
Total
Phosph.
(mg/L)
Total P
(lb/yr)
Mean 175 0.5 1.7 0.9 48 25 3.0 1.5
Geometric Mean 172 0.5 N/A N/A 46 22 2.8 1.4
Median 179 0.5 1.3 0.7 50 27 2.8 1.5
Standard Deviation 30 0.1 1.3 0.7 12 8.7 1.3 0.5
Minimum 75 0.2 ND 0.0 26 0.7 1.7 0.4
Maximum 223 0.6 4.3 2.8 66 37 8.2 2.8
Count 24 24 21 22 23 24 23 24
95% Confidence Level 12 0.03 0.6 0.3 5.2 3.7 0.6 0.2
99% Confidence Level 17 0.05 0.8 0.4 7.1 5.0 0.8 0.3
System-B
Daily flow rate
(gpd)
Hydraulic
loading rate
(gpd/ft2)
BOD5
(mg/L) BOD5 (lb/yr)
TN
(mg/L)
TN
(lb/yr)
Total
Phosph.
(mg/L)
Total P
(lb/yr)
Mean 98 0.3 1.5 1.2 44 13 3.5 1.1
Geometric Mean 85 0.2 N/A N/A 45 10 3.3 0.9
Median 97 0.3 1.1 0.4 46 14 3.1 1.0
Standard Deviation 35 0.1 1.5 3.0 16 7.8 1.3 0.5
Minimum 6.5 0.02 ND 0.0 ND 1.0 1.8 0.1
Maximum 153 0.4 6.2 12 68 27 6.2 2.1
Count 16 16 17 15 19 16 18 15
95% Confidence Level 19 0.05 0.7 1.7 7.9 4.2 0.7 0.3
99% Confidence Level 26 0.07 1.0 2.3 11 5.8 0.9 0.4
System-A
Daily flow rate
(gpd)
Hydraulic
loading rate
(gpd/ft2)
BOD5
(mg/L) BOD5 (lb/yr)
TN
(mg/L)
TN
(lb/yr)
Total
Phosph.
(mg/L)
Total P
(lb/yr)
Mean 78 0.2 2.6 0.8 81 15 3.5 1.0
Geometric Mean 73 0.2 N/A 0.5 76 9.3 3.2 0.8
Median 67 0.2 1.7 0.4 79 18 3.5 0.9
Standard Deviation 31 0.1 3.4 0.7 29 9.3 1.5 0.8
Minimum 41 0.1 ND 0.07 45 0.4 0.9 0.1
Maximum 162 0.5 14 2.4 151 27 7.1 3.5
Count 20 20 15 19 17 20 17 20
95% Confidence Level 14 0.04 1.9 0.3 15 4.4 0.8 0.4
99% Confidence Level 20 0.06 2.6 0.5 21 5.9 1.1 0.5
Hydraulic loading rate based on 360 ft2 sand filter
ND = non detect; N/A = statistic not calculable
La Pine National Decentralized Wastewater Treatment Demonstration Project
Control Systems: Septic Tank and Sand Filter Performance Page 5-9
Table 5-5. Hydraulic and organic loading rates for the lined sand filters in the La Pine Project.
All lined sand filters
Daily flow
rate (gpd)
Hydraulic
loading
(gpd/ft2) BOD5 (mg/L)BOD5 (lb/yr)
TN
(mg/L) TN (lb/yr)
Total
Phosphorus
(mg/L) TP (lb/yr)
Mean 148 0.4 3.8 2.0 52 23 4.6 2.1
Geometric Mean 141 0.4 N/A N/A 50 21 4.2 1.8
Median 151 0.4 2.1 0.9 52 25 4.6 1.9
Standard Deviation 47 0.1 4.6 3.0 12 8.2 1.7 1.2
Minimum 36 0.1 ND 0.0 8.3 2.6 1.7 0.5
Maximum 243 0.7 25 17 78 40 8.4 4.8
Count 47 47 48 47 48 47 48 47
95% Confidence Level 14 0.04 1.3 0.9 3.6 2.4 0.5 0.3
99% Confidence Level 19 0.05 1.8 1.2 4.8 3.2 0.7 0.5
System-F
Daily flow
rate (gpd)
Hydraulic
loading
(gpd/ft2) BOD5 (mg/L)BOD5 (lb/yr)
TN
(mg/L) TN (lb/yr)
Total
Phosphorus
(mg/L) TP (lb/yr)
Mean 125 0.3 2.8 1.0 54 20 4.8 1.8
Geometric Mean 118 0.3 N/A N/A 50 18 4.4 1.6
Median 132 0.4 2.1 0.8 56 18 5.0 1.7
Standard Deviation 37 0.1 2.7 1.0 16 9.2 1.8 0.9
Minimum 36 0.1 ND 0.0 8.3 2.6 1.9 0.6
Maximum 189 0.5 11 3.7 78 39 8.4 4.0
Count 24 24 24 24 24 24 24 24
95% Confidence Level 16 0.04 1.1 0.4 6.8 3.9 0.8 0.4
99% Confidence Level 21 0.06 1.5 0.6 9.2 5.3 1.1 0.5
System-S
Daily flow
rate (gpd)
Hydraulic
loading
(gpd/ft2) BOD5 (mg/L)BOD5 (lb/yr)
TN
(mg/L) TN (lb/yr)
Total
Phosphorus
(mg/L) TP (lb/yr)
Mean 172 0.5 4.8 2.9 51 26 4.3 2.5
Geometric Mean 164 0.5 N/A N/A 50 25 4.1 2.1
Median 175 0.5 2.1 1.3 51 27 4.4 2.4
Standard Deviation 45 0.1 5.9 4.1 7.2 6.2 1.6 1.4
Minimum 67 0.2 ND 0.0 38 12 1.7 0.5
Maximum 243 0.7 25 17 64 40 6.8 4.8
Count 23 23 24 23 24 23 24 23
95% Confidence Level 20 0.05 2.5 1.8 3.0 2.7 0.7 0.6
99% Confidence Level 27 0.07 3.4 2.4 4.1 3.6 0.9 0.8
ND = non detect N/A = statistic not calculable
Table 5-6. Potential and actual mass loading from bottomless sand filters in the La Pine Project.
Mass loading from
bottomless sand filters (lb/yr)
Design TN
(@ 150 mg/L)
Actual BSF TN
loading (@ 51 mg/L)
Average = 225 gpd 103 35
Max = 450 gpd 205 70
Actual BSF average = 122 gpd 56 19
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 5-10 Control Systems: Septic Tank and Sand Filter Performance
Table 5-7. Bottomless sand filter effluent statistics.
All bottomless sand
filter effluent (SFE)
after maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN
without
dilution
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. Coli
Log E.
coli GPD
Mean 3.0 4.7 51 56 3.5 3.2E+04 1.2 2.6E+04 1.1 115
Geometric Mean N/A N/A 56 48 3.1 15 N/A 12 N/A
Median 1.5 2.0 50 54 3.1 10 1.0 6 0.8 99
Standard Deviation 6.6 8.1 29 17 1.5 2.4E+05 1.1 2.0E+05 1.1 54
Minimum ND ND ND 29 0.9 ND 0.0 ND 0.0 71
Maximum 50 47 151 92 8.2 1.9E+06 6.3 1.6E+06 6.2 175
Count 60 60 66 49 64 64 64 64 64 3
95% Confidence Level 1.7 2.1 7.0 5.0 0.4 5.9E+04 0.3 5.0E+04 0.3 133
99% Confidence Level 2.3 2.8 9.3 6.7 0.5 7.9E+04 0.4 6.6E+04 0.4 308
System-H3 SFE after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN
without
dilution
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. Coli
Log E.
coli GPD
Mean 1.7 5.8 48 55 3.0 67 1.2 58 1.0 175
Geometric Mean N/A N/A 46 30 2.8 16 N/A 11 N/A
Median 1.3 2.5 50 50 2.8 20 1.3 10 1.0 179
Standard Deviation 1.3 8.2 12 17 1.3 161 0.8 150 0.7 30
Minimum ND ND 26 31 1.7 ND 0.0 ND 0.0 75
Maximum 4.3 37 66 92 8.2 760 2.9 680 2.8 223
Count 21 22 23 18 23 23 23 23 23 24
95% Confidence Level 0.6 3.6 5.2 8.3 0.6 69 0.3 65 0.3 12
99% Confidence Level 0.8 5.0 7.1 11 0.8 94 0.4 88 0.4 17
System-B SFE after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN
without
dilution
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. Coli
Log E.
coli GPD
Mean 1.5 1.9 44 55 3.5 6.6E+03 1.4 4.6E+03 1.3 99
Geometric Mean N/A N/A 45 50 3.3 23 0.9 22 1.0
Median 1.1 1.0 46 53 3.1 11 1.0 12 1.1 95
Standard Deviation 1.5 2.1 16 15 1.3 2.9E+04 1.2 2.0E+04 1.1 37
Minimum ND ND ND 29 1.8 ND 0.3 ND 0.3 6.5
Maximum 6.2 9.0 68 85 6.2 1.3E+05 5.1 9.0E+04 5.0 167
Count 17 17 19 15 18 20 20 20 20 19
95% Confidence Level 0.7 1.1 7.9 8.5 0.7 1.4E+04 0.6 9.4E+03 0.5 18
99% Confidence Level 1.0 1.5 11 12 0.9 1.9E+04 0.8 1.3E+04 0.7 25
System-A SFE after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN
without
dilution
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. Coli
Log E.
coli GPD
Mean 2.6 6.5 81 60 3.5 9.0E+04 1.0 7.6E+04 0.9 71
Geometric Mean N/A N/A 76 72 3.2 9 N/A 8 N/A
Median 1.7 3.0 79 59 3.5 2 0.3 2 0.3 66
Standard Deviation 3.4 12 29 20 1.5 4.1E+05 1.3 3.5E+05 1.3 37
Minimum ND ND 45 31 0.9 ND 0.0 ND 0.0 0
Maximum 14 47 151 91 7.1 1.9E+06 6.3 1.6E+06 6.2 162
Count 15 14 17 16 17 21 21 21 21 23
95% Confidence Level 1.9 6.9 15 11 0.8 1.9E+05 0.6 1.6E+05 0.6 16
99% Confidence Level 2.6 9.7 21 15 1.1 2.6E+05 0.8 2.2E+05 0.8 21
ND = non detect N/A = statistic not calculable
La Pine National Decentralized Wastewater Treatment Demonstration Project
Control Systems: Septic Tank and Sand Filter Performance Page 5-11
0
10
20
30
40
50
60
70
80
90
100
1/17/20013/17/20015/17/20017/17/20019/17/200111/17/20011/17/20023/17/20025/17/20027/17/20029/17/200211/17/20021/17/20033/17/20035/17/2003mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
High Temp (F)
Low temp (F)
SFE Temp (F)
Septic tank Temp (F)
Figure 5-2. System-B bottomless sand filter nitrogen species over time.
0
5
10
15
20
25
30
35
40
45
50
1/17/20013/17/20015/17/20017/17/20019/17/200111/17/20011/17/20023/17/20025/17/20027/17/20029/17/200211/17/20021/17/20033/17/20035/17/2003mg/L0
20
40
60
80
100
120
Temp (F)BOD5 (mg/L)
TSS (mg/L)
Performance Std
High Temp (F)
Low temp (F)
Figure 5-3. System-B bottomless sand filter BOD5 & TSS over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 5-12 Control Systems: Septic Tank and Sand Filter Performance
0
20
40
60
80
100
120
140
160
1/17/20013/17/20015/17/20017/17/20019/17/200111/17/20011/17/20023/17/20025/17/20027/17/20029/17/200211/17/20021/17/20033/17/20035/17/20037/17/20039/17/2003mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
High Temp
Low Temp
SFE Temp (F)
STE Temp (F)
Figure 5-4. System-A bottomless sand filter nitrogen species over time.
0
20
40
60
80
100
120
140
11/15/001/15/013/15/015/15/017/15/019/15/0111/15/011/15/023/15/025/15/027/15/029/15/0211/15/021/15/033/15/035/15/037/15/039/15/03mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
Performance Std
HIGH TEMP.
LOW TEMP.
SFE Temperature (F)
Septic tank temp (F)
Figure 5-5. System-H3 bottomless sand filter nitrogen species over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Control Systems: Septic Tank and Sand Filter Performance Page 5-13
Table 5-8. Reductions achieved by bottomless sand filters in the La Pine Project.
All bottomless sand
filter effluent after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
without
dilution
Total
Phosphorus
(mg/L)
Fecal
Coliform Log Fecal E. coli
Log E.
coli
Mean 3.0 4.7 56 3.5 3.2E+04 1.2 2.6E+04 1.1
Geometric Mean N/A N/A 48 3.1 15 N/A 12 N/A
Median 1.5 2.0 54 3.1 10 1.0 6 0.8
Standard Deviation 6.6 8.1 17 1.5 2.4E+05 1.1 2.0E+05 1.1
Minimum ND ND 29 0.9 ND ND ND ND
Maximum 50 47 92 8.2 1.9E+06 6.3 1.6E+06 6.2
Count 60 60 49 64 64 64 64 64
95% Confidence Level 1.7 2.1 5.0 0.4 5.9E+04 0.3 5.0E+04 0.3
99% Confidence Level 2.3 2.8 6.7 0.5 7.9E+04 0.4 6.6E+04 0.4
All BSF systems' septic
tank effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform Log Fecal E. coli
Log E.
coli
Mean 288 112 61 11 9.9E+05 4.5 8.2E+05 4.4
Geometric Mean 257 71 59 10 5.1E+04 4.2 4.1E+04 4.2
Median 270 66 62 9.8 4.0E+04 4.6 2.7E+04 4.4
Standard Deviation 140 204 20 11 4.5E+06 1.2 3.7E+06 1.2
Minimum 22 10 8.6 4.2 ND ND ND ND
Maximum 710 1600 120 96 3.3E+07 7.5 2.8E+07 7.4
Count 70 70 70 70 70 70 70 70
95% Confidence Level 33 49 4.8 2.5 1.1E+06 0.3 8.8E+05 0.3
99% Confidence Level 44 65 6.4 3.4 1.4E+06 0.4 1.2E+06 0.4
Reduction achieved by
Bottomless Sand
Filters - All systems
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Reduction
Fecal E. coli
Log
Reduction
E. coli
Calculated from Mean 99% 96% 7%70%96.79%3.3 96.77% 3.3
Calc. from Geom. Mean N/A N/A 18% 70% 99.97% N/A 99.97% N/A
Calc. from Median 99% 97% 12%69%99.98%3.6 99.98% 3.6
ND = non detect N/A = statistic not calculable
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 5-14 Control Systems: Septic Tank and Sand Filter Performance
Table 5-9. Reductions achieved by lined sand filters in the La Pine Project.
Two Systems SFE
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN
without
dilution
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Mean 3.8 154 52 51 4.6 718 1.1 516 1.0
Geometric Mean 1.0 117 50 49 4.2 13 0.7 10 0.6
Median 2.1 125 52 50 4.6 4 0.6 ND 0.3
Standard Deviation 4.6 154 12 15 1.7 2.8E+03 1.1 2.0 E+03 1.0
Minimum ND 19 8.3 9.2 1.7 ND 0.3 ND 0.3
Maximum 25 750 78 92 8.4 1.7 E+04 4.2 1.2 E+04 4.1
Count 48 48 48 36 48 48 48 48 48
95% Confidence Level 1.3 45 3.6 5.2 0.5 826 0.3 591 0.3
99% Confidence Level 1.8 60 4.8 7.0 0.7 1.1E+03 0.4 789 0.4
Two Systems STE
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Mean 264 88 63 12 5.2E+07 6.2 4.0E+07 5.9
Geometric Mean 249 76 62 12 7.1E+06 6.1 3.3E+06 5.8
Median 250 75 61 12 7.8E+05 5.9 4.6E+05 5.7
Standard Deviation 111 56 11 2.4 1.5E+08 1.3 1.3E+08 1.4
Minimum 130 19 43 9.0 1.6E+03 3.2 370 2.6
Maximum 680 340 96 19 7.7E+08 8.9 7.4E+08 8.9
Count 47 47 46 47 47 47 47 47
95% Confidence Level 33 17 3.4 0.7 4.5E+07 0.4 3.7E+07 0.4
99%Confidence Level 44 22 4.5 0.9 6.0E+07 0.5 5.0E+07 0.5
Reduction over two
systems
BOD5
(mg/L)
TSS
(mg/L)
TN w/o
dilution
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Calculated from Mean 98.6% N/A 18.3%62.9%99.9986%5.1 99.9987% 4.9
Calc. from Geo. Mean 99.6% N/A 21.5% 65.3% 99.9998% 5.4 99.9997% 5.2
Calc. from Median 99.2% N/A 17.7%60.8%99.9995%5.3 100.000% 5.4
ND = non detect N/A = statistic not calculable
Table 5-10. Frequency of sand filter effluent concentrations for fecal coliforms.
Counts in SFE
(CFU/100 ml)
Percent of Fecal Coliform samples
less than count
ND 40%
100 83%
200 90%
400 94%
1,000 95%
10,000 97%
>10,000 100%
Number of Samples 112
ND = non detect
La Pine National Decentralized Wastewater Treatment Demonstration Project
Control Systems: Septic Tank and Sand Filter Performance Page 5-15
Table 5-11. Climate conditions in Douglas County and the La Pine Project study area, Oregon.
Douglas
County
La Pine Project
Study area
Average annual precipitation (in) 34 13
January low temp 34 22
January high temp 48 40
April low temp 39 25
April high temp 63 55
July low temp 53 42
July high temp 84 87
October low temp 43 24
October high temp 67 62
USGS study
Mass balance and isotope effects during nitrogen transport through septic tank systems with packed-bed (sand)
filters (2008)
S.R. Hinkle, U.S. Geological Survey
J.K. Böhlke, U.S. Geological Survey
L.H. Fisher, U.S. Geological Survey
Several studies of sand filters have been published over the past several decades. In most of these studies, nitrogen
concentrations leaving sand filters were shown to be lower than those entering the sand filters. These apparent losses
have usually been attributed to denitrification. However, although dilution (with precipitation) and (ammonium)
adsorption may explain these apparent losses, these processes generally have not been considered. Furthermore, no
evidence to support denitrification in these macroscopically oxic environments, other than nitrogen concentration
data, has been provided to support the hypothesis of denitrification.
Nitrogen loss in sand filters, from denitrification or ammonium sorption, may have significance beyond just sand
filters in and of themselves, because processes controlling nitrogen movement and fate in sand filters may also occur
in unsaturated zones in sand above aquifers. Thus, in an effort to generate an improved understanding of nitrogen
movement and fate in sand filters, and through analogy, in unsaturated sand, a study of nitrogen fate in sand filters
was undertaken. This work, which focuses on sand filter and other unsaturated-zone processes, complements other
USGS work in the La Pine study area, which focused on saturated-zone processes.
The sand filter work involved three components. One component was a network of five non-recirculating sand filters
in the La Pine area that were monitored over a period of about three years as part of the NDP La Pine project. Septic
tank and sand filter effluent nitrogen species and chloride concentration data from the NDP La Pine project were
complemented with occasional sampling for nitrogen isotopes. This network of sand filters is referred to as the
maturing sand filter network. The resulting data set provides temporal characterization of sand filter effluent from
early in their operation into a period of apparent maturity.
A second component was a network of 12 existing, non-recirculating mature sand filter systems sampled by
DCEHD and ODEQ in October, 2001. Samples of septic tank effluent and sand filter effluent were analyzed for N
and Cl- concentrations, and isotopes of N. This part of the study is referred to as the mature sand filter synoptic. The
data provide characterization of mature sand filter effluent, complementing data from the maturing sand filter
network.
A third component consisted of laboratory column experiments to investigate adsorption characteristics of
ammonium to La Pine sand filter sediment. These laboratory data complemented field investigations.
Differences between N concentrations in septic tank effluent (sand filter input) and sand filter effluent (sand filter
output) were found to be affected by evaporative concentration. The net evaporative effect, opposite of a dilutive
effect, apparently was a response to evaporative effects exceeding dilutive effects in this semiarid study area.
Chloride concentrations were used to normalize sand filter effluent samples for effects of evaporation. Chloride-
normalized nitrogen concentrations indicated nitrogen losses in these sand filters, consistent with observations in
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 5-16 Control Systems: Septic Tank and Sand Filter Performance
most other studies of sand filters. Nitrogen isotopic data indicated fractionation of nitrogen isotopes, with residual
nitrogen isotopically enriched relative to septic tank nitrogen. This isotopic effect is consistent with denitrification,
and opposite in effect to that expected for ammonium adsorption. These data thus support a hypothesis of
denitrification in mature sand filters.
Early-time data (early stages of maturing sand filters) were sparse because of an absence of chloride data in some
early-time samples. The early-time data do show some hints of ammonium adsorption, and the column experiments
demonstrated a strong adsorption capacity in the volcanic sand used in some La Pine sand filters. These data suggest
that sand filters might lose some ammonium to adsorption during early use, but ammonium adsorption capacity
likely becomes saturated after an initial period of use. However, early-time data were not sufficient to draw
definitive conclusions regarding ammonium adsorption.
These findings have been published by Hinkle, et al, 2008 and the USGS incorporated these results into the
groundwater and nitrate transport model.
Conclusion
The La Pine Project monitored the septic tank effluent of nineteen 1,500 gallon and one 1,000 gallon septic tanks for
approximately 3 years each. The septic tank population included 10 one-compartment and 10 two-compartment
tanks. Residential waste strength appears to have increased since the Oregon onsite rules established a definition to
delineate permitting jurisdictions within the state with some portion of the increases in waste strength possibly
resulting from concentration due to low water use either from water conserving practices within the home or water
conserving plumbing fixtures. The greater effect on waste strength appears to stem from the common use of
prescription drugs, including long-term antibiotics and chemotherapy medications. Over 50% of the residences
participating in the La Pine Project used prescription medications and, when these households were removed from
the dataset, the performance of the septic tanks is better than the total sample population, particularly the
performance of two-compartment tanks. The results from this study indicate that residences can be the source of
high waste strength.
Sand filter performance in the La Pine Project area is different from the performance of sand filters in Western
Oregon reported by Oregon DEQ in a study published in 1982. Seasonal temperature fluctuations do not appear to
affect the La Pine Project sand filter systems because the higher summer temperatures do not correlate to higher
denitrification rates. The study area for the 1982 DEQ report received a quantity of rainfall that could significantly
dilute onsite system effluent as it dispersed in the soil absorption unit. Given the lack of a correction for dilution in
the 1982 study and the apparent lack of temperature effects in the La Pine Project systems, it appears that the
nitrogen reduction reported in the La Pine Project may be more representative of the sand filters’ actual
denitrification capability.
In general, the sand filters in the La Pine Project reduced septic tank effluent concentrations for BOD5 and TSS to
levels well below 10 mg/L. Reductions achieved in fecal and E. coli counts exceeded a 3-log reduction based on
median values. The nitrogen in sand filter effluent was almost completely transformed from TKN to NO3 and TN
reductions ranged between 7% and 22%, including corrections for the diluting effects of precipitation or irrigation.
Based on this information, single-pass intermittently dosed sand filters can be relied upon for nitrogen
transformation but not reduction.
References
Burks, B.D. and M.M. Minnis. 1994. Onsite Wastewater Treatment Systems. Hogwarth House, Limited, Madison,
WI.
Crites, R., G. Tchobanoglous, 1998. Small and decentralized wastewater management systems. McGraw-Hill,
Boston, MA.
Douglas County, 2005. Douglas County Oregon e-Government. http://www.co.douglas.or.us/overview.asp,
downloaded 8/28/05.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Control Systems: Septic Tank and Sand Filter Performance Page 5-17
Hinkle, S.R., J.K. Bohlke, J.H. Duff, D.S. Morgan, R.J. Weick, 2007. Aquifer-scale controls on the distribution of
nitrate and ammonium in groundwater near La Pine, Oregon, USA. Journal of Hydrology, 333, 486-503.
Hinkle, S.R., J.K. Böhlke, L.H. Fisher, 2008. Mass balance and isotope effects during nitrogen transport through
septic tank systems with packed-bed (sand) filters. Science of the Total Environment, 407 (2008), 324-332.
Lewandowski, Z., 1982. Temperature dependency of biological denitrification with organic materials addition.
Water Research, 16, 12-22.
Ronayne, M.A., R.C. Paeth, and S.A. Wilson, 1984. Oregon Onsite Experimental Systems Program, EPA/600/2-84-
157. Oregon Department of Environmental Quality. US Environmental Protection Agency, Office of Research and
Development, Washington, DC.
Morgan, D.S., S.R. Hinkle, R.W. Weick, 2007. Evaluation of Approaches for Managing Nitrate Loading from On-
Site Wastewater Systems near La Pine, Oregon. Scientific Investigations Report 2007-5237, 66 p.
Oregon Department of Environmental Quality, 1982. Final Report: Oregon On-Site Experimental Systems
Program. Oregon Department of Environmental Quality, Portland, OR.
Sutton, P.M, KL Murphy, RN Dawson, 1975. Low temperature biological denitrification of wastewater. Journal of
Water Pollution Control Federation, 47, 122-134.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-1
Chapter 6: Innovative Onsite Wastewater Treatment Systems
Introduction
One of the primary goals of the La Pine National Demonstration Project is to identify onsite wastewater treatment
systems that remove nitrogen from the wastewater prior to dispersal in the environment. The impetus for this task is
the shallow unconfined aquifer that is the primary drinking water source for the region. Work performed by the
project team to monitor and evaluate groundwater impacts and the fate on contaminants in the environment has
shown the vulnerability of this aquifer to discharges from onsite wastewater treatment systems. The performance of
the systems participating in the project is therefore presented first in terms of nitrogen reduction and then in terms of
other wastewater treatment parameters. The work plan proposed to “install and retrofit 200 or more, if possible,
onsite wastewater systems.” Of these, 40 representative systems will be selected for detailed performance analyses.
The project ultimately installed 49 systems for detailed performance analyses and, because the lab analyses were
significantly more expensive than anticipated at the time of work plan development, the funds for additional
installations were limited. Additionally, Oregon rules did not change to facilitate installation of innovative systems
at the local level (i.e. without using the more expensive permit process of the Water Pollution Control Facility
permit) until 2005 when the La Pine Project was about to close. As a result, funds remaining for additional
installations were directed towards use by Deschutes County in implementing a low-interest loan program.
Nitrogen-reducing systems
The focus of the La Pine Project was nitrogen reduction because of the demonstrated effects of conventional onsite
systems on the shallow unconfined aquifer that serves as the region’s drinking water supply. Nitrogen-reducing
onsite systems add treatment processes to what is achieved in conventional systems to facilitate the biological
processes for nitrogen reduction. These biochemical processes are described in more detail in texts like Burks &
Minnis (1994) and Crites & Tchobanoglous (1998). Figure 6-1 provides a simplified illustration of the process steps
required to facilitate denitrification. The nitrification and denitrification processes are dependent upon specific
chemical and physical conditions in which to occur, including alkalinity, pH, temperature, and dissolved oxygen.
For example, the process of transforming ammonium to nitrate (nitrification) consumes alkalinity (measured as
CaCO3). Each gram of ammonium transformed to nitrate requires about 7.14g of alkalinity. If enough alkalinity is
not present in the wastewater, then the biological process is limited in terms of how much of the ammonium can be
converted. Similarly, the biological organisms responsible for converting ammonium to nitrate or nitrate to nitrogen
gas (denitrification) are sensitive to the level of dissolved oxygen and/or temperature in the waste stream. If too
much dissolved oxygen is available in the denitrification process tank, then the facultative bacteria relied upon for
denitrification will preferentially choose the dissolved oxygen for their metabolic processes instead of the oxygen
attached to the nitrogen in nitrate (NO3). The balance between the various needs of the biologic organisms used to
perform wastewater treatment functions are embodied with the design of the treatment systems and these processes
must be understood by any professional seeking to design, install, or maintain a wastewater treatment system
appropriate to the needs of the locale.
Performance results
The performance of the systems participating in the La Pine Project is summarized in Figures 6-2 through 6-7.
These charts provide the ranks of all the systems participating in the La Pine Project by Total Nitrogen (TN), 5-day
Bio-chemical Oxygen Demand (BOD5), Total Suspended Solids (TSS) and fecal and E. coli bacteria reduction.
Each chart also indicates the systems’ performance in relation to the project’s performance criteria for that
parameter (Table 6-1). Each chart provides the systems’ rank by mean and median performance of the two or three
systems of each type in the study except the bacteria charts, which rank the systems by median and geometric mean
performance. The NITREX™ filter is excluded from the TSS and bacteria reduction charts because the lined sand
filter preceding the units in this field test significantly influenced the performance of this system for these
parameters.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-2 Innovative System Performance
Figure 6-1. Wastewater treatment process in nitrogen-reducing systems using (1) the septic tank as an oxygen-
poor, carbon-rich environment or (2) a separate process tank with an oxygen-poor, carbon-enriched environment.
Table 6-1. La Pine Project performance criteria.
Parameter Standard
5-day Bio-chemical Oxygen
Demand (BOD5) ≤10 mg/L
Total Suspended Solids (TSS) ≤10 mg/L
Total Nitrogen (TN) ≤10 mg/L
Fecal & E. coli bacteria ≥ 2 log reduction
The best performing systems in terms of nitrogen reduction are identified in this section by averaging the data from
the field test program to obtain the total nitrogen concentration discharged from the effluent pipe of the treatment
unit. Any apparent maturation period data was eliminated from the statistics. These maturation periods, for the
purposes of this field test, were identified as those periods at the beginning of system operation when the NH4
concentrations in the effluent declined as nitrate-nitrite (NO3) increased. The systems were considered mature when
the treatment process established complete or nearly complete nitrification. The denitrification process may or may
not establish itself concurrently or subsequently to the nitrification process depending on the efficacy of the
particular system being examined. An example of a system with a clearly defined maturation period without an
apparent accompanying denitrification process being established is presented in Figure 6-85. An example of a
system that established denitrification after the nitrification process established itself is presented in Figure 6-26.
This maturation period also defines the period of evaluation for removal of other parameters of concern (BOD5,
TSS, and fecal and E. coli bacteria), which may skew the results for these other parameters because, for example,
some systems discharged elevated BOD5 levels for a period after the nitrification or denitrification processes
established themselves (Figure 6-80).
The TN ranking chart (Figure 6-2) appears to illustrate the challenge faced by denitrifying onsite systems to meet
the 10 mg/L performance standard. The one system that consistently met the standard included a secondary carbon
source and anoxic environment in which to reduce the nitrate to nitrogen gas. Most of the other systems relied on
recirculation to the primary clarifier in order to promote denitrification. The exception is the NiteLess system,
which also added a carbon source; the performance of that system is discussed below. Figure 6-3 shows the TN
ranking in terms of Total Kjeldahl Nitrogen (TKN) and Nitrate-Nitrite as N (NO3-N) to represent nitrification
efficiency. The systems with robust nitrification processes but little denitrification (examples are the sand filters)
discharge effluent that is therefore predominantly NO3 within a high overall TN value. The systems that did not
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-3
nitrify well discharged effluent dominated by TKN with a corresponding a high TN value on par or higher than
septic tank effluent. The systems that achieved some level of denitrification discharge effluent characterized by a
mix of TKN and NO3 and lower overall TN results than the controls (septic tanks and sand filters).
In most instances the mean and median TN values reported for the systems in Figure 6-2 are quite similar. The
extreme difference between the mean and median for the IDEA system illustrates the variability in those systems’
performance. The mean values plotted in both Figures 6-2 and 6-3 include any adjustment for dilution or
evaporation that occurred because the treatment system was open to the environment. The bottomless sand filter
column shows the mean TN value above the top of the bar in Figure 6-3 because only the TN value is corrected for
dilution, not the individual nitrogen species. The effects of dilution can be corrected by comparing the TN/Cl ratio
of the septic tank effluent and to the TN/Cl ratio from the treatment unit discharge pipe. The ratio of these ratios is
then multiplied by the average septic tank effluent for the system. In some instances, the correction indicates more
nitrogen is discharged from the unit than enters it from the septic tank. This indicates possible concentration of
nitrogen due to evaporation or transpiration.
The charts providing the BOD5 and TSS ranking (Figures 6-4 and 6-5) summarize the performance of all the
participating systems against the performance standard for the field test (10 mg/L). Here, several systems appear
capable of achieving good performance in relation to this standard. Here again the median values provide an
indication of the variability in performance or extremes in the data produced by each system type. For example, the
FAST TSS columns show a high mean TSS value over three systems but a very low median value. This suggests
that the data is skewed, and, in review of the data provided in the discussion on the FAST system below (section 7),
there is a single extremely high TSS value (2,300 mg/L) that has a significant impact on the calculation of the mean.
The standard error bars also provide an indication of the systems’ variability. For example, the standard error of the
TSS results for the FAST system is smaller than that for the NiteLess system even though the average TSS
discharged for the NiteLess is lower that that of the FAST. In general, the review of both the mean and median
values provides the most comprehensive indication of the overall performance of the systems in terms of typical
effluent quality and the variability thereof.
The TSS chart truncates the upper section of the IDEA mean value from the ranking because the magnitude of this
value (1,075 mg/L) obscures the results for the other systems. The performance of the NITREX™ filter for TSS
reduction is excluded from this chart because a sand filter precedes the unit and confounds the performance of this
unit. Also, the lined sand filter is excluded from the TSS ranking due to problems with obtaining a representative
sample for TSS for these systems. The bottomless sand filter data is used as an approximation of the lined sand
filter performance.
The charts illustrating the bacteria reduction achieved by the systems (Figures 6-6 and 6-7) provide the geometric
means and the medians for each system type in order to account for what is the typically highly skewed nature of
bacterial data. The charts present the bacteria statistics on a logarithmic scale in order to discern differences
between the ranks of the best performing systems. Several systems have shown that they are capable of achieving
the two-log reduction contained in the performance standard without an added disinfection process or unit. The
performance of the NITREX™ filter is excluded from these charts because a sand filter precedes the unit and the
bacteria reduction achieved by the sand filter is very high. While the NITREX™ does achieve an additional level of
reduction above that of the sand filter, this product’s overall capacity for reducing bacteria is masked by the
performance of the sand filter.
The results for phosphorus concentrations discharged from each system are reported in the performance statistics
and in the data reported in Appendix B. While the impacts of phosphorus on the water supply aquifer in the La Pine
region were not a concern because of the adsorption capacity of the soils in the area, the systems’ performance for
this parameter is reported because of the national interest in this nutrient and because of potential exhaustion of the
soils’ adsorption capacity in the future.
Each system type is discussed in more detail in the sections that follow including basic system design, performance
data charted over time, and overall performance statistics.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-4 Innovative System Performance
66.1
61.0
56.5
51.4
51.4
50.2
37.2
36.4
32.3
26.3
18.8
2.4
14.0
17.0
96.8
1.8
14.7
60.8
63.0
61.0
50.2
49.8
51.9
48.0
35.1
34.9
33.5
24.2
16.3
14.1
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
IDEA
Septic Tank
NiteLess
Bottomless Sand Filter
Lined Sand Filter
Puraflo
Dyno2
Nayadic
FAST, w/o RV
EnviroServer
Amphidrome
RX-30
AX-20
Biokreisel
NITREX
mg/L
Median Total Nitrogen
Mean Total Nitrogen
Figure 6-2. Rank, by Total Nitrogen, of all systems in the La Pine Project.
51.4
2.4
51.4
14.0
32.3
50.2
61.0
66.1
56.5
17.0
18.8
37.2
36.4
26.3
96.8
0 102030405060708090100
Lined Sand Filter
Bottomless Sand Filter
NITREX
Puraflo
Biokreisel
AX-20
RX-30
EnviroServer
Nayadic
FAST, w/o RV
Amphidrome
Dyno2
NiteLess
Septic Tank
IDEA
mg/L
Total Kjeldahl Nitrogen (mg/L)
Nitrate-Nitrite as N (mg/L)
Mean Total Nitrogen
Figure 6-3. Rank of all systems by Total Nitrogen, including TKN and Nitrate-Nitrite.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-5
2.6
3.0
3.8
13
15
15
18
27
28
28
42
53
122
261
339
1.9
1.5
2.1
5.7
8.0
9.1
9.8
17
18
19
36
32
74
240
66
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
IDEA
Septic Tank
NiteLess
Dyno2
Nayadic
EnviroServer
Amphidrome
FAST, w/o RV
NITREX
Biokreisel
RX-30
AX-20
Lined Sand Filter
Bottomless Sand Filter
Puraflo
mg/L
Median BOD-5 (mg/L)
Mean BOD-5 (mg/L)
Figure 6-4. Rank, by BOD5, of the systems in the La Pine Project.
89
62
27
41
21
11
13
6.0
5.0
4.0
2.0
3.0
94
80
68
46
29
17
15
13
10
9.3
4.7
3.6
8.0
0 102030405060708090100
IDEA
Septic Tank
Dyno2
FAST
NiteLess
EnviroServer
Nayadic
Amphidrome
RX-30
Biokreisel
AX-20
Bottomless Sand Filter
Puraflo
mg/L
Mean TSS (mg/L)
Median TSS (mg/L)
1,075
Figure 6-5. Rank, by Total Suspended Solids, of the systems in the La Pine Project.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-6 Innovative System Performance
1,000,000
186,000
74,000
74,000
12,000
9,900
6,600
5,300
3,400
870
380
195
12
4
10,792,225
231,773
46,647
46,400
13,055
10,275
166,877
17,101
3,600
720
680
267
17
13
1 10 100 1000 10000 100000 1000000 10000000 100000000
IDEA BESTEP
Septic Tank
Amphidrome
NiteLess
AX-20
Dyno2
RX-30
FAST, w/o RV
EnviroServer
Biokreisel
Nayadic
Puraflo
Bottomless Sand Filter
Lined Sand Filter
log CFU/100 ml
Geometric Mean
Median Fecal
Figure 6-6. Systems ranked by median fecal coliform reduction.
1,000,000
140,000
59,000
42,000
7,800
7,700
5,300
4,400
3,000
480
400
120
8
2
9,463,918
163,501
38,489
17,778
8,332
7,413
59,633
15,324
3,240
460
550
205
14
10
1 10 100 1,000 10,000 100,000 1,000,000 10,000,000
IDEA BESTEP
Septic Tank
NiteLess
Amphidrome
AX-20
Dyno2
RX-30
FAST, w/o RV
EnviroServer
Biokreisel
Nayadic
Puraflo
Bottomless Sand Filter
Lined Sand Filter
log CFU/100 ml
Geometric Mean
Median E. coli
Figure 6-7. Systems ranked by median E. coli reduction.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-7
(1) AdvanTex™ AX-20, Orenco Systems, Inc.
The AX-20 system (http://www.orenco.com/ots/ots_index.asp) uses textile in the packed bed filter as a replacement
for sand or gravel. The higher surface area to volume ratio of the textile allows the reduction in size for the textile
filter over sand or gravel. The textile is arranged
within the filter in hanging sheets (Figure 6-8)
and wastewater percolates both through and
between the sheets, as the filter is time-dosed.
The AX-20 system recirculates effluent to either
the primary clarifier or a pump tank. The La
Pine Project systems recirculate the effluent to
the primary clarifier in order to maximize
nitrogen reduction (Mode 3) and each system
discharges to a drip distribution field. Sampling
locations for this system include the primary
clarifier effluent and the textile filter discharge
pipe or pump chamber following the discharge
pipe. (Figure 6-9)
Figures 6-10 through 6-12 show the performance
over time of three AX-20 systems in Mode 3. In
general, the effluent is nitrified and BOD5 and
TSS concentrations are reduced early in the
operating period. BOD5 and TSS levels
averaged 13 and 9 mg/L respectively over the
three systems. (Table 6-2) The median values for BOD5 and TSS were lower, 6 and 4 mg/L respectively, indicating
possible outliers in the performance data. However, each system experienced some kind of upset or change in the
treatment quality towards the end of the sampling period. Records of field observations during sampling indicate
possible operational issues with each system at these times with symptoms of the issues including effluent ponding
on the filter sheets, solids sloughing into the pump chamber following the filter and low dissolved oxygen readings.
1MW
Figure 6-9. Schematic of AdvanTex™ AX-20 system in Mode 3.
Denitrification over the three systems varied somewhat in that TN concentrations from two of the systems averaged
between 11 and 17 mg/L (median values were similar to the means) and the third averaged 24 mg/L over the same
period. System-T nitrified and otherwise operated similarly to the other two systems but the denitrification process
did not respond to the same level. The reason for the difference in performance for the third system was not clear
based on homeowner surveys, flow records or system operation.
The three systems overall achieved about 1.1 to 1.3 log reduction in fecal and E. coli bacteria based on the geometric
means; System-I achieved the best bacteria reduction with a 1.7-1.8-log reduction. This relatively low reduction rate
Figure 6-8. AdvanTex™ AX-20 filter media.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-8 Innovative System Performance
is possibly due to the large pore spaces present in the textile media, which allow the passage of bacteria while
trapping the larger solids.
The project team planned to measure flow at each of these residences using an in-line water meter on the pressurized
line feeding the drip field. However, this approach produced only an estimate of water use because each time the
drip distribution field was dosed there was some return flow to help flush the drip lines. The return flow can cause
the meter to run backward and the returned effluent is also pumped forward to the drip field multiple times. While
the return flow can be measured and the total calculated, an easier method of measuring flow might be to install the
meter on the incoming water line and accounting for irrigation by monitoring water usage during non-irrigation
months.
System-I AX-20 effluent over time
0
10
20
30
40
50
60
1/23/20023/23/20025/23/20027/23/20029/23/200211/23/20021/23/20033/23/20035/23/20037/23/20039/23/200311/23/20031/23/20043/23/20045/23/20047/23/2004mg/LBOD5 (mg/L)
TSS (mg/L)
NH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
Performance Std
Figure 6-10. System-I AX-20 (Mode 3) effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-9
0
20
40
60
80
100
120
140
1/23/20023/23/20025/23/20027/23/20029/23/200211/23/20021/23/20033/23/20035/23/20037/23/20039/23/200311/23/20031/23/20043/23/20045/23/20047/23/20049/23/2004mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
Performance Std
BOD5 (mg/L)
TSS (mg/L)
Figure 6-11. System-T AX-20 (Mode 3) effluent over time.
System-M AX-20 effluent over time
0
10
20
30
40
50
60
70
80
90
100
1/8/023/8/025/8/027/8/029/8/0211/8/021/8/033/8/035/8/037/8/039/8/0311/8/031/8/043/8/045/8/047/8/049/8/04mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
Performance Std
BOD5 (mg/L)
TSS (mg/L)
Figure 6-12. System-M AX-20 (Mode 3) effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-10 Innovative System Performance
Table 6-2. AX-20 performance statistics.
All systems AX-20
effluent after maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 13 9.3 17 11 5.0E+05 4.2 4.7E+05 3.9 208
Geometric Mean 1.3E+04 4.0 8.3E+03 3.7
Median 5.7 4.0 15 8.8 1.2E+04 4.1 7.8E+03 3.9 232
Standard Deviation 20 15 9.2 19 2.6E+06 1.1 2.7E+06 1.2 102
Minimum ND ND 7.8 2.2 200 2.3 10 1.0 96
Maximum 130 100 44 168 2.2E+07 7.3 2.3E+07 7.4 295
Count 75 75 75 75 75 75 75 75 3
95% Confidence Level 4.6 3.5 2.1 4.4 6.0E+05 0.3 6.2E+05 0.3 253
99% Confidence Level 6.1 4.7 2.8 5.8 8.0E+05 0.3 8.2E+05 0.4 583
System-M AX-20 effluent
after maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 18 15 11 3.8 4.7E+04 4.2 2.2E+04 3.8 295
Geometric Mean 1.4E+04 4.1 6.4E+03 3.7
Median 11 9.0 9.4 3.4 1.8E+04 4.3 8.7E+03 3.9 300
Standard Deviation 19 19 3.7 2.1 7.1E+04 0.7 4.2E+04 0.7 124
Minimum 1.5 1.0 7.8 2.2 660 2.8 200 2.3 89
Maximum 91 100 24 14 2.7E+05 5.4 1.6E+05 5.2 546
Count 28 28 28 28 28 28 28 28 21
95% Confidence Level 7.4 7.5 1.4 0.8 2.8E+04 0.3 1.6E+04 0.3 57
99% Confidence Level 10 10 1.9 1.1 3.7E+04 0.4 2.2E+04 0.4 77
System-T AX-20 effluent
after maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 11 7.1 24 8.9 1.4E+06 4.7 1.4E+06 4.6 232
Geometric Mean 5.3E+04 4.5 4.2E+04 4.3
Median 5.1 3.0 23 9.0 4.6E+04 4.7 3.6E+04 4.6 229
Standard Deviation 25 15 8.5 1.0 4.4E+06 1.4 4.6E+06 1.6 39
Minimum ND ND 9.7 7.0 200 2.3 10 1.0 159
Maximum 130 76 39 11 2.2E+07 7.3 2.3E+07 7.4 326
Count 25 25 25 25 25 25 25 25 19
95% Confidence Level 10 6.0 3.5 0.4 1.8E+06 0.6 1.9E+06 0.6 19
99% Confidence Level 14 8.2 4.8 0.6 2.5E+06 0.8 2.6E+06 0.9 26
System-I AX-20 effluent
after maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 7.7 5.1 17 23 1.9E+04 3.4 1.2E+04 3.3 96
Geometric Mean 3.0E+03 3.4 2.1E+03 3.2
Median 3.5 2.5 15 16 1.6E+03 3.2 1.5E+03 3.2 95
Standard Deviation 12 6.9 9.4 32 5.1E+04 0.8 3.2E+04 0.8 29
Minimum ND ND 8.5 13 240 2.4 140 2.1 25
Maximum 49 27 44 168 2.1E+05 5.3 1.4E+05 5.1 167
Count 22 22 22 22 22 22 22 22 19
95% Confidence Level 5.4 3.0 4.2 14 2.2E+04 0.3 1.4E+04 0.3 14
99% Confidence Level 7.4 4.1 5.7 20 3.1E+04 0.5 1.9E+04 0.5 19
ND = Non detect
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-11
(2) AdvanTex™ RX-30, Orenco Systems, Inc.
The RX-30 system, produced by Orenco Systems, Inc., is a
packed bed incorporating a textile material similar to that used in
the AX-20. The material is in small pieces approximately the
size of a deck of cards and layered within the filter box with a
pressure distribution manifold at the top. (Figure 6-13)
Denitrification is promoted by recirculating a portion of the
effluent to the septic tank.
The systems installed for testing in the La Pine Project
discharged to shallow gravel-less drainfield (half-pipe over
pressurized distribution laterals). Sampling locations for the
wastewater system included septic tank effluent and the RX-30
discharge pipe or the pump basin following the discharge pipe.
(Figure 6-14) System-M samples for the RX-30 effluent were
taken entirely from the pump chamber following the filter due to
the low flows received by this system.
The performance data over time from the three systems
monitored during the field study is presented in Figures 6-15 through 6-17. Each chart contains a distinct maturation
period for the system during which the NH4 and TKN levels decline while nitrate-nitrite (NO3) levels rise. Each
system also experienced periodic spikes in BOD5 and TSS during the sampling period that appear to be related to
operational problems with the system including malfunction or clogging of the splitter valve, clogging within the
filter, or possible homeowner abuse of the system by physical damage to components or the use of toxic cleaners
within the house. One of the latter occurred at the end of the sampling period of System-R (Figure 6-17) when the
nitrification declined and the TN levels increased. This occurred at a point when the sampling team observed that
all the effluent samples were blue in color from an every flush toilet bowl cleaner. The homeowner confirmed the
use of this product and, upon urging from the vendor, subsequently discontinued its use.
Figure 6-14. RX-30 system schematic.
Overall, the three systems’ performance approached the La Pine Project criteria for BOD5 and TSS on average after
the systems matured. The median values for these parameters met the performance criteria, indicating the data may
be skewed by high levels produced within the sampling period. System-H2, Figure 6-15, for example, produced a
high level of TSS at the beginning of the sampling period, and, because the maturation period for the systems is
defined for the purposes of this study as the time during which the nitrification/denitrification processes are
established, the peak TSS value of 260 mg/L is included in the data for the statistics. The effect of this peak on the
statistics for System-H2 can be seen in Table 6-4.
Figure 6-13. RX-30 textile filter.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-12 Innovative System Performance
The three systems appeared to nitrify the effluent well, with most excursions in the nitrification process occurring
during the periods when the system experienced an operational upset. For example, during the event at the end of
the sampling period for System-R (Figure 6-17) when the homeowner began using every flush toilet bowl cleaner,
the NO3 concentrations remain low while the TN and TKN level increase. Because these excursions occur at a time
after the systems had already demonstrated their ability to nitrify the effluent, there does not appear to be reason to
suspect other limiting factors (ex. alkalinity) to the nitrification process.
Bacteria removal in the three systems ranged between 1.7 and 1.8 log reduction and, at first review, the reduction
achieved by the systems appears from Table 6-4 to be correlated with flow rate but, when the correlation coefficients
are calculated for fecal coliform, the two variables are poorly correlated (Table 6-3).
Table 6-3. Correlation coefficients for fecal coliform reduction vs. flow rate in RX-30 systems.
Correlation between Fecal
Coliform and GPD
System-M 0.49
System-R -0.12
System-H2 0.3
System-H2 RX-30 effluent over time
0
10
20
30
40
50
60
70
80
90
100
11/2/19992/2/20005/2/20008/2/200011/2/20002/2/20015/2/20018/2/200111/2/20012/2/20025/2/20028/2/200211/2/20022/2/20035/2/20038/2/2003mg/LNH4-N (mg/L)
Nitrate-Nitrite as N (mg/L)
TKN
TN
BOD-5 (mg/l)
TSS (mg/L)
Performance Standard
(260 mg/L)
(150 mg/L)
Figure 6-15. System-H2 RX-30 effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-13
System-M RX-30 effluent over time
0
10
20
30
40
50
60
70
80
90
100
11/13/20002/13/20015/13/20018/13/200111/13/20012/13/20025/13/20028/13/200211/13/20022/13/20035/13/20038/13/2003mg/LNH4-N (mg/L)
Nitrate-Nitrite as N (mg/L)
TKN
TN
BOD-5 (mg/l)
TSS (mg/L)
Performance Standard
(210 mg/L)
Figure 6-16. System-M RX-30 effluent over time.
System-R RX-30 effluent over time
0
10
20
30
40
50
60
70
80
90
11/13/20002/13/20015/13/20018/13/200111/13/20012/13/20025/13/20028/13/200211/13/20022/13/20035/13/20038/13/2003mg/LNH4-N (mg/L)
Nitrate-Nitrite as N (mg/L)
TKN
TN
BOD-5 (mg/l)
TSS (mg/L)
Performance Standard
Figure 6-17. System-R RX-30 effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-14 Innovative System Performance
Table 6-4. RX-30 effluent performance statistics.
All RX-30 after
maturation
BOD5
(mg/l)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 15 13 19 12.4 9.0E+05 3.6 2.9E+05 3.4 130
Geometric Mean 1.7E+05 3.4 6.0E+04 3.2
Median 8.0 6.0 16 12 6.6E+03 3.8 5.3E+03 3.7 145
Standard Deviation 18 30 11 3.5 4.0E+06 2.0 1.0E+06 1.8 60
Minimum ND ND 6.1 7.1 ND 0.3 ND 0.3 64
Maximum 90 260 47 22 3.1E+07 7.5 6.4E+06 6.8 181
Count 88 88 88 88 88 88 88 88 3
95% Confidence Level 3.8 6.3 2.2 0.7 8.5E+05 0.4 2.2E+05 0.4 148
99% Confidence Level 5.0 8.4 2.9 1.0 1.1E+06 0.5 2.9E+05 0.5 342
System-M RX-30 after
maturation
BOD5
(mg/l)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 4.1 5.5 25 14 1.2E+03 1.5 1.5E+03 1.5 64
Geometric Mean 33 1.1 31 1.0
Median 2.8 2.0 27 13 20 1.3 12 1.1 61
Standard Deviation 4.7 15 13 3.9 3.1E+03 1.2 4.1E+03 1.3 17
Minimum ND ND 6.7 9.5 ND 0.3 ND 0.3 26
Maximum 21 82 47 22 1.2E+04 4.1 2.0E+04 4.3 105
Count 29 29 29 29 29 29 29 29 25
95% Confidence Level 1.8 5.7 4.8 1.5 1.2E+03 0.5 1.6E+03 0.5 7
99% Confidence Level 2.4 7.7 6.5 2.0 1.6E+03 0.6 2.1E+03 0.6 10
System-R RX-30 after
maturation
BOD5
(mg/l)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 16 10 16 13 2.8E+04 3.7 2.7E+04 3.6 145
Geometric Mean 4.9E+03 3.6 4.3E+03 3.5
Median 11 5.0 14 13 5.6E+03 3.7 4.2E+03 3.6 143
Standard Deviation 21 11 9.6 1.9 7.1E+04 0.9 6.7E+04 0.9 28
Minimum ND 1.0 6.1 9.8 26 1.4 12 1.1 84
Maximum 90 44 42 17 3.9E+05 5.6 3.6E+05 5.6 197
Count 31 31 31 31 31 31 31 31 24
95% Confidence Level 7.6 4.2 3.5 0.7 2.6E+04 0.3 2.5E+04 0.3 12
99% Confidence Level 10 5.6 4.7 1.0 3.5E+04 0.4 3.3E+04 0.5 16
System-H2 RX-30 after
maturation
BOD5
(mg/l)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 23 24 15 9.4 2.8E+06 5.7 8.8E+05 5.2 181
Geometric Mean 5.0E+05 5.6 1.7E+05 5.2
Median 15 12 14 8.7 4.7E+05 5.7 1.8E+05 5.3 176
Standard Deviation 18 48 4.9 2.0 6.8E+06 0.8 1.7E+06 0.9 27
Minimum 2.0 3.0 8.4 7.1 1.6E+04 4.2 5.0E+03 3.7 137
Maximum 64 260 29 16 3.1E+07 7.5 6.4E+06 6.8 242
Count 28 28 28 28 28 28 28 28 22
95% Confidence Level 6.8 18 1.9 0.8 2.6E+06 0.3 6.7E+05 0.3 12
99% Confidence Level 9.2 25 2.6 1.1 3.5E+06 0.4 9.0E+05 0.5 17
ND = Non detect
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-15
(3) Amphidrome®, FR Mahony & Associates
The heart of the Amphidrome®
system (Figure 6-18) is deep sand
media contained in a vertically
oriented tube. This sand bio-
reactor is the point at which both
oxic and anoxic phases of the
nitrification/denitrification
treatment processes occur. An
underdrain in the bio-reactor
structure provides an injection
point for both air and water. The
air is introduced at the bottom so
that it rises and disperses through
the sand evenly during the aerobic
portion of the process, when the
sand media undergoes a vigorous
churning action. During this process the sand is churned significantly, creating one of the major differences between
this system and a typical packed bed filter. Because of the different phases or conditions existing in the bio-reactor
during the treatment process, facultative bacteria that can tolerate the changes provide the treatment. The
Amphidrome system sends wastewater forward and backward from the primary clarifier to the clear well through
the bio-reactor several times throughout the day. Treated effluent is typically discharged to the dispersal field in a
single batch once a day. A more detailed description of the process is available on the FR Mahony and Associates
web site at http://www.frmahoney.com/frmahony.htm. A simplified schematic is provided in Figure 6-19.
Sampling locations for these systems were limited to the Amphidrome system effluent. The primary clarifier
effluent was not sampled because the recirculation in the system took place in batches rather than trickling into the
primary clarifier throughout the day. The batch process made obtaining a representative sample from the primary
clarifier difficult, therefore, the performance of these systems will be compared to the single-pass septic tanks in the
La Pine Project. These systems are evaluated over only two years because of a delayed installation schedule.
Figures 6-20 through 6-22 show the effluent quality of three systems over time. Both the nitrogen species and
BOD5 and TSS data are shown on each chart. The charts illustrate the initial start up period for the systems,
particularly Figures 6-20 and 6-22, when the biota needed for treatment is becoming established in the reactor and
while the company adjusted the system settings to work with the flows generated by the household. The system
maturation and operational adjustments typically took place within the first 12 months of operation. The length of
this “shakedown” period is most likely due to several different factors, including the company being at distance
(Massachusetts) and intercultural differences between northeastern and northwestern US modes of communication.
In general, once System-AD matured, nitrification appeared to be nearly complete. The other two systems
experience significant operational problems including a broken air supply pipe feeding the bio-reactor (System-P)
and the large amount of laundry (4 loads/day) done at System-AG, including the use of about 12 cups of liquid
fabric softener daily. System-AG has never nitrified the household’s sewage, which may be a result of the toxic
effect of the quaternary ammonium compounds in the liquid fabric softener.
TN reduction in these systems (Table 6-5) is approximately 50% of the TN discharged by single-pass septic tanks in
the La Pine Project based on concentrations. System-AD achieves the best reduction at an average concentration of
17 mg/L. Based on the concentrations, System-AG appears to achieve nearly 50% reduction from septic effluent,
however, based on the mass loading produced by this system (34 lb/yr, equivalent to 50 mg/L at 225 gpd), it appears
that the high average daily flow received by this system serves to dilute the effluent concentrations.
System-AD is close to meeting the BOD5 and TSS performance standard for the La Pine Project. TN exceeds 10
mg/L on average; however, Figure 20 shows that this particular system discharged less than 10 mg/L for certain
periods that appear to correlate with the summer months. Due to the shortness of the sampling period it is unclear
whether the high effluent quality during the summer months is coincidental or not.
Overall, these systems achieved between 1.4 and 1.7 log reduction in fecal and E. coli bacteria, respectively, based
on the geometric means.
Figure 6-18. Amphidrome system.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-16 Innovative System Performance
MW
Figure 6-19. Amphidrome schematic.
System-AD Amphidrome effluent over time
0
5
10
15
20
25
30
35
40
45
8/27/0210/27/0212/27/022/27/034/27/036/27/038/27/0310/27/0312/27/032/27/044/27/046/27/048/27/0410/27/04mg/LBOD5 (mg/L)
TSS (mg/L)
NH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
Performance Std
Figure 6-20. System-AD Amphidrome effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-17
System-AG Amphidrome effluent over time
0
20
40
60
80
100
120
140
160
180
10/9/200212/9/20022/9/20034/9/20036/9/20038/9/200310/9/200312/9/20032/9/20044/9/20046/9/20048/9/200410/9/2004mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Std
Figure 6-21. System-AG Amphidrome effluent over time.
System-P Amphidrome effluent over time
0
10
20
30
40
50
60
70
80
7/30/20029/30/200211/30/20021/30/20033/30/20035/30/20037/30/20039/30/200311/30/20031/30/20043/30/20045/30/20047/30/20049/30/2004mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Std
Figure 6-22. System-P Amphidrome effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-18 Innovative System Performance
Table 6-5. Amphidrome performance statistics.
All systems'
Amphidrome effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 28 15 26 6.4 7.9E+05 4.7 6.6E+05 4.2 167
Geometric Mean 4.7E+04 4.3 1.8E+04 3.6
Median 18 13 24 6.4 7.4E+04 4.9 4.2E+04 4.6 97
Standard Deviation 33 11 14 2.1 2.2E+06 1.4 2.0E+06 1.7 131
Minimum ND ND 6.3 1.8 ND 0.3 ND 0.3 85
Maximum 190 43 63 13 1.1E+07 7.0 9.6E+06 7.0 318
Count 53 53 53 53 51 51 51 51 3
95% Confidence Level 9.2 3.1 4.0 0.6 6.2E+05 0.4 5.5E+05 0.5 326
99% Confidence Level 12 4.1 5.3 0.8 8.3E+05 0.5 7.4E+05 0.6 752
System-P
Amphidrome effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 20 17 28 6.8 6.8E+05 4.5 4.8E+05 3.7 97
Geometric Mean 2.9E+04 4.2 5.2E+03 3.0
Median 18 17 21 6.6 6.0E+04 4.8 6.8E+03 3.8 95
Standard Deviation 17 9.3 18 1.7 2.2E+06 1.4 1.8E+06 1.7 39
Minimum ND 3.0 8.8 4.5 38 1.6 ND 0.3 19
Maximum 74 38 63 11 9.6E+06 7.0 7.8E+06 6.9 158
Count 19 19 19 19 19 19 19 19 17
95% Confidence Level 8.0 4.5 8.8 0.8 1.1E+06 0.7 8.6E+05 0.8 20
99% Confidence Level 11 6.1 12 1.1 1.4E+06 1.0 1.2E+06 1.2 28
System-AD
Amphidrome effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 13 9.0 17 5.0 1.4E+06 4.9 1.3E+06 4.6 85
Geometric Mean 8.0E+04 4.3 4.4E+04 3.9
Median 11 6.0 18 4.9 1.2E+05 5.1 1.2E+05 5.1 57
Standard Deviation 11 11 7.9 1.6 3.0E+06 1.6 2.8E+06 1.9 91
Minimum 1.6 ND 6.3 1.8 ND 0.3 ND 0.3 13
Maximum 46 43 37 7.4 1.1E+07 7.0 9.6E+06 7.0 360
Count 19 19 18 18 17 17 17 17 17
95% Confidence Level 5.5 5.1 3.9 0.8 1.6E+06 0.8 1.4E+06 1.0 47
99% Confidence Level 7.6 7.0 5.4 1.1 2.1E+06 1.1 2.0E+06 1.3 65
System-AG
Amphidrome effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 58 21 34 7.5 2.2E+05 4.6 1.5E+05 4.4 318
Geometric Mean 4.4E+04 4.5 2.5E+04 4.1
Median 42 20 35 7.0 6.8E+04 4.8 4.4E+04 4.6 303
Standard Deviation 47 11 8.7 2.2 3.5E+05 1.1 2.8E+05 1.3 108
Minimum 13 6.0 13 5.1 60 1.8 20 1.3 131
Maximum 190 40 51 13 1.2E+06 6.1 9.8E+05 6.0 525
Count 15 15 16 16 15 15 15 15 17
95% Confidence Level 26 5.9 4.7 1.2 1.9E+05 0.6 1.6E+05 0.7 55
99% Confidence Level 36 8.1 6.4 1.6 2.7E+05 0.9 2.2E+05 1.0 76
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-19
(4) Biokreisel, Nordbeton, North America, Inc.
The heart of the Biokreisel (Figure 6-23) system is a rotating biological contactor turned by a small direct drive
motor. The two-chamber unit is bowl shaped to allow solids to settle to the bottom where they can be pumped back
to the septic tank (Figure 6-
24). The direct drive motor
provides aeration,
recirculation and forward
flow. The second chamber
discharges either to the
drainfield or a pump basin
as necessary. A small vent,
which can be located away
from the unit, provides the
air required for the process
passively.
(http://www.nordbeton.co
m/biokreiselnna.htm)
The La Pine Project
installed three Biokreisel
systems and monitored them for three years. The sample sites for these systems included the septic tank, the
Biokreisel discharge basin, and the pump basin following the gravel polishing filter.
Figures 6-25 through 6-27 illustrate the performance of the systems over time. The maturation curve at the start up
of the systems is well defined and relatively short. The spike in the BOD5 and TSS within the first year after startup
reflects the presence of biological growth in the discharge chamber of the Biokreisel unit observed by the sampling
team. The team did not observe this growth again during the sampling period.
Overall, the three systems achieve the project performance criteria for BOD5 and TSS and approaches the criteria for
TN reduction, averaging 14 mg/L for the three. The fecal and E. coli bacteria reduction, within the unit itself, met
the project performance criteria without using the gravel polishing filter installed following the units. (Table 6-6)
One unit, System-H shown in Figure 6-27 experienced a malfunction due a failure in the bracket supporting the
RBC axle towards the end of the sampling period. The repair, once the replacement parts arrived, took less than a
day to complete and the unit appeared to resume functioning as previously. Unfortunately, the sampling period
ended before the system’s recovery could be documented.
1Collection ChamberMW
Figure 6-24. Biokreisel schematic.
Figure 6-23. Biokreisel System.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-20 Innovative System Performance
System-M Biokreisel Effluent over time
0
20
40
60
80
100
3/19/20015/19/20017/19/20019/19/200111/19/20011/19/20023/19/20025/19/20027/19/20029/19/200211/19/20021/19/20033/19/20035/19/20037/19/20039/19/2003mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Std
Figure 6-25. System-M Biokreisel effluent over time.
System-G Biokreisel effluent over time
0
20
40
60
80
100
120
140
160
1/3/20013/3/20015/3/20017/3/20019/3/200111/3/20011/3/20023/3/20025/3/20027/3/20029/3/200211/3/20021/3/20033/3/20035/3/20037/3/20039/3/2003mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Std
Figure 6-26. System-G Biokreisel effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-21
System-H Biokreisel effluent over time
0
10
20
30
40
50
60
70
80
90
1/3/013/3/015/3/017/3/019/3/0111/3/011/3/023/3/025/3/027/3/029/3/0211/3/021/3/033/3/035/3/037/3/039/3/03mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Std RBC malfunction
repaired 10/02/03. Final
sample taken 10/20/03.
RBC malfunction 6/15/03.
Figure 6-27. System-H Biokreisel effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-22 Innovative System Performance
Table 6-6. Biokreisel performance statistics.
All Biokreisel effluent
after maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. Coli
Log E.
Coli GPD
Mean 11 6.1 14 11 8.9E+03 2.9 5.9E+03 2.7 126
Geometric Mean 8.1 5.2 13 11 720 2.6 460 2.4
Median 8.4 5.0 14 9.3 870 2.9 480 2.7 129
Standard Deviation 8.2 3.8 6.8 4.2 2.6E+04 1.1 2.0E+04 1.0 34
Minimum ND ND 4.7 4.5 ND 0.3 ND 0.3 90
Maximum 36 17 56 20 1.6E+05 5.2 1.5E+05 5.2 158
Count 57 56 60 60 60 60 60 60 3
95% Confidence Level 2.2 1.0 1.7 1.1 6.7E+03 0.3 5.3E+03 0.3 84
99% Confidence Level 2.9 1.4 2.3 1.4 8.9E+03 0.4 7.0E+03 0.4 194
System-H Biokreisel
effluent after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. Coli
Log E.
Coli GPD
Mean 12 5.9 16 16 1.3E+03 2.7 1.0E+03 2.5 158
Geometric Mean 5.9 4.6 14 15 540 2.7 290 2.2
Median 8.2 5.0 14 17 690 2.8 360 2.6 127
Standard Deviation 9.4 4.3 10 3.3 1.7E+03 0.6 1.9E+03 0.8 65
Minimum ND 1.0 7.4 11 18 1.3 ND 0.3 98
Maximum 36 17 56 20 7.0E+03 3.8 8.4E+03 3.9 279
Count 20 20 20 20 20 20 20 20 23
95% Confidence Level 4.4 2.0 4.8 1.6 820 0.3 890 0.4 28
99% Confidence Level 6.0 2.7 6.5 2.1 1.1E+03 0.4 1.2E+03 0.5 38
System-G Biokreisel
effluent after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. Coli
Log E.
Coli GPD
Mean 7.2 6.1 12 8.1 5.2E+03 2.8 4.7E+03 2.7 129
Geometric Mean 6.5 4.8 12 7.9 550 2.4 460 2.4
Median 5.7 4.0 12 8.3 720 2.9 640 2.8 116
Standard Deviation 4.9 4.2 3.1 1.8 1.0E+04 1.1 1.0E+04 1.1 105
Minimum 2.6 1.0 4.7 4.5 ND 0.3 ND 0.3 38
Maximum 19 14 17 11 3.9E+04 4.6 4.1E+04 4.6 574
Count 18 19 20 20 20 20 20 20 21
95% Confidence Level 2.4 2.0 1.5 0.8 4.8E+03 0.5 4.8E+03 0.5 48
99% Confidence Level 3.3 2.8 2.0 1.1 6.5E+03 0.7 6.6E+03 0.7 65
System-M Biokreisel
effluent after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. Coli
Log E.
Coli GPD
Mean 14 6.3 14 8.6 2.0E+04 3.1 1.2E+04 2.8 90
Geometric Mean 12 6.2 13 8.5 1.1E+03 2.7 630 2.6
Median 13 6.0 15 8.5 1.5E+03 3.2 610 2.7 94
Standard Deviation 8.2 3.0 4.6 1.4 4.2E+04 1.3 3.4E+04 1.2 27
Minimum 1.6 0.5 4.8 5.0 10 1.0 14 1.1 48
Maximum 31 14 23 11 1.6E+05 5.2 1.5E+05 5.2 150
Count 19 17 20 20 20 20 20 20 16
95% Confidence Level 4.0 1.6 2.2 0.7 2.0E+04 0.6 1.6E+04 0.6 14
99% Confidence Level 5.4 2.1 2.9 0.9 2.7E+04 0.8 2.1E+04 0.8 20
ND = Non detect
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-23
Figure 6-28. Dyno2 vertical flow wetland.
(5) Dyno2™, North American Wetlands Engineering / Reactor Dynamics, Inc.
The core of the Dyno2 treatment process consists of a recirculating gravel filter combined with wetland treatment
system components. North American Wetlands Engineering (now Jacques Whitford NAWE) (http://www.nawe-
pa.com) produces this system out of Minnesota in a seven-foot tall tank that arrives pre-packed with the
manufactured gravel media, plants and
other system components. The tank is
delivered in two parts and is assembled on
the site. (Figure 6-28). A two-
compartment single-pass septic tank
provides primary treatment before the
effluent passes through the attached growth
media in the influent chamber of the
Dyno2. Sampling locations for this system
include the septic tank and the pump
chamber. (Figure 6-29)
The performance of the three units over
time is presented in Figures 6-30 through 6-
33. Figure 6-31 shows that System-C
operated for an extended period during the
field test where the system does not nitrify
the effluent. During this period, the
alkalinity levels are sufficient to support the
process (average NH4 = 31 mg/L’ Total
Alkalinity = 261 mg/L; Alkalinity needed
to nitrify = 224 mg/L) but the dissolved
oxygen levels are low (mean = 1.7 mg/L,
median = 0.9 mg/L). The vendor
discovered that the wetland underdrain pipe had been capped and all the effluent directed to the drainfield without
recirculating as designed. The system had been installed and started up properly based on the vendor’s inspection at
the time; the party responsible for this modification to the system is unknown.
Figure 6-29. Dyno2 schematic.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-24 Innovative System Performance
The vendor’s designated maintenance provider repaired System-C in October 2003, at which point the system began
nitrifying and the TN levels appear to decline. The TSS levels (and BOD5 levels to a lesser degree) spike towards
the end of the sampling period beginning in June 2004 (peak TSS = 740 mg/L). The sampling team observed at this
time that the effluent was grayish white in color. Because the house was undergoing a significant addition and
remodel during the sampling period, the sampling field notes suggested that the color may be due to the presence of
paint or plaster in the effluent.
In general, the first year of operation of the other two systems appears quite variable. The vendor found that the
water level sensors in all the systems were faulty and that the control panels originally installed for the systems
would not allow the recirculation ratios to be lowered sufficiently to work with the flows from some of these
households. The company replaced the control panels and the sensors, which appears to have resulted in improved
performance, particularly for System-E (Figure 6-32). System-N performance does not appear to change much with
the recirculation adjustments. This particular homeowner complained that he often had to clean the effluent filter
because of frequent alarms. The observations noted by the sampling team for this system also indicated the presence
of solids or particulate matter in the effluent of this system from the time it was installed. One of the final field
observations noted by the sampling team was the blue color of all the effluent samples. The homeowner
subsequently confirmed the use of an every flush toilet bowl cleaner/deodorizer in the house. To further confound
the issue, the vendor discovered that the homeowner had moved the unit off of its dedicated circuit in the breaker
box to a lower amperage circuit at some point in the previous eight months or so. Otherwise, it is unclear what may
have caused the presence of the solids in the effluent and the frequent clogging of the effluent filter for this system
from the time the system began operation.
Overall, the performance of these systems has not met the field test standards. (Table 6-7) The BOD5 reduction is
significantly better than septic tank effluent but the TSS levels discharged by the systems are still high, which could
be a concern for the long-term health of the drainfields, particularly if the recirculation process fails to keep high
levels of dissolved oxygen in the effluent.
The TN reductions of the three systems do not meet the project’s performance standards. System-C’s ability to
denitrify is impaired by the lack of nitrification in. The causes for the lack of reduction in the other systems are not
as clear and the best performing system of this type achieves approximately a 50% reduction.
The Total Phosphorus statistics provided in Table 6-7 (mean = 9.4 mg/L) indicate that little or no phosphorus
reduction occurs in this system. The manufactured aggregate used for the recirculating gravel filter apparently has
little capacity for adsorbing phosphorus because the average phosphorus discharged from the septic tanks was 10.5
mg/L. This value and that discharged from the treatment unit are statistically identical at the 99% confidence level.
The dilution calculations for System-C appear questionable in that the calculated result for TN is 145 mg/L on
average. The median value for this system is 60 mg/L, which is more consistent with the uncorrected TN
concentrations discharged from this system. Possible explanations for the variance in results include a high level of
evaporation experienced by this system because of the low flows (60 GPD on average) which would then
concentrate the TN in the effluent.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-25
System-C Dyno2 effluent nitrogen species over time
0
10
20
30
40
50
60
70
80
90
1/7/023/7/025/7/027/7/029/7/0211/7/021/7/033/7/035/7/037/7/039/7/0311/7/031/7/043/7/045/7/047/7/049/7/0411/7/04mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
Performance Std
Figure 6-30. System-C Dyno2 effluent nitrogen species over time.
System-C Dyno2 effluent BOD/TSS over time
0
100
200
300
400
500
600
700
800
1/7/023/7/025/7/027/7/029/7/0211/7/021/7/033/7/035/7/037/7/039/7/0311/7/031/7/043/7/045/7/047/7/049/7/0411/7/04mg/LPerformance Std
BOD5 (mg/L)
TSS (mg/L)
Figure 6-31. System-C Dyno2 effluent BOD5/TSS over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-26 Innovative System Performance
System-E Dyno2 effluent over time
0
20
40
60
80
100
120
140
1/28/023/28/025/28/027/28/029/28/0211/28/021/28/033/28/035/28/037/28/039/28/0311/28/031/28/043/28/045/28/047/28/049/28/0411/28/04mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Std
(BOD = 230 mg/L,
TSS = 320/440 mg/L)(BOD = 230
mg/L)
Figure 6-32. System-E Dyno2 effluent over time.
System-N Dyno2 effluent over time
0
50
100
150
200
250
300
350
1/22/023/22/025/22/027/22/029/22/0211/22/021/22/033/22/035/22/037/22/039/22/0311/22/031/22/043/22/045/22/047/22/049/22/0411/22/04mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Std
(870 mg/L)
Figure 6-33. System-N Dyno2 effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-27
Table 6-7. Dyno2 performance statistics.
All Dyno2 effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 53 80 50 87 9.4 3.3E+06 4.1 2.0E+06 3.9 102
Geometric Mean 1.0E+04 3.5 7.4E+03 3.3
Median 32 27 48 55 9.8 9.9E+03 4.0 7.7E+03 3.9 81
Standard Deviation 58 145 23 219 3.9 1.6E+07 1.7 1.1E+07 1.8 64
Minimum 1.5 1.0 10 14 0.3 ND 0.3 ND 0.3 10
Maximum 350 870 125 1759 19 1.0E+08 8 9.5E+07 8.0 259
Count 83 83 80 61 82 84 84 84 84 47
95% Confidence Level 13 32 5.0 56 0.8 3.4E+06 0.4 2.3E+06 0.4 19
99% Confidence Level 17 42 6.7 75 1.1 4.5E+06 0.5 3.1E+06 0.5 25
System-C Dyno2
effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 42 72 48 145 6.1 4.4E+03 2.5 4.7E+03 2.5 61
Geometric Mean 304 2.0 283 1.9
Median 32 20 46 60 6.2 150 2.2 150 2.2 57
Standard Deviation 36 156 21 380 3.7 8.2E+03 1.4 1.0E+04 1.3 41
Minimum 3.5 3.0 10 36 0.3 ND 0.3 ND 0.3 10
Maximum 150 740 77 1759 13 3.2E+04 4.5 4.6E+04 4.7 162
Count 27 27 26 20 27 27 27 27 27 16
95% Confidence Level 14 62 8.7 178 1.5 3.3E+03 0.5 4.1E+03 0.5 22
99% Confidence Level 19 83 12 243 2.0 4.4E+03 0.7 5.6E+03 0.7 30
System-E Dyno2
effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 61 56 35 38 10 9.2E+06 5.4 5.6E+06 5.3 174
Geometric Mean 2.6E+05 5.2 2.0E+05 5.1
Median 28 27 34 40 10 5.4E+05 5.7 3.4E+05 5.5 176
Standard Deviation 66 95 11 13 1.3 2.5E+07 1.4 1.8E+07 1.4 45
Minimum 1.5 2.0 19 14 8.0 1.3E+03 3.1 1.2E+03 3.1 98
Maximum 230 440 55 61 14 1.0E+08 8 9.5E+07 8.0 259
Count 29 29 29 21 29 30 30 30 30 16
95% Confidence Level 25 36 4.2 5.9 0.5 9.5E+06 0.5 6.6E+06 0.5 24
99% Confidence Level 34 49 5.7 8.0 0.7 1.3E+07 0.7 8.9E+06 0.7 33
System-N Dyno2
effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 55 114 70 81 12 1.1E+05 4.1 8.1E+04 3.9 69
Geometric Mean 1.4E+04 4.0 7.1E+03 3.6
Median 33 35 69 87 12 1.1E+04 4.0 7.0E+03 3.8 66
Standard Deviation 68 175 20 26 3.6 2.2E+05 1.0 1.7E+05 1.2 22
Minimum 2.6 1.0 34 35 5.0 120 2.1 20 1.3 32
Maximum 350 870 125 141 19 7.6E+05 5.9 7.0E+05 5.8 134
Count 27 27 25 20 26 27 27 27 27 15
95% Confidence Level 27 69 8.4 12 1.5 8.7E+04 0.4 6.7E+04 0.5 12
99% Confidence Level 36 93 11 16 2.0 1.2E+05 0.6 9.1E+04 0.6 17
ND = Non detect
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-28 Innovative System Performance
(6) EnviroServer, MicroSepTec, Inc.
The EnviroServer system (Figure 6-34) includes both fixed film and suspended growth processes in a forced
aeration wastewater treatment system. This system recirculates to the primary clarifier to promote denitrification
and the two units installed in the La Pine region included thermal processors to remove sludge from the primary
compartment to eliminate the need for pumping. The disinfection units (chlorine tablet dispensers) were not used in
the demonstration project in order to define the bacterial reduction achieved by the unit. The systems originally
discharged to drip distribution fields (Figure 6-35); however, these fields were replaced by the end of the project due
to clogging in the drip field and each system now pumps to a distribution box that discharges to a gravity drainfield.
Details on this system are available on the company’s website at: http://www.microseptec.com/.
Figure 6-34. MicroSepTec EnviroServer.
The performance data shown in Figure 6-36 and 6-37 indicate the effluent is generally well nitrified over the
sampling period whereas the denitrification rates varied over time. In general, System-M (Figure 6-37) does not
nitrify the effluent as completely as System-H does (Figure 6-36). The dissolved oxygen concentrations in the
effluent indicate they are sufficient (mean DO = 3.6 mg/L) for the aerobic process. A comparison of the available
alkalinity in the effluent versus the ammonium concentrations suggests that the nitrifications process is alkalinity-
limited. (Mean alkalinity = 37 mg/L, calculated mean alkalinity needed = 64 mg/L) This limitation may also
explain the slightly lower pH in System-M effluent (mean pH = 6.7) than in System-H (mean pH = 7.7). (The
difference between these means is statistically significant to the 99% confidence interval.) The pH values are
consistent with the theory that the system is alkalinity-limited because the consumption of alkalinity during the
nitrification process reduces the buffering capacity in the effluent, which can cause the effluent to become acidic and
therefore inhibit the action of nitrifying bacteria. (Burks & Minnis, 1994) And, if nitrification processes are limited,
then the denitrification processes are necessarily limited. System-M is one of the few systems in the La Pine Project
in which the nitrification process appears to be alkalinity limited.
System-M shows relatively good performance for BOD5 and TSS reduction after the startup period. The high means
calculated (Table 6-8) for this system reflect the inclusion of some of the initial high values and a spike almost a
year after start of sampling. The medians reported may be a more accurate representation of this system’s
performance because of the skewing effect of those two events. The BOD5 and TSS results for System-H indicate
variability in its performance, which may indicate a cause for the drip field failure. The highest values shown for
TSS on the chart correspond to a period during which the homeowners complained about the maintenance provider
or the project sampling staff closing a particular valve. Whenever they noticed this valve closed, they would open it,
believing that they understood how the system was supposed to operate. The valve was the drip field flush valve
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-29
that the system designer intended to be closed during normal operations and only used during maintenance
procedures. As a result, it appears that the more frequent and higher volume return flow from the drip field
disrupted the primary clarifier and could account for the higher TSS values reported. (Table 6-8) Although the
median values for TSS are lower than the means over the two systems, indicating the effect of the high values, the
systems did not meet the project’s performance criterion for TSS. Over all the parameters, the performance of the
two systems did not meet any of the project’s performance criteria except for bacteria reduction (log reduction
between 2.6 and 2.7).
Power consumption for the unit has been a concern voiced by the homeowners because of the blowers, multiple
pumps and pyrolytic converter. Based on the manufacturer’s reported energy use rate for the system of 6 kWh/day
and the delivery rate of electricity in the La Pine area, the calculated electricity cost ranges between $10 and $15
dollars per month to operate the system.
Table 6-8. EnviroServer performance statistics.
All EnviroServer
effluent (ESE) after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 28 29 32 9.1 9.7E+03 3.5 8.1E+03 3.5 164
Geometric Mean 31 3.6E+03 3.5 3.2E+03 3.4
Median 19 21 34 8.6 3.4E+03 3.5 3.0E+03 3.5 158
Standard Deviation 32 24 11 1.5 1.9E+04 0.6 1.4E+04 0.6 81
Minimum 1.9 4.0 8.3 6.7 140 2.1 98 2.0 28
Maximum 174 110 56 14 1.0E+05 5.0 6.9E+04 4.8 440
Count 58 58 58 58 58 58 58 58 39
95% Confidence Level 8.4 6.4 3.0 0.4 5.1E+03 0.2 3.7E+03 0.2 26
99% Confidence Level 11 8.5 4.0 0.5 6.8E+03 0.2 5.0E+03 0.2 35
System-M ESE after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 37 27 40 10 1.1E+04 3.3 8.7E+03 3.3 140
Geometric Mean 39 2.2E+03 3.3 1.9E+03 3.2
Median 22 21 38 9.9 1.7E+03 3.2 1.3E+03 3.1 148
Standard Deviation 41 18 8.3 1.5 2.6E+04 0.7 1.8E+04 0.7 53
Minimum 2.4 4.0 23 7.9 140 2.1 98 2.0 34
Maximum 174 72 56 14 1.0E+05 5.0 6.9E+04 4.8 237
Count 30 30 30 30 30 30 30 30 19
95% Confidence Level 15 6.7 3.1 0.6 9.7E+03 0.3 6.7E+03 0.3 26
99% Confidence Level 21 9.0 4.2 0.8 1.3E+04 0.4 9030 0.4 35
System-H ESE after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 19 32 24 8.2 8.2E+03 3.7 7.4E+03 3.7 188
Geometric Mean 23 5.1E+03 3.7 4.6E+03 3.6
Median 15 22 25 8.1 6.8E+03 3.8 6.2E+03 3.8 180
Standard Deviation 13 30 8.4 0.8 8.7E+03 0.5 9.0E+03 0.5 96
Minimum 1.9 6.0 8.3 6.7 680 2.8 520 2.7 28
Maximum 45 110 36 11 4.0E+04 4.6 4.6E+04 4.7 440
Count 28 28 28 28 28 28 28 28 20
95% Confidence Level 4.9 12 3.3 0.3 3.4E+03 0.2 3.5E+03 0.2 45
99% Confidence Level 6.7 16 4.4 0.4 4.5E+03 0.2 4.7E+03 0.2 61
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-30 Innovative System Performance
Figure 6-35. EnviroServer schematic.
System-H EnviroServer effluent over time
0
20
40
60
80
100
120
7/30/019/30/0111/30/011/30/023/30/025/30/027/30/029/30/0211/30/021/30/033/30/035/30/037/30/039/30/03mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Standard
Figure 6-36. System-H EnviroServer effluent quality over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-31
System-M EnviroServer effluent over time
0
20
40
60
80
100
120
140
160
180
7/30/019/30/0111/30/011/30/023/30/025/30/027/30/029/30/0211/30/021/30/033/30/035/30/037/30/039/30/03mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Standard
Figure 6-37. System-M EnviroServer effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-32 Innovative System Performance
(7) MicroFAST® Wastewater Treatment System, Bio-Microbics, Inc.,
The MicroFAST (Fixed Activated Sludge Treatment) system (Figure 6-38, http://www.biomicrobics.com/) uses
both attached and suspended growth processes in a unit that combines a packed bed approach with forced aeration.
The honeycomb filter media provides a surface for attached growth in addition to the clear space for the activated
sludge process. The quiescent areas in the tank surrounding the aeration unit are suboxic and rich in organic
material to facilitate denitrification. The typical residential installation in the La Pine Project uses a two-
compartment 1,500-gallon tank with the MicroFAST unit in the larger side. The house effluent sewer pipe
discharges to the small (500 gallon) trash tank to provide minimal primary treatment before the wastewater enters
the aeration chamber. The unit can either discharge to a gravity fed dispersal field or a pump chamber. The
installations for the La Pine Project discharged to a pressurized drainfield in order to use an in-line water meter as a
flow-measuring device.
The effluent data over time for the three systems installed and monitored are provided in Figures 6-40 through 6-42.
In all cases, the BOD5 and TSS are provided in the same figure as the nitrogen species and the project performance
criteria of 10 mg/L for these parameters is indicated.
System-R (Figure 6-40 shows good nitrification over the majority of the sampling period. The nitrification declines
at the end of the record at a time when the sampling team observed that the blower was not operating when they
arrived on the site. The unit began operating shortly after the homeowner returned to the house after greeting the
team. It is not clear from the record whether the unit was cycling on and off based on control panel settings or if the
homeowner was turning the unit off manually. Regardless of the cause for the system operating in this manner, the
nitrifying bacteria are sensitive to dissolved oxygen
concentrations in the effluent and the NO3
concentrations in the effluent decline significantly for
the duration of the record. Additionally, during this
period, the field observations and homeowner surveys
include other circumstances that could adversely
impact system performance. These include the use of
every flush toilet bowl deodorizers and the need for
tank pumping.
The high TSS value recorded for System-R (2,300
mg/L) has no apparent explanation based on field
observations or lab records. When this value is omitted
from the statistics, the resulting mean, 18 mg/L, is
significantly lower. The median value calculated with
the outlier included (5 mg/L, versus the mean, 129
mg/L) also shows the impact of this outlier on the
statistics for System-R. This situation illustrates the
usefulness of the median value in indicating how large
outliers in the data may skew averages. (Table 6-9)
System-J (Figure 6-41) discharged high levels of TN
over the sampling period. This system served a recreational vehicle (RV) in which the property owners lived while
they built their permanent residence on the site. The owners were very cooperative and did not use any holding tank
chemicals or enzymes in the RV and called with specific questions about the kinds of activities their system could
handle (for example, one call included a question about where to wash out paint brushes). The RV drained to a 50-
gallon tank where a sewage ejector pump macerated the effluent and discharged it to the MicroFAST system via a
100 foot-long transport pipe. This setup caused two significant impacts to the FAST system in that the slug flow
disrupted the primary treatment process and caused short-circuiting in the MicroFAST unit and the effluent cooled
significantly. The sampling team observed the physical disruption of the tank when the pump discharged the tank’s
contents. The mixing and pushing action disturbed the action of the trash tank and the MicroFAST unit whether the
dose contained sewage or not (ex. laundry discharge). The mean trash tank temperature was 12 ºC and the recorded
values ranged between a low of 5ºC in the winter to a high of 20 ºC in the summer. The population of 20 septic
tanks monitored as part of the La Pine Project discharged effluent that was 15 ºC on average; the difference between
the mean temperatures is significant to the 99% confidence level. Low wastewater temperatures can have a negative
impact on the efficiency of the microbial populations relied upon to treat the effluent.
Figure 6-38. Bio-Microbics, Inc. FAST®
system.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-33
The overall BOD5 reduction in System-J averages 85% based on the La Pine Project septic tank population. The
reduction based on the trash tank effluent quality (BOD5 mean = 430 mg/L) averages 91%. Performing an analysis
of system performance in this manner highlights the potential difficulties related to a performance standard based on
percent reduction alone.
The performance chart for System-P (Figure 6-42) shows a system experiencing a high level of variability in
effluent quality over the sampling period. The system appears to have difficulties completely nitrifying the effluent
and nitrification appears to stop almost entirely during the final 10 months of the record. Alkalinity in the effluent
does not appear to be a significant limiting factor because the average alkalinity concentration equals 119 mg/L and
the average alkalinity demand is 133 mg/L (the difference between the means is not statistically significant at the
99% confidence level). Dissolved oxygen levels also do not appear to be a limitation because average
concentrations are 3.5 mg/L and range between 1.2 and 5.3 mg/L. The homeowner surveys do not indicate the use
of liquid fabric softeners, anti-bacterial cleaning products, every flush toilet bowl cleaners, or prescription
medications/antibiotics. It is unclear from field and other data and observations what caused the system to perform
in this manner.
Figure 6-39. MicroFAST system schematic.
Overall, the three systems do not meet the project’s performance criteria. TN from the three units (mean = 48 mg/L,
median = 38 mg/L) indicates a 28 to 39% reduction from the project’s septic tank effluent data (Table 5-1). In terms
of mass loading, the effects of low water use can be detected in System-J (the RV site) where, if the mass load of TN
generated by this household is applied using an average flow rate of 225 GPD, the average concentration would be
35 mg/L instead of 70 mg/L.
On average, the systems achieve a 1.6 log bacteria reduction overall with performance varying between 1 and 2.3
log reduction in individual systems. The BOD5 and TSS reductions approach NSF standard 40 criteria, particularly
when the medians are considered (to remove the effects of outliers in the data).
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-34 Innovative System Performance
Table 6-9. MicroFAST® system performance statistics.
All Systems after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 30 58 48 10 9.0E+04 3.8 6.8E+04 3.7 166
Geometric Mean 6.0E+03 3.6 5.4E+03 3.5
Median 38 29 38 11 2.7E+04 3.9 2.5E+04 3.9 162
Standard Deviation 16 62 19 2.3 1.3E+05 0.7 9.3E+04 0.7 56
Minimum 12 15 35 7.5 4.7E+03 3.0 4.1E+03 3.0 112
Maximum 41 129 70 12 2.4E+05 4.4 1.7E+05 4.4 224
Count 3 3 3 3 3 3 3 3 3
95% Confidence Level 40 154 47 5.7 3.2E+05 1.7 2.3E+05 1.8 139
99% Confidence Level 91 355 110 13 7.3E+05 3.9 5.3E+05 4.1 322
System-J FAST
Effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 38 29 70 12 2.4E+05 4.4 1.7E+05 4.4 112
Geometric Mean 2.6E+04 4.3 2.4E+04 4.3
Median 35 31 69 13 1.2E+04 4.1 1.3E+04 4.1 110
Standard Deviation 24 17 21 2.9 4.0E+05 1.1 2.9E+05 1.0 54
Minimum 10 4.0 24 3.7 400 2.6 400 2.6 30
Maximum 110 68 100 15 1.3E+06 6.1 9.5E+05 6.0 229
Count 22 22 22 22 22 22 22 22 18
95% Confidence Level 11 7.4 9.2 1.3 1.8E+05 0.5 1.3E+05 0.5 27
99% Confidence Level 14 10 12 1.8 2.4E+05 0.6 1.8E+05 0.6 37
System-P FAST
Effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 41 15 35 11 2.7E+04 3.9 2.5E+04 3.9 224
Geometric Mean 7.7E+03 3.7 7.2E+03 3.7
Median 32 13 34 11 1.1E+04 4.0 9.6E+03 4.0 207
Standard Deviation 36 9.0 10 1.2 3.2E+04 1.0 2.8E+04 0.9 74
Minimum 3.5 2.0 17 8.6 49 1.7 69 1.8 132
Maximum 170 32 54 14 1.0E+05 5.0 8.8E+04 4.9 478
Count 22 22 22 22 22 22 22 22 21
95% Confidence Level 16 4.0 4.5 0.5 1.4E+04 0.4 1.2E+04 0.4 34
99% Confidence Level 22 5.4 6.2 0.7 1.9E+04 0.6 1.7E+04 0.6 46
System-R FAST
Effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 12 129 38 7.5 4.7E+03 3.0 4.1E+03 3.0 162
Geometric Mean 1.1E+03 2.9 913 2.8
Median 12 5.0 39 7.4 1.4E+03 3.1 1.3E+03 3.1 161
Standard Deviation 7.4 526 10 1.9 6.6E+03 0.9 6.8E+03 0.9 42
Minimum 1.3 1.0 22 3.4 40 1.6 32 1.5 47
Maximum 29 2300 57 11 2.5E+04 4.4 2.8E+04 4.4 232
Count 19 19 19 19 18 18 18 18 20
95% Confidence Level 3.6 254 4.8 0.9 3.3E+03 0.5 3.4E+03 0.5 20
99% Confidence Level 4.9 347 6.5 1.3 4.5E+03 0.6 4.7E+03 0.6 27
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-35
System-R FAST effluent over time
0
10
20
30
40
50
60
12/17/012/17/024/17/026/17/028/17/0210/17/0212/17/022/17/034/17/036/17/038/17/0310/17/0312/17/032/17/04mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Std
(2300 mg/L)
Figure 6-40. System-R FAST® effluent over time.
System-J FAST effluent over time
0
20
40
60
80
100
120
1/22/023/22/025/22/027/22/029/22/0211/22/021/22/033/22/035/22/037/22/039/22/0311/22/031/22/043/22/04mg/LBOD5 (mg/L)
TSS (mg/L)
NH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
Performance Std
Figure 6-41. System-J FAST effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-36 Innovative System Performance
System-P FAST effluent over time
0
10
20
30
40
50
60
70
80
2/7/014/7/016/7/018/7/0110/7/0112/7/012/7/024/7/026/7/028/7/0210/7/0212/7/022/7/034/7/036/7/038/7/0310/7/03mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Std
(170 mg/L) (95/94 mg/L)
Figure 6-42. System-P FAST effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-37
(8) IDEA BESTEP, Advanced Environmental Systems, Inc.
The IDEA BESTEP system (Figure 6-43) is produced by Advanced Environmental Systems, Inc. of Sparks, Nevada
(http://www.aeswastewater.com/). This system is a sequencing batch reactor where the entire treatment process
(suspended growth activated sludge) takes place within a single tank. The aeration, settling, and decant phases
occur throughout the day with continuous feed to the inlet portion of the processing tank. The systems installed in
the La Pine Project decanted to distribution boxes, which then discharged to the dispersal fields. The sampling team
took system effluent samples from the distribution box in order to best represent the effluent quality discharged to
the dispersal fields. The performance of these systems will be compared to the single-pass septic tanks in the La
Pine Project because the systems do not include a septic tank or primary processing tank.
Figure 6-43. IDEA system process schematic.
The performance of these systems over time is shown in
the performance charts (Figures 6-45 through 6-48).
Figures 6-46 through 6-48 provide a clearer view of the
performance of the systems with the extreme high values
truncated on the chart. Table 6-11 provides the
performance statistics for the three systems installed for
the La Pine Project.
Overall, the mean BOD5 performance is comparable to
the single-pass septic tanks sampled in the project (Table
5-1). The lower median values reported indicate that the
data is skewed by instances of high TSS in the effluent.
While each system participating in the La Pine Project
experienced some outliers in the performance data, the
magnitude of the extremes in these systems is of
concern.
The TSS statistics in Table 6-11 and illustrated in the
performance charts indicates an average performance
that is between 5 and 23 times worse than average septic
tank performance. One system discharged a high of
27,000 mg/L TSS that, based on field observations
during that sampling event, is an accurate representation
of what the dispersal field received during that event.
Figure 6-44. TSS samples from the IDEA system.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-38 Innovative System Performance
The other two systems’ water quality data did not produce this magnitude of result; however, the sample record
shows highs of 4,300 and 4,600 mg/L discharged by the other systems that are also corroborated by field
observations. (Figure 6-44)
The nitrogen results for each system indicate a similar variability in performance over the three systems. The total
nitrogen typically exceeds that discharged by the septic tanks in the project with maximum reported values ranging
between 250 and 1,400 mg/L. Figure 6-3 and the performance charts indicate that the process did not nitrify the
effluent consistently. Given that 7.14 mg/L of alkalinity is required to nitrify 1 mg/L of NH4 (Burks and Minnis,
1994) and based on the amount of NH4 (ammonium) present in the IDEA effluent, the systems, on average, appear
to have sufficient alkalinity present to nitrify most of the ammonium present (Table 6-10). However, if the balance
of the TKN present in the effluent that is organic nitrogen (96 mg/L) is converted to NH4, then the alkalinity demand
would approximately triple and far exceed what is available in the effluent. It appears that the nitrification process
is also, and perhaps predominantly, hindered by the conversion of organic nitrogen to ammonium because
ammonium comprises only 32% of the TKN on average in the system effluent. This limitation would then in turn
limit the conversion of ammonium to nitrate regardless of the amount of alkalinity available to support the
nitrification process.
Table 6-10. Estimated alkalinity requirements indicated by IDEA effluent quality.
Average alkalinity
requirements in three
IDEA systems
Total Alkalinity
present in IDEA
effluent (mg/L)
Alkalinity required
based on NH4
present in IDEA
effluent
Maximum alkalinity
required for process
based on TKN present in
IDEA effluent
Mean 245 221 691
Median 200 143 434
Standard Deviation 134 235 1478
Minimum 74 0.5 26
Maximum 569 728 9996
The bacteria levels discharged by these systems exceed the average values discharged by single-pass septic tanks in
the La Pine Project. The system also discharged significantly more total phosphorus than single-pass septic tanks.
The suspended growth activated sludge process incorporated in this system appears to create the condition where
more of the tanks contents can be discharged if the system malfunctions and consequently have greater
environmental impacts than a conventional onsite system. The vendor did not install any flow measuring devices in
the control panel or in the discharge line so accurate mass loading calculations are not possible for these systems.
However, if the mass load is calculated for the single maximum TSS value reported of 27,000 mg/L (~50 lb/day
using an average design flow of 225 GPD), then this single discharge is the equivalent of a system discharging 150
mg/L TSS at 225 GPD for 180 days. (This calculation assumes that the system’s effluent contained 27,000 mg/L for
a 24-hour period.) Given the implications that these types of discharges have for the design life of a soil absorption
system and the observed ponding in the trenches in each system within a year to a year and a half after start up, the
project team decided to halt testing on these systems six months early and replace the treatment units.
Technically, the outliers in the data could be removed from the statistics for these systems, but the project team felt
that the magnitude of the outliers created a significant impact on the performance of the soil absorption field. In this
case, the project team were concerned that the effects of the outlier were actually significant and could not be
removed from the dataset.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-39
System-H IDEA EFfluent Nitrogen Species over time
0
200
400
600
800
1000
1200
1400
1/7/022/7/023/7/024/7/025/7/026/7/027/7/028/7/029/7/0210/7/0211/7/0212/7/021/7/032/7/033/7/034/7/035/7/036/7/03mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
Figure 6-45. System-H IDEA effluent nitrogen species over time.
System-H IDEA effluent over time
0
20
40
60
80
100
120
140
160
180
200
1/7/20022/7/20023/7/20024/7/20025/7/20026/7/20027/7/20028/7/20029/7/200210/7/200211/7/200212/7/20021/7/20032/7/20033/7/20034/7/20035/7/20036/7/2003mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Std
Figure 6-46. System-H IDEA effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-40 Innovative System Performance
System-L IDEA effluent over time
0
10
20
30
40
50
60
70
80
90
100
1/7/022/7/023/7/024/7/025/7/026/7/027/7/028/7/029/7/0210/7/0211/7/0212/7/021/7/032/7/033/7/034/7/035/7/036/7/037/7/03mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
Performance Std
TSS (mg/L)
BOD5 (mg/L)
Figure 6-47. System-L IDEA effluent over time.
System-Y IDEA effluent over time
0
50
100
150
200
250
300
2/11/20023/11/20024/11/20025/11/20026/11/20027/11/20028/11/20029/11/200210/11/200211/11/200212/11/20021/11/20032/11/20033/11/20034/11/20035/11/20036/11/20037/11/2003mg/LNH4 As N (mg/L)
TKN (mg/L)
Nitrate-Nitrite As N (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Std
Figure 6-48. System-Y IDEA effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-41
Table 6-11. IDEA BESTEP performance statistics.
All IDEA effluent (no
apparent maturation
periods)
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 340 1,075 97 25 7.6E+07 5.9 7.2E+07 5.9 N/A
Geometric Mean 1.1E+07 5.8 9.5E+06 5.7
Median 66 89 61 15 1.0E+06 6.0 1.0E+06 6.0
Standard Deviation 765 4,090 207 52 2.6E+08 1.8 2.5E+08 1.8
Minimum 3.1 2.0 3.7 0.5 200 2.3 200 2.3
Maximum 4,600 27,000 1,400 352 1.6E+09 9.2 1.6E+09 9.2
Count 45 45 46 46 45 45 45 45
95% Confidence Level 230 1,229 61 15 7.7E+07 0.5 7.6E+07 0.5
99% Confidence Level 307 1,641 82 21 1.0E+08 0.7 1.0E+08 0.7
System-H IDEA
effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 372 1,974 134 40 3.8E+06 4.9 4.4E+06 4.9 N/A
Geometric Mean 8.4E+04 4.7 7.6E+04 4.7
Median 43 53 27 18 1.4E+05 5.1 8.0E+04 4.9
Standard Deviation 1,218 7,203 353 86 1.2E+07 1.4 1.5E+07 1.4
Minimum 11 2.0 4.2 12 420 2.6 400 2.6
Maximum 4,600 27,000 1,400 352 4.7E+07 7.7 5.6E+07 7.7
Count 14 14 15 15 14 14 14 14
95% Confidence Level 703 4,159 195 48 7.2E+06 0.8 8.6E+06 0.8
99% Confidence Level 980 5,799 271 66 1.0E+07 1.1 1.2E+07 1.1
System-L IDEA effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 296 866 60 15 4.1E+06 5.4 3.7E+06 5.3 N/A
Geometric Mean 2.3E+05 5.1 1.8E+05 5.0
Median 95 300 29 6.1 6.0E+05 5.5 4.2E+05 5.4
Standard Deviation 416 1,349 78 22 6.2E+06 1.6 5.7E+06 1.7
Minimum 3.1 6.0 3.7 0.5 200 2.3 200 2.3
Maximum 1,300 4,600 250 80 1.8E+07 7.3 1.7E+07 7.2
Count 16 16 16 16 16 16 16 16
95% Confidence Level 222 719 42 11 3.3E+06 0.9 3.0E+06 0.9
99% Confidence Level 307 994 57 16 4.5E+06 1.2 4.2E+06 1.2
System-Y IDEA
effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 354 458 99 20 2.2E+08 7.5 2.1E+08 7.4 N/A
Geometric Mean 161 138 80 14 3.2E+07 7.4 2.8E+07 7.4
Median 210 100 93 15 3.0E+07 7.5 4.0E+07 7.6
Standard Deviation 525 1,082 61 18 4.2E+08 1.1 4.2E+08 1.1
Minimum 16 21 7.9 2.6 2.7E+05 5.4 2.1E+05 5.3
Maximum 2,100 4,300 280 76 1.6E+09 9.2 1.6E+09 9.2
Count 15 15 15 15 15 15 15 15
95% Confidence Level 291 599 34 10 2.3E+08 0.6 2.3E+08 0.6
99% Confidence Level 404 831 47 14 3.2E+08 0.8 3.2E+08 0.9
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-42 Innovative System Performance
(9) Innovative Trench Designs, Wert and Associates, Inc.
The innovative trench designs, produced by Wert and Associates, Inc., embodied an attempt to replicate
denitrification processed established in non-proprietary designs installed elsewhere in the state and nation. The
trench designs are broken into two groups, Design A and Design B, and each group is replicated on three sites.
Design A incorporates an AX-20 system in Mode 1 to pretreat the effluent prior to discharge to the trenches. The
AX-20 recirculation rates were modified to provide nitrification while also discharging higher BOD5 levels than is
typical of these systems. The pump chamber discharges to one of three trenches: standard trench (gravel and
perforated pipe), a lined gravel trench, and a trench containing a tube filled with shredded wood fiber nested within a
larger tube. The standard trench provided a control against which to compare the performance of the other two
trenches. The lined gravel trench design (anoxic trench) intended to use the BOD5 carried over from the AX-20
system to provide a carbon source to promote denitrification as the effluent became anoxic at the bottom of the liner.
The tube within a tube design (wood tube trench) provided an added carbon source in the form of the wood shavings
to promote denitrification. The general schematic of the system is provided in Figure 6-49. Each trench was
outfitted with either a lysimeter or sampling port in order to monitor their performance.
Sampling points:
y Septic tank effluent (STE)
y Anaerobic trench effluent (ATE)
y Wood tube denitrifier effluent (WTE)
y Standard Trench Lysimeter (STD-E)
y Monitoring well down gradient of
disposal field (MW drain)
Septic tank
AdvantexTM Filter
AX-20
Pump
tank
From
House
Standard trench w/ lysimeter
Flow meters
(3)
Drainfield dosing and recirculation
to filter via flow splitter valve1
MWDistributing
valve
Anoxic trench
Wood tube trench Figure 6-49. Innovative trench design A schematic.
The performance data over time of the anoxic trenches is presented in Figures 6-50 through 6-52. Each chart
provides the performance data in comparison with the project’s performance standard and the TN concentrations
discharged from the AX-20 unit discharging to the trenches. Each unit demonstrates a parallel between the TN
concentrations discharged from the AX-20 units and the anoxic trench effluent. Similarly, the performance data
over time for the wood tube trenches and the standard trenches are shown in Figures 6-53 through 6-59. In each
case, it appears that the AX-20 treatment process dominates the overall effluent quality for the trenches. The anoxic
trenches appear to achieve a small amount of denitrification during the second half of the sampling period as
compared to the standard trenches’ effluent.
The wood tube trenches do not demonstrate clear denitrification; the data suggests the BOD5 is slightly higher in the
effluent from these trenches than that from the standard or anoxic trenches, however, it is not clear that this is
significantly different from the effluent quality leaving the AX-20 overall. When the data is plotted on the
performance chart (Figure 6-59) it appears that the dissolved oxygen (DO) level is related to denitrification in that
the lowest concentrations of TN in the effluent correspond to the lowest concentrations of DO in the trench effluent.
It is unclear from this data whether the DO is affected more by AX-20 performance or effluent retention time in the
trench. And, it must be noted that the BOD5 levels also increase during the periods of greatest nitrogen reduction.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-43
The phosphorus data provided in Tables 6-12 through 15 indicate that the reductions are not large, even in the
standard trench. Apparently the rock used to bed the drainfield pipes, and which is typical of the rock used in onsite
systems throughout the region, does not provide significant adsorption capacity for phosphorus reduction.
Figure 6-50. System-B innovative trench design A (anoxic trench effluent).
System-K innovative trench design A (anoxic trench)
0
10
20
30
40
50
60
70
80
8/6/200210/6/200212/6/20022/6/20034/6/20036/6/20038/6/200310/6/200312/6/20032/6/20044/6/2004mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
AX-20 TN (mg/L)
TSS (mg/L)
BOD5 (mg/L)
Performance Std
Figure 6-51. System-K innovative trench design A (anoxic trench effluent).
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-44 Innovative System Performance
System-P innovative trench design A (anoxic trench)
0
10
20
30
40
50
60
11/20/20021/20/20033/20/20035/20/20037/20/20039/20/200311/20/20031/20/20043/20/20045/20/20047/20/20049/20/2004mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
AX-20 TN (mg/L)
TSS (mg/L)
BOD5 (mg/L)
Performance Std
Figure 6-52. System-P innovative trench design A (anoxic trench effluent).
System-B innovative trench design A (wood tube)
0
10
20
30
40
50
60
70
9/4/200211/4/20021/4/20033/4/20035/4/20037/4/20039/4/200311/4/20031/4/20043/4/20045/4/20047/4/20049/4/200411/4/2004mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
AX-20 TN (mg/L)
TSS (mg/L)
BOD5 (mg/L)
Performance Std
Figure 6-53. System-B innovative trench design A (wood tube trench effluent).
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-45
System-K innovative trench design A (wood tube)
0
10
20
30
40
50
60
70
80
8/6/200210/6/200212/6/20022/6/20034/6/20036/6/20038/6/200310/6/200312/6/20032/6/20044/6/2004mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
AX-20 TN (mg/L)
TSS (mg/L)
BOD5 (mg/L)
Performance Std
Figure 6-54. System-K innovative trench design A (wood tube trench effluent).
System-P innovative trench design A (wood tube)
0
20
40
60
80
100
120
10/30/200212/30/20022/28/20034/30/20036/30/20038/30/200310/30/200312/30/20032/29/20044/30/20046/30/20048/30/200410/30/2004mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
AX-20 TN (mg/L)
TSS (mg/L)
BOD5 (mg/L)
Performance Std
Figure 6-55. System-P innovative trench design A (wood tube trench effluent).
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-46 Innovative System Performance
System-B innovative trench design A (standard)
0
10
20
30
40
50
60
70
9/30/200211/30/20021/30/20033/30/20035/30/20037/30/20039/30/200311/30/20031/30/20043/30/20045/30/20047/30/20049/30/2004mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
AX-20 TN (mg/L)
TSS (mg/L)
BOD5 (mg/L)
Performance Std
Figure 6-56. System-B standard (control) trench effluent.
System-K innovative trench design A (standard)
0
10
20
30
40
50
60
70
80
8/6/0210/6/0212/6/022/6/034/6/036/6/038/6/0310/6/0312/6/032/6/044/6/04mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
AX-20 TN (mg/L)
TSS (mg/L)
BOD5 (mg/L)
Performance Std
Figure 6-57. System-K standard (control) trench effluent.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-47
System-P innovative trench design A (standard)
0
10
20
30
40
50
60
70
80
1/8/033/8/035/8/037/8/039/8/0311/8/031/8/043/8/045/8/047/8/049/8/04mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
AX-20 TN (mg/L)
TSS (mg/L)
BOD5 (mg/L)
Performance Std
Figure 6-58. System-P standard (control) trench effluent.
System-P innovative trench design A (wood tube)
0
10
20
30
40
50
60
70
80
10/30/200212/30/20022/28/20034/30/20036/30/20038/30/200310/30/200312/30/20032/29/20044/30/20046/30/20048/30/200410/30/2004mg/L0
0.5
1
1.5
2
2.5
3
3.5
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
AX-20 TN (mg/L)
BOD5 (mg/L)
Performance Std
Dissolved Oxygen (mg/L)
Figure 6-59. Example of dissolved oxygen in wood tube trench effluent.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-48 Innovative System Performance
Table 6-12. Innovative trench design A standard trench effluent performance statistics.
All System Standard
Trench Effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
Total
Phosph.
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Dissolved
Oxygen
(mg/L)
Mean 2.5 8.2 40 43 4.9 362 1.2 253 1.2 7.1
Geometric Mean 16 0.9 15 0.9
Median 1.3 4.0 41 42 4.6 14 1.1 10 1.0 6.9
Standard Deviation 4.0 12 17 20 4.3 1.7E+03 0.9 1.2E+03 0.8 1.7
Minimum ND ND 3.4 2.6 0.1 ND 0.3 ND 0.3 4.3
Maximum 24 72 68 86 15 1.1E+04 4.0 8.0E+03 3.9 11
Count 45 45 46 46 46 45 45 45 45 46
95% Confidence Level 1.2 3.6 5.1 6.1 1.3 506 0.3 362 0.3 0.5
99% Confidence Level 1.6 4.8 6.9 8.1 1.7 676 0.3 484 0.3 0.7
System-K Standard
Trench Effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
Total
Phosph.
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Dissolved
Oxygen
(mg/L)
Mean 2.5 4.1 53 52 7.4 1.0E+03 1.7 7.2E+02 1.6 7.2
Geometric Mean 48 1.3 39 1.2
Median 1.1 4.0 58 54 7.3 32 1.5 26 1.4 7.3
Standard Deviation 6.0 2.5 12 12 5.0 2.9E+03 1.2 2.1E+03 1.1 2.1
Minimum ND 1.0 32 27 0.2 ND 0.3 ND 0.3 4.3
Maximum 24 9.0 68 70 15 1.1E+04 4.0 8.0E+03 3.9 11
Count 15 15 16 16 16 15 15 15 15 16
95% Confidence Level 3.3 1.4 6.4 6.3 2.7 1.6E+03 0.6 1.1E+03 0.6 1.1
99% Confidence Level 4.6 1.9 8.9 8.8 3.7 2.2E+03 0.9 1.6E+03 0.9 1.5
System-B Standard
Trench Effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
Total
Phosph.
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Dissolved
Oxygen
(mg/L)
Mean 0.8 3.8 37 46 1.4 15 0.9 12 0.8 7.1
Geometric Mean 9 0.8 7 0.7
Median 0.5 3.0 38 42 0.5 11 1.0 8 0.9 6.9
Standard Deviation 0.4 2.8 17 25 2.3 16 0.5 15 0.4 1.5
Minimum ND ND 12 9.0 0.1 ND 0.3 ND 0.3 4.9
Maximum 1.6 11 65 86 7.2 60 1.8 54 1.7 10
Count 16 16 16 16 16 16 16 16 16 16
95% Confidence Level 0.2 1.5 9.0 13 1.2 9 0.2 8 0.2 0.8
99% Confidence Level 0.3 2.1 12 19 1.7 12 0.3 11 0.3 1.1
System-P Standard
Trench Effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
Total
Phosph.
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Dissolved
Oxygen
(mg/L)
Mean 4.5 18 28 30 6.0 32 1.0 35 1.1 7.0
Geometric Mean 10 0.8 12 0.9
Median 3.5 12 29 29 6.7 8 0.8 12 1.1 7.1
Standard Deviation 2.9 18 13 15 2.4 54 0.7 60 0.7 1.7
Minimum 2.0 2.0 3.4 2.6 2.2 ND 0.3 ND 0.3 4.4
Maximum 12 72 45 53 8.9 200 2.3 220 2.3 9.5
Count 14 14 14 14 14 14 14 14 14 14
95% Confidence Level 1.7 10 7.8 8.9 1.4 31 0.4 34 0.4 1.0
99% Confidence Level 2.3 14 11 12 1.9 43 0.6 48 0.5 1.4
ND = non detect
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-49
Table 6-13. Innovative trench design A (wood tube) performance statistics.
All Sys Wood Tube
Trench Effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
Total
Phosph.
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Dissolved
Oxygen
(mg/L)
Mean 11 13 38 41 11 1.3E+03 1.5 1.2E+03 1.5 1.8
Geometric Mean 34 N/A 28 N/A
Median 6.6 4.0 39 43 11 44 1.6 36 1.6 1.5
Standard Deviation 14 58 19 20 4.0 8.2E+03 1.1 7.2E+03 1.1 1.0
Minimum ND ND 1.4 1.2 5.5 ND 0.0 ND 0.0 0.5
Maximum 76 450 68 77 20 6.5E+04 4.8 5.7E+04 4.8 4.9
Count 63 63 63 48 63 63 63 63 63 62
95% Confidence Level 3.5 15 4.8 5.9 1.0 2.1E+03 0.3 1.8E+03 0.3 0.3
99% Confidence Level 4.7 19 6.4 7.9 1.3 2.7E+03 0.4 2.4E+03 0.4 0.3
Sys-K Wood Tube
Trench Effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
Total
Phosph.
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Dissolved
Oxygen
(mg/L)
Mean 9.2 23 52 51 16 3.0E+03 1.4 2.7E+03 1.4 2.0
Geometric Mean 32 1.0 33 N/A
Median 4.1 2.5 56 55 15 34 1.5 29 1.4 1.5
Standard Deviation 16 95 15 15 2.5 1.4E+04 1.2 1.2E+04 1.1 1.4
Minimum ND ND 19 19 10 ND 0.0 ND 0.0 0.5
Maximum 76 450 68 68 20 6.5E+04 4.8 5.7E+04 4.8 4.9
Count 22 22 22 16 22 22 22 22 22 22
95% Confidence Level 7.2 42 6.5 7.8 1.1 6.1E+03 0.5 5.4E+03 0.5 0.6
99% Confidence Level 9.8 58 8.8 11 1.5 8.4E+03 0.7 7.3E+03 0.7 0.8
Sys-B Wood Tube
Trench Effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
Total
Phosph.
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Dissolved
Oxygen
(mg/L)
Mean 7.2 5.1 34 43 9.1 5.1E+02 1.7 4.8E+02 1.6 1.6
Geometric Mean 44 N/A 31 N/A
Median 4.8 4.0 37 41 8.5 40 1.6 24 1.4 1.6
Standard Deviation 6.8 2.5 20 25 2.1 1.1E+03 1.1 1.1E+03 1.2 0.7
Minimum 1.2 2.0 1.4 1.2 6.1 ND 0.0 ND 0.0 0.8
Maximum 31 11 60 77 12 4.4E+03 3.6 4.2E+03 3.6 3.2
Count 19 19 19 16 19 19 19 19 19 19
95% Confidence Level 3.3 1.2 9.6 13 1.0 5.4E+02 0.5 5.2E+02 0.6 0.3
99% Confidence Level 4.5 1.6 13 18 1.4 7.4E+02 0.7 7.1E+02 0.8 0.5
Sys-P Wood Tube
Trench Effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
Total
Phosph.
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Dissolved
Oxygen
(mg/L)
Mean 16 8.7 27 30 9.1 2.6E+02 1.5 2.3E+02 1.4 1.8
Geometric Mean 28 1.2 22 1.0
Median 11 4.0 25 25 8.6 64 1.8 53 1.7 1.5
Standard Deviation 15 23 13 16 2.7 6.6E+02 0.9 5.7E+02 1.0 0.7
Minimum 2.8 ND 9.1 8.4 5.5 ND 0.3 ND 0.3 0.5
Maximum 70 110 45 57 16 2.3E+03 3.4 2.3E+03 3.4 3.1
Count 22 22 22 16 22 22 22 22 22 21
95% Confidence Level 6.7 10 5.9 8.3 1.2 2.9E+02 0.4 2.5E+02 0.4 0.3
99% Confidence Level 9.2 14 8.1 11 1.6 4.0E+02 0.6 3.4E+02 0.6 0.4
ND = non detect, N/A = statistic not calculable
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-50 Innovative System Performance
Table 6-14. Innovative trench design A (anoxic trench) performance statistics.
All Systems anoxic
trench effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
Total
Phosph.
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Dissolved
Oxygen
(mg/L) GPD
Mean 6.8 3.2 34 39 10 1.4E+03 2.0 1.0E+03 2.0 1.4 116
Geometric Mean 87 1.7 72 1.6
Median 5.4 2.0 32 37 9.3 130 2.1 110 2.0 1.3 106
Standard Deviation 7.4 4.8 19 22 4.3 6.8E+03 0.9 4.9E+03 0.9 0.6 21
Minimum ND ND 1.3 3.9 2.4 ND 0.3 ND 0.3 0.5 103
Maximum 40 34 69 76 18 5.0E+04 4.7 3.7E+04 4.6 3.8 140
Count 57 57 57 48 57 57 57 57 57 57 3
95% Confidence Level 2.0 1.3 5.0 6.3 1.1 1.8E+03 0.2 1.3E+03 0.2 0.2 51
99% Confidence Level 2.6 1.7 6.7 8.4 1.5 2.4E+03 0.3 1.7E+03 0.3 0.2 118
Sys-K Anoxic Trench
Effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
Total
Phosph.
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Dissolved
Oxygen
(mg/L) GPD
Mean 10 4.3 49 52 15 2.7E+03 2.2 2.1E+03 2.1 1.6 106
Geometric Mean 142 2.0 128 1.9
Median 8.2 2.0 52 59 14 140 2.1 110 2.0 1.5 107
Standard Deviation 11 7.2 16 16 1.7 1.1E+04 0.8 8.2E+03 0.9 0.8 18
Minimum 1.7 0.5 22 21 12 8 0.9 6 0.8 0.7 79
Maximum 40 34 69 68 18 5.0E+04 4.7 3.7E+04 4.6 3.8 141
Count 20 20 20 16 20 20 20 20 20 20 16
95% Confidence Level 5.0 3.4 7.3 8.3 0.8 5.2E+03 0.4 3.8E+03 0.4 0.4 9.6
99% Confidence Level 6.8 4.6 10 12 1.1 7.1E+03 0.5 5.3E+03 0.6 0.5 13
Sys-B Anoxic Trench
Effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
Total
Phosph.
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Dissolved
Oxygen
(mg/L) GPD
Mean 3.7 2.7 27 36 7.7 1.1E+03 2.4 578 2.3 1.1 140
Geometric Mean 202 2.2 152 2.1
Median 3.2 2.0 25 35 7.2 251 2.4 231 2.4 1.0 136
Standard Deviation 2.9 3.3 19 26 2.6 3.1E+03 0.7 1.4E+03 0.7 0.5 40
Minimum ND ND 1.3 3.9 2.5 8 0.9 6 0.8 0.5 81
Maximum 12 14 55 76 11 1.4E+04 4.1 6.4E+03 3.8 2.3 275
Count 20 20 20 17 20 20 20 20 20 20 17
95% Confidence Level 1.4 1.5 8.7 13 1.2 1.4E+03 0.3 647 0.3 0.2 21
99% Confidence Level 1.8 2.1 12 18 1.7 2.0E+03 0.5 885 0.4 0.3 29
Sys-P Anoxic Trench
Effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
Total
Phosph.
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli
Dissolved
Oxygen
(mg/L) GPD
Mean 6.5 2.4 23 28 6.6 206 1.5 247 1.4 1.5 103
Geometric Mean 23 1.2 19 1.1
Median 6.5 2.0 25 24 7.2 28 1.4 20 1.3 1.4 94
Standard Deviation 4.4 2.0 10 14 2.0 507 0.8 641 0.8 0.5 35
Minimum 1.2 ND 7.0 6.9 2.4 ND 0.3 ND 0.3 0.5 54
Maximum 15 8.0 36 49 10 1.6E+03 3.2 2.0E+03 3.3 2.6 202
Count 17 17 17 15 17 17 17 17 17 17 16
95% Confidence Level 2.3 1.0 5.2 7.9 1.0 260 0.4 330 0.4 0.2 19
99% Confidence Level 3.1 1.4 7.1 11 1.4 359 0.6 454 0.6 0.3 26
ND = non detect
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-51
Table 6-15. AX-20 performance statistics in design A.
System-K AX-20
effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. Coli
Log E.
coli
Mean 8.0 5.0 53 15 5.1E+03 2.2 3.2E+04 2.3
Geometric Mean 5.8 3.6 51 15 165 2.0 203 2.0
Median 7.5 5.0 54 15 110 2.0 100 2.0
Standard Deviation 5.8 3.3 12 3.0 1.8E+04 1.1 1.1E+05 1.3
Minimum ND ND 30 7.3 10 1.0 4 0.6
Maximum 24 13 69 20 7.2E+04 4.9 4.2E+05 5.6
Count 16 16 16 16 16 16 16 16
95% Confidence Level 3.1 1.8 6.6 1.6 9.5E+03 0.6 5.6E+04 0.7
99% Confidence Level 4.3 2.4 9.1 2.2 1.3E+04 0.8 7.8E+04 1.0
System-B AX-20
effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. Coli
Log E.
coli
Mean 7.8 8.5 37 9.1 1.1E+03 2.2 820 2.1
Geometric Mean 6.8 7.5 33 8.9 165 1.9 134 N/A
Median 7.6 8.0 38 8.2 100 2.0 100 2.0
Standard Deviation 4.2 4.3 16 2.1 2.6E+03 1.0 1.5E+03 1.0
Minimum 2.3 3.0 11 6.4 ND 0.3 ND 0.0
Maximum 17 17 59 12 1.1E+04 4.0 6.0E+03 3.8
Count 17 17 17 17 17 17 17 17
95% Confidence Level 2.1 2.2 8.5 1.1 1.4E+03 0.5 770 0.5
99% Confidence Level 2.9 3.0 12 1.5 1.9E+03 0.7 1.1E+03 0.7
System-P AX-20
effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. Coli
Log E.
coli
Mean 12 5.6 32 10 126 1.5 104 1.4
Geometric Mean 10 5.2 30 9.3 31 1.3 26 1.2
Median 11 5.0 30 8.9 19 1.3 22 1.3
Standard Deviation 7.2 2.5 11 3.0 239 0.7 210 0.7
Minimum 2.7 3.0 14 5.8 ND 0.3 ND 0.3
Maximum 22 12 51 17 880 2.9 820 2.9
Count 16 16 16 16 16 16 16 16
95% Confidence Level 3.9 1.3 5.9 1.6 128 0.4 112 0.4
99% Confidence Level 5.3 1.8 8.1 2.2 176 0.5 154 0.5
ND = non detect
Innovative trench design B used a soil bed for the nitrification process during the first portion of the field test. The
soil bed received effluent via a drip distribution system. This soil bed then drained through gravel to an underlying
lined gravel filled trench that included two wood tubes for an added carbon source. (Figure 6-60) The lined trench
was designed to become the anoxic environment to facilitate denitrification. The soil filter for System-J was
replaced with a sand filter early in the field test period. The soil filters were also replaced at the end of the sampling
period for System-P and System-M. These repairs were performed due to either hydraulic or organic overload to the
soil filter or errors in installation or design that caused premature failure.
The performance data over time is provided in Figures 6-61 through 6-63. These systems demonstrate good
nitrification capabilities during the first portion of the sampling period (Systems-P and –J) and some possible
denitrification (System-M). After this point, the nitrification processes for both Systems-M and –P begin to decline
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-52 Innovative System Performance
and TN, BOD5 and TSS concentrations increase. The soil filters for these systems were not replaced until the
summer of 2004 and the sampling events for these systems halted while they were in obvious failure; therefore there
is only one sample point following this repair. The performance charts indicate the gap in data by dashed lines on
the effluent quality parameters. The trends implied by the dashed lines cannot be verified by the data existing for
these systems.
Figure 6-60. Innovative trench design B schematic.
0
10
20
30
40
50
60
70
80
9/3/200211/3/20021/3/20033/3/20035/3/20037/3/20039/3/200311/3/20031/3/20043/3/20045/3/20047/3/20049/3/200411/3/2004mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
TSS (mg/L)
BOD5 (mg/L)
Performance Std
Figure 6-61. System-J innovative trench design B effluent.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-53
0
20
40
60
80
100
120
140
8/27/200210/27/200212/27/20022/27/20034/27/20036/27/20038/27/200310/27/200312/27/20032/27/20044/27/20046/27/20048/27/200410/27/2004mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
TSS (mg/L)
BOD5 (mg/L)
Performance Std
The dashed line at the end of the sampling record
indicates a long interval between samples. Any
potential trend indicated by the lines is unverifiable by
existing data.
Figure 6-62. System-M innovative trench design B effluent.
0
10
20
30
40
50
60
70
8/27/200210/27/200212/27/20022/27/20034/27/20036/27/20038/27/200310/27/200312/27/20032/27/20044/27/20046/27/20048/27/200410/27/2004mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
TSS (mg/L)
BOD5 (mg/L)
Performance Std
The dashed line at the end of the sampling record indicates a
long interval between samples. Any potential trend indicated by
the lines is unverifiable with existing data.
Figure 6-63. System-P innovative trench design B effluent.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-54 Innovative System Performance
Table 6-16. Innovative trench design B performance statistics.
All System Innovative
Trench Design-B
effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 21 13 26 27 1.8 5.6E+04 2.8 4.3E+04 2.7 170
Geometric Mean 6.8E+02 2.2 4.8E+02 2.1
Median 5.8 6.0 21 19 1.1 3.8E+02 2.6 3.0E+02 2.5 125
Standard Deviation 32 18 18 24 2.1 2.2E+05 1.6 1.8E+05 1.5 79
Minimum ND ND 3.4 0.0 0.2 ND 0.3 ND 0.3 124
Maximum 140 88 77 123 9.7 1.4E+06 6.1 1.2E+06 6.1 261
Count 43 43 44 45 45 43 43 43 43 3
95% Confidence Level 10 5.6 5.6 7.1 0.6 6.7E+04 0.5 5.7E+04 0.5 196
99% Confidence Level 13 7.5 7.5 9.5 0.8 9.0E+04 0.7 7.6E+04 0.6 452
System-J Innovative
Trench Design-B
effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 5.9 4.3 34 34 2.1 2.7E+04 2.6 1.6E+04 2.4 261
Geometric Mean 3.6E+02 1.8 2.3E+02 1.7
Median 3.6 3.0 39 18 1.7 2.0E+02 2.3 2.0E+02 2.3 243
Standard Deviation 4.9 4.0 20 33 1.8 7.0E+04 1.6 4.7E+04 1.5 96
Minimum ND ND 7.2 0.0 0.4 ND 0.3 ND 0.3 95
Maximum 16 13 73 123 6.4 2.6E+05 5.4 1.8E+05 5.3 482
Count 15 15 14 15 15 15 15 15 15 15
95% Confidence Level 2.7 2.2 12 18 1.0 3.9E+04 0.9 2.6E+04 0.9 53
99% Confidence Level 3.8 3.1 16 25 1.4 5.4E+04 1.3 3.6E+04 1.2 74
System-M Innovative
Trench Design-B
effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 41 22 26 28 2.4 1.3E+04 2.9 1.3E+04 2.9 124
Geometric Mean 7.9E+02 2.6 7.4E+02 2.6
Median 28 12 22 19 1.6 6.6E+02 2.8 5.9E+02 2.8 97
Standard Deviation 43 25 21 22 2.9 2.3E+04 1.2 2.4E+04 1.3 59
Minimum 1.2 1.0 4.0 5.7 0.2 10 1.0 14 1.1 84
Maximum 140 88 77 68 9.7 6.4E+04 4.8 7.2E+04 4.9 300
Count 15 15 15 15 15 14 14 14 14 14
95% Confidence Level 24 14 12 12 1.6 1.3E+04 0.7 1.4E+04 0.7 34
99% Confidence Level 33 19 16 17 2.2 1.9E+04 1.0 2.0E+04 1.0 47
System-P Innovative
Trench Design-B
effluent
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
TN w/o
dilution
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 16 13 18 20 0.8 1.3E+05 3.0 1.0E+05 2.8 125
Geometric Mean 1.1E+03 2.2 6.3E+02 2.0
Median 4.1 6.0 19 20 0.6 1.3E+03 3.1 1.1E+03 3.0 122
Standard Deviation 22 14 9.2 11 0.7 3.7E+05 1.9 3.2E+05 1.8 34
Minimum ND ND 3.4 4.3 0.2 ND 0.3 ND 0.3 69
Maximum 72 36 36 45 2.5 1.4E+06 6.1 1.2E+06 6.1 202
Count 13 13 15 15 15 14 14 14 14 15
95% Confidence Level 13 8.5 5.1 6.0 0.4 2.1E+05 1.1 1.8E+05 1.1 19
99% Confidence Level 19 12 7.1 8.3 0.5 3.0E+05 1.5 2.6E+05 1.5 26
ND = non detect
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-55
Figure 6-64. Nayadic unit cross-section.
(10) Nayadic, Consolidated Treatment Systems, Inc.
The Nayadic unit is designed with nested chambers: an inner reactor vessel, where the forced aeration process
occurs, and an outer clarification chamber, where the suspended growth matter settles from the effluent. The overall
shape of the unit derives from the Imhoff cone. (Figure 6-64)
While operating, primary clarifier effluent is discharged to the inner reactor where compressed air is pumped into
the bottom of the chamber and allowed to rise in a pipe, creating a Venturi effect. The outer chamber is a quiescent
area where solids can settle out of suspension and fall towards the bottom of the cone. The white ring shown in
Figure 6-64 is a scum baffle to keep floating material from leaving the unit. Figure 6-65 provides a basic schematic
of the La Pine Project installations and a more detailed description of the process is available on the web site for
Consolidated Treatment Systems, Inc. at: http://www.consolidatedtreatment.com/nayadic.asp.
Figures 6-66 through 6-68 provide the performance data
over time for the three systems installed for the La Pine
Project. The first year of operation was often
characterized by high BOD5 and TSS values, which may
have been due to system maturation confounded by air
compressor or recirculation pump malfunctions. The
high spike in TN with an accompanying decline in
nitrification in March 2003 in Figure 6-68 corresponds to
a time when the recirculation pump failed and the control
panel for the pump needed to be re-programmed; it is
unclear if the compressor experienced problems at the
same time as the recirculation pump but compressor
problems might be implied by the decline in nitrification.
Performance of this system improved for the balance of
the sampling period with some excursions in BOD5
quality. The other two systems have experienced
multiple air compressor related problems with a
corresponding impact on effluent quality.
Bacteria reductions in all three systems exceeded the
performance standard by achieving a 2.6 to 2.8 log
reduction based on individual geometric means. No
phosphorus reduction was expected or recorded in these systems.
Overall, (Table 6-17) the systems appear capable of producing relatively good effluent quality (for example,
System-B); however, the general performance of the systems serves to highlight the need for particular attention to
maintenance requirements with these systems and perhaps onsite systems in general.
Communication between the vendor and the installer/maintenance provider may have been an issue in the La Pine
Project in that some important maintenance activities (e.g. compressor maintenance) were overlooked during the
first year to year and a half of operation (example, Figure 6-68). Conversations with the designated maintenance
provider during the field test also highlighted potential conflicts that may arise when the maintenance provider is
also an onsite system installer or excavator. This combination of businesses may increase the maintenance
provider’s response time to service calls on malfunctioning systems if they are working against a deadline to
complete an installation job. Additionally, the maintenance providers in the La Pine Project using this business
model tended to be more reactive than proactive when addressing maintenance issues. However, this could also
have been a result of the informal nature of the training received during the demonstration project. As a result of
observing this type of business model, the project team recommends a strong educational component included in any
maintenance provider certification program with the certification program also allowing homeowner, vendor and
regulator feedback to the quality of work of the maintenance provider.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-56 Innovative System Performance
Figure 6-65. Nayadic system schematic.
System-B Nayadic effluent over time
0
20
40
60
80
100
11/5/011/5/023/5/025/5/027/5/029/5/0211/5/021/5/033/5/035/5/037/5/039/5/0311/5/031/5/043/5/045/5/04mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Std
Figure 6-66. System-B Nayadic effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-57
System-D Nayadic effluent over time
0
20
40
60
80
100
120
140
160
11/5/011/5/023/5/025/5/027/5/029/5/0211/5/021/5/033/5/035/5/037/5/039/5/0311/5/031/5/043/5/045/5/047/5/049/5/04mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Std
Figure 6-67. System-D Nayadic effluent over time.
System-M Nayadic effluent over time
0
20
40
60
80
100
120
140
160
11/5/011/5/023/5/025/5/027/5/029/5/0211/5/021/5/033/5/035/5/037/5/039/5/0311/5/031/5/043/5/045/5/047/5/049/5/04mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Std
Figure 6-68. System-M Nayadic effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-58 Innovative System Performance
Table 6-17. Nayadic performance statistics.
All systems' Nayadic
effluent after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 42 17 37 12 1.2E+05 2.7 1.1E+05 2.6 121
Geometric Mean 680 2.4 550 2.3
Median 36 11 35 11 380 2.6 400 2.6 101
Standard Deviation 34 17 17 4.5 6.6E+05 1.4 6.1E+05 1.5 48
Minimum 1.6 ND 5.9 5.0 ND 0.3 ND 0.3 86
Maximum 150 96 101 24 4.6E+06 6.7 4.2E+06 6.6 176
Count 78 80 80 79 80 80 80 80 3
95% Confidence Level 7.7 3.8 3.8 1.0 1.5E+05 0.3 1.4E+05 0.3 119
99% Confidence Level 10 5.0 5.1 1.3 2.0E+05 0.4 1.8E+05 0.4 275
System-D Nayadic
effluent after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 48 14 38 12 1.1E+04 2.8 9.8E+03 2.7 101
Geometric Mean 930 2.6 780 2.5
Median 40 13 40 12 640 2.8 420 2.6 99
Standard Deviation 29 10 12 1.7 2.1E+04 1.4 1.8E+04 1.4 15
Minimum 14 2.0 18 10 4 0.6 ND 0.3 75
Maximum 110 44 65 15 6.4E+04 4.8 5.8E+04 4.8 140
Count 25 26 26 25 26 26 26 26 22
95% Confidence Level 12 4.0 4.9 0.7 8.5E+03 0.6 7.2E+03 0.6 7
99% Confidence Level 16 5.4 6.6 0.9 1.1E+04 0.8 9.8E+03 0.8 9
System-M Nayadic
effluent after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 56 30 36 7.5 3.5E+05 3.0 3.3E+05 3.0 176
Geometric Mean 1.4E+03 2.4 1.3E+03 2.4
Median 40 25 27 7.4 1400 3.1 1350 3.1 134
Standard Deviation 42 22 22 1.4 1.1E+06 1.9 1.1E+06 1.9 114
Minimum 1.6 6.0 5.9 5.0 ND 0.3 ND 0.3 5.9
Maximum 150 96 101 10 4.6E+06 6.7 4.2E+06 6.6 361
Count 26 26 26 26 26 26 26 26 23
95% Confidence Level 17 8.9 8.8 0.6 4.6E+05 0.8 4.3E+05 0.8 49
99% Confidence Level 23 12 12 0.8 6.2E+05 1.0 5.8E+05 1.0 67
System-B Nayadic
effluent after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 23 8.1 38 16 1.7E+03 2.3 1.4E+03 2.2 86
Geometric Mean 240 2.2 170 2.0
Median 19 6.0 45 16 185 2.3 130 2.1 90
Standard Deviation 19 5.4 17 4.6 5.7E+03 0.8 4.9E+03 0.9 16
Minimum 2.1 ND 8.9 10 8 0.9 10 1.0 38
Maximum 68 22 63 24 3.0E+04 4.5 2.6E+04 4.4 112
Count 27 28 28 28 28 28 28 28 19
95% Confidence Level 7.6 2.1 6.7 1.8 2.2E+03 0.3 1.9E+03 0.3 7
99% Confidence Level 10 2.8 9.1 2.4 3.0E+03 0.4 2.6E+03 0.5 10
ND = Non detect
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-59
(11) NiteLess, On Site Wastewater Management, LLC
The NiteLess wastewater treatment system (On Site Wastewater Management, LLC, Cherry Hill, NJ)is contained
entirely within a single tank that was manufactured in Oregon to the designer’s specifications. The designer
installed the treatment components on site. The system incorporates a suspended growth forced aeration process for
the nitrification portion of the treatment train. The effluent then enters a divided settling chamber where a powdered
carbon source mixed with bacteria is added in an anoxic environment to promote denitrification. The effluent then
enters a pump chamber before discharge to the soil absorption unit. (Figure 6-69)
Figure 6-69. NiteLess system schematic.
The performance data over time provided in Figures 6-70 through 6-72 indicate that the nitrification portion of the
process never fully established itself within any of the three systems. In order to evaluate possible reasons why the
process was not working, the project team first reviewed the alkalinity available to support the nitrification process.
Table 6-18 indicates that, on average, sufficient alkalinity is present in the effluent to allow most of the NH4 in the
effluent to be nitrified.
Secondly, a review of the homeowner surveys does not reveal any significant sources of toxins from chemicals or
prescription medications used in the households.
Thirdly, the dissolved oxygen (DO) levels recorded in the pump chamber that discharges to the soil absorption field
average 0.9 mg/L on average in the three systems, which is lower than the DO levels in the primary clarifier
(average = 1.2 mg/L). A low DO content in the final clarifier is not necessarily unexpected because of the anoxic
environment created in the secondary settling process; however, the DO results coupled with high TN and the
absence of NO3 indicate there were other issues with the treatment process.
The short periods around October 2002 shown on the performance charts are times when the aeration process was
running 24 hours a day. At that point, the nitrification appears to increase and the TKN and NH4 levels decline.
However, the field notes observe that the vendor returned the aeration process to cycling on and off during the day
shortly thereafter and the effluent was not nitrified for the duration of the sampling period. Based on these
observations and the data, it appears that the nitrification process was limited by the quality of the aeration unit
serving the system, either due to inadequate aeration time during the process day or due to the effectiveness of the
air delivery mechanism.
Each system also produced high spikes of BOD5 that are shown in Figures 6-70, 6-73, and 6-74. For example, the
spike on Figure 6-73 (BOD5 = 600 mg/L) is significantly higher than the BOD5 contained in the primary clarifier
effluent sample taken the same day (370 mg/L) and it is higher than the BOD5 level discharged from the primary
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-60 Innovative System Performance
clarifier on average for the previous four months (average BOD5 = 230 mg/L). These spikes may be a result of
difficulties controlling the amount of the carbon/bacteria powdered mixture added to the effluent because of caking
from the moisture present in the system.
TSS reductions achieved by this system are comparable to a two-compartment septic tank or somewhat better (Table
6-19). Because of the tank design, it is not possible to determine whether the TSS reduction achieved is due to the
treatment process or the meandering flow path through the multiple chambers in the processing tank.
Bacteria removal in these systems was low, 0.6 log reduction, for the three systems based on the geometric mean.
Based on the effluent quality from these systems over all the monitored parameters (Table 6-19), these systems did
not meet the field test performance criteria.
Table 6-18. Alkalinity requirements for the NiteLess systems.
Alkalinity
requirements for
nitrification (mg/L)
Sys-P Total
Alkalinity
available
Sys-P
Alk
needed
Sys-L Total
Alkalinity
available
Sys-L
Alk
needed
Sys-T Total
Alkalinity
available
Sys-T
Alk
needed
All sys Total
Alkalinity
available
All Sys
Alk
needed
Mean 320 352 319 280 327 340 323 324
Median 338 414 306 300 300 321 325 321
Standard Deviation 102 163 61 105 72 76 78 120
Minimum 85 45 238 121 150 164 85 45
Maximum 488 621 415 478 493 478 493 621
Count 19 19 20 20 23 23 62 62
95% Confidence Level 49 79 29 49 31 33 20 30
99% Confidence Level 68 108 39 67 43 45 26 40
System-T NiteLess effluent over time
0
20
40
60
80
100
120
140
12/17/012/17/024/17/026/17/028/17/0210/17/0212/17/022/17/034/17/036/17/038/17/0310/17/03mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
Performance Std
TSS (mg/L)
BOD5 (mg/L)
Figure 6-70. System-T NiteLess effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-61
System-P NiteLess Effluent Nitrogen Species over time
0
10
20
30
40
50
60
70
80
90
100
2/20/024/20/026/20/028/20/0210/20/0212/20/022/20/034/20/036/20/038/20/0310/20/03mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
Performance Std
Figure 6-71. System-P NiteLess effluent nitrogen species over time.
System-L NiteLess Effluent Nitrogen Species over time
0
10
20
30
40
50
60
70
80
90
1/8/023/8/025/8/027/8/029/8/0211/8/021/8/033/8/035/8/037/8/039/8/03mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
Performance Std
Figure 6-72. System-L NiteLess effluent nitrogen species over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-62 Innovative System Performance
System-P NiteLess Effluent BOD/TSS over time
0
100
200
300
400
500
600
2/20/024/20/026/20/028/20/0210/20/0212/20/022/20/034/20/036/20/038/20/0310/20/03mg/LBOD5 (mg/L)
TSS (mg/L)
Performance Std
Figure 6-73. System-P NiteLess effluent BOD5/TSS over time.
System-L NiteLess Effluent BOD/TSS over time
0
100
200
300
400
500
600
700
1/8/023/8/025/8/027/8/029/8/0211/8/021/8/033/8/035/8/037/8/039/8/03mg/LBOD5 (mg/L)
TSS (mg/L)
Performance Std
Figure 6-74. System-L NiteLess effluent BOD5/TSS over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-63
Table 6-19. NiteLess performance statistics.
All System NiteLess
effluent (NTE) (no apparent
maturation period)
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 122 46 61 10 4.1E+05 4.7 3.6E+05 4.6 108
Geometric Mean 4.6E+04 4.5 3.8E+04 4.4
Median 74 41 61 9.8 7.4E+04 4.9 5.9E+04 4.8 106
Standard Deviation 126 28 18 3.0 1.1E+06 1.1 1.1E+06 1.1 27
Minimum 26 8.0 27 4.8 10 1 10 1 63
Maximum 680 180 120 20 7.4E+06 6.9 7.6E+06 6.9 192
Count 61 62 62 62 62 62 62 62 51
95% Confidence Level 32 7.0 4.6 0.8 2.8E+05 0.3 2.7E+05 0.3 8
99% Confidence Level 43 9.4 6.1 1.0 3.8E+05 0.4 3.6E+05 0.4 10
System-P NTE (no
apparent maturation
period)
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 175 64 67 12 2.1E+05 4.1 1.8E+05 4.1 84
Geometric Mean 1.3E+04 3.8 1.2E+04 3.7
Median 91 60 74 11 1.7E+04 4.2 1.4E+04 4.1 82.5
Standard Deviation 152 33 21 3.4 5.3E+05 1.4 4.3E+05 1.4 16
Minimum 34 25 35 8.2 10 1 10 1 63
Maximum 600 180 100 20 2.3E+06 6.4 1.8E+06 6.3 114
Count 18 19 19 19 19 19 19 19 16
95% Confidence Level 76 15.9 10.0 1.6 2.6E+05 0.7 2.1E+05 0.7 8
99% Confidence Level 104 21.8 13.7 2.2 3.5E+05 0.9 2.8E+05 0.9 11
System-L NTE (no apparent
maturation period)
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 139 45 53 7.6 3.7E+05 5.0 3.1E+05 4.9 114
Geometric Mean 1.1E+05 5.0 7.6E+04 4.8
Median 86 38 57 7.1 1.0E+05 5.0 8.3E+04 4.9 109
Standard Deviation 148 26 15 2.0 8.3E+05 0.7 5.9E+05 0.8 28
Minimum 30 9.0 27 4.8 8200 3.9 3800 3.6 74
Maximum 680 110 80 12 3.7E+06 6.6 2.5E+06 6.4 192
Count 20 20 20 20 20 20 20 20 17
95% Confidence Level 69 12 6.9 1.0 3.9E+05 0.3 2.8E+05 0.4 14
99% Confidence Level 94 16.6 9.4 1.3 5.3E+05 0.4 3.8E+05 0.5 20
System-T NTE (no apparent
maturation period)
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 66 32 63 11 6.0E+05 4.8 5.7E+05 4.8 122
Geometric Mean 7.0E+04 4.7 6.4E+04 4.7
Median 69 34 61 10 7.2E+04 4.9 6.6E+04 4.8 125
Standard Deviation 26 13 16 1.7 1.6E+06 1.0 1.6E+06 1.0 21
Minimum 26 8.0 47 7.8 1400 3.1 1600 3.2 89
Maximum 130 51 120 13 7.4E+06 6.9 7.6E+06 6.9 157
Count 23 23 23 23 23 23 23 23 18
95% Confidence Level 11 5.7 7.0 0.7 6.9E+05 0.4 7.0E+05 0.4 10
99% Confidence Level 15 7.8 9.5 1.0 9.4E+05 0.6 9.6E+05 0.6 14
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-64 Innovative System Performance
(12) NITREX™ filter, University of Waterloo / Lombardo Associates, Inc.
The NITREX filter contains a “proprietary patented nitrate-reactive media” to convert nitrate to nitrogen gas
(denitrification). The NITREX media is contained in a prefabricated tank for the typical residential installation. As
installed for the La Pine Project (Figure 6-75), the tanks are open to the
surface and covered by wood chip mulch. Nitrate-rich wastewater flows
by gravity from the lined sand filter that precedes the NITREX unit and
which provides the nitrification step required prior to discharge to the
NITREX. The project team decided to install the NITREX filter in this
configuration in order to avoid pairing proprietary devices in a field test
situation. (Figure 6-76) This system represents one of few systems in
the La Pine Project that are designed to denitrify wastewater by using a
supplemental carbon source rather than recirculating the effluent to the
septic tank. More information on this product is available on the web at:
http://www.lombardoassociates.com/nitrex.shtml.
Figures 6-77 through 6-80 show the performance data of two NITREX
systems over time. These charts represent about three years of monthly
or bimonthly sampling data.
Figures 6-77 and 6-78 provide the nitrogen species over time. The initial
spike in the nitrogen species in both systems shows the effluent has been
well nitrified by the sand filter. Note that the spike is not high compared
to the sand filter effluent quality (mean = 51 mg/L, Table 5-9) and the
nitrogen levels decline signficantly in the first six months of the
sampling period.
The data presented in these charts is not corrected for dilution; however,
they provide the relative concentrations of the nitrogen species. The
vertical exaggeration present in the charts creates the illusion that the
effluent is not well nitrified because TKN comprises most of the remaining TN. However, when the values of the
concentrations are considered, the effluent quality is significantly better than the performance standard.
The vertical red line in Figure 6-77 indicates a point at which the homeowner stated that she had started using every
flush toilet bowl cleaners. The homeowner left the tablets in the toilet tanks until they dissolved, which appeared to
disrupt the performance of the NITREX filter as shown. The tablet dissolved in January 2004, which is after the end
of the sampling period. The NITREX filter, while apparently disrupted somewhat by the action of the toilet tablets,
still performed better than the La Pine Project TN performance standard of 10 mg/L. A review of the performance
of the sand filter preceding this unit shows that the toilet tablets did not significantly disrupt the nitrification process.
(Figure 6-81) This result may indicate the relative sensitivity of the nitrifying vs. denitrifying bacteria to toxins in
the effluent and points to a potential research need, particularly for the use of onsite systems in areas with nitrogen
sensitive receiving environments.
Figures 6-79 and 6-80 show the BOD5 and TSS data for the same systems. There is a large spike in the BOD5 levels
in the effluent that declines in the first year of the sampling period. Reviewing the performance of the sand filter
(Table 5-9) preceding the NITREX unit, it is apparent that the increase in BOD5 is a function of the NITREX filter
maturation process. A significant amount of hydrogen sulfide was released in the pump chamber following the
NITREX unit and this subsided significantly along with the BOD5 levels during the first year of operation. The
sampling team observed no odors (when the pump chamber was closed) or liquid at the surface of the NITREX unit
during this maturation period.
The charts of the performance data over time are not adjusted for any dilution effects from precipitation or irrigation
whereas the nitrogen statistics provided in Table 6-20 are adjusted for dilution. Overall, the two systems performed
well in relation to the La Pine Project performance standard. The BOD5 average is high but that statistic includes a
portion of the initial spike; the nitrogen species (particularly the nitrification of the effluent) defined the maturation
period of the innovative systems rather than BOD5 or TSS removal because of the overall project emphasis on
nitrogen reduction.
Figure 6-75. NITREX filter during
installation.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-65
The bacteria present in the NITREX filter effluent are very low in number and represent at least a 5-log reduction
from septic tank effluent. However, it is important to note that the sand filters preceding the units achieve a
significant bacteria reduction before the effluent enters the NITREX filter. Therefore, while the NITREX filter
demonstrates an additional level of bacteria reduction, it is not possible to quantify the full reduction achievable by
the unit from the data produced by this study.
Similarly, the phosphorus reduction capacity of the NITREX filters is not clear from the performance statistics in
Table 6-20 because the lined sand filters preceding these units remove between 60 and 65% of the phosphorus in the
effluent before it enters the NITREX filter. However, significant phosphorus reduction would not be expected by
these units because of the lack of apparent adsorption sites in the media.
Figure 6-76. NITREX system schematic.
System-S NITREX Effluent Nitrogen Species over time
0
2
4
6
8
10
12
14
16
18
12/26/002/26/014/26/016/26/018/26/0110/26/0112/26/012/26/024/26/026/26/028/26/0210/26/0212/26/022/26/034/26/036/26/038/26/0310/26/03mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
Performance Std
The data in this chart has not been
corrected for dilution. The chart
illustrates the relative levels between the
different nitrogen species.
Owner began using an
every flush toilet bowl
cleaner tablet. The toilet
tablet dissolved in January
2004.
Figure 6-77. System-S NITREX effluent nitrogen species over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-66 Innovative System Performance
System-F NITREX Effluent Nitrogen Species
0
5
10
15
20
25
30
35
40
12/26/002/26/014/26/016/26/018/26/0110/26/0112/26/012/26/024/26/026/26/028/26/0210/26/0212/26/022/26/034/26/036/26/038/26/03mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
Performance Std
The data in this chart has not been
corrected for dilution. The chart
illustrates the relative levels
between the different nitrogen
species.
Figure 6-78. System-F NITREX effluent nitrogen species over time.
System-S NITREX Effluent BOD/TSS over time
0
20
40
60
80
100
120
140
160
180
200
12/26/002/26/014/26/016/26/018/26/0110/26/0112/26/012/26/024/26/026/26/028/26/0210/26/0212/26/022/26/034/26/036/26/038/26/0310/26/03mg/LBOD5 (mg/L)
TSS (mg/L)
Performance Std
Figure 6-79. System-S NITREX effluent BOD5 and TSS performance over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-67
System-F NITREX Effluent BOD/TSS over time
0
50
100
150
200
250
12/26/002/26/014/26/016/26/018/26/0110/26/0112/26/012/26/024/26/026/26/028/26/0210/26/0212/26/022/26/034/26/036/26/038/26/03mg/LBOD5 (mg/L)
TSS (mg/L)
Performance Standard
Figure 6-80. System-F NITREX effluent BOD5/TSS over time.
System-S Lined Sand Filter Performance
0
10
20
30
40
50
60
70
12/26/002/26/014/26/016/26/018/26/0110/26/0112/26/012/26/024/26/026/26/028/26/0210/26/0212/26/022/26/034/26/036/26/038/26/0310/26/03mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
Performance Std
Figure 6-81. System-S lined sand filter effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-68 Innovative System Performance
Table 6-20. NITREX system performance statistics.
Two Systems NFE
after maturation
BOD5
(mg/L)
TSS
(mg/L)
TN w/o
dilution
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 18 3.9 2.4 4.0 5 0.5 6 0.4 148
Geometric Mean 3 0.4 3 0.4
Median 10 3.0 1.7 4.2 ND 0.3 ND 0.3 149
Standard Deviation 17 3.1 2.0 1.9 8 0.4 14 0.4 47
Minimum 2.5 ND ND 0.9 ND 0.3 ND 0.3 36
Maximum 66 15 8.5 7.9 44 1.6 82 1.9 243
Count 29 48 37 48 46 46 46 46 48
95% Confidence Level 6.5 0.9 0.7 0.5 2 0.1 4 0.1 14
99% Confidence Level 8.7 1.2 0.9 0.7 3 0.1 6 0.2 18
System-F NFE after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN w/o
dilution
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 24 4.3 1.8 4.3 7 0.5 9 0.5 125
Geometric Mean 3 0.4 3 0.4
Median 17 3.0 1.6 4.4 ND 0.3 ND 0.3 132
Standard Deviation 20 3.6 0.9 2.0 10 0.4 19 0.5 37
Minimum 5.7 ND 0.8 0.9 ND 0.3 ND 0.3 36
Maximum 66 15 3.9 7.9 44 1.6 82 1.9 189
Count 14 24 19 24 23 23 23 23 24
95% Confidence Level 11 1.5 0.4 0.9 4 0.2 8 0.2 16
99% Confidence Level 16 2.0 0.6 1.2 6 0.3 11 0.3 21
System-S NFE after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN w/o
dilution
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 8.0 3.5 3.0 3.6 3 0.4 3 0.4 170
Geometric Mean 3 0.4 ND 0.3
Median 6.6 3.0 1.7 3.4 ND 0.3 ND 0.3 173
Standard Deviation 4.9 2.6 2.6 1.7 4 0.3 3 0.2 45
Minimum 2.5 1.0 0.5 1.0 ND 0.3 ND 0.3 67
Maximum 21 12 8.5 6.4 22 1.3 16 1.2 243
Count 13 24 18 24 23 23 23 23 24
95% Confidence Level 3.0 1.1 1.3 0.7 2 0.1 1 0.1 19
99% Confidence Level 4.2 1.5 1.7 1.0 3 0.2 2 0.1 26
ND = Non detect
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-69
(13) Puraflo®, Bord na Móna, Inc.
Bord na Móna, Inc. (http://www.bnm-us.com/puraflo.html) produces the Puraflo® system (Figure 6-82), a packed
bed filter using Irish peat fiber as the filter media. The systems installed for the La Pine Project used 6 modules with
the flow from three of the modules returned to the beginning of the septic tank to promote denitrification; the other
three modules dispersed treated effluent to the basal soil. The vendor installed the modules on a gravel pad to
distribute the effluent from their bases. The system schematic is provided in Figure 6-83 and the wastewater
sampling locations for the system included pump tank effluent and peat filter effluent.
The performance data over time is presented in Figures 6-84
through 6-86. The three systems installed for the field test
performed comparably to each other and met the project’s
performance criteria for BOD5, TSS and bacteria reduction;
in terms of reduction levels, the three systems’ performance
compared favorably to sand filter performance (Tables 5-4,
5-8 and 5-9) for these parameters and exceeded the project’s
standards.
The TN levels discharged by the systems (Table 6-21) also
appear comparable to the single-pass sand filters in the
project. Because the actual septic tank effluent quality
cannot be determined at these sites due to recirculation to
the primary clarifier, the performance of these systems can
be compared to the data from the single-pass septic tank
population in the La Pine Project. Using this comparison,
the Puraflo units appear to achieve the same level of
denitrification as sand filters. However, the data implies
that the actual denitrification rate is much higher. Each
Puraflo system achieves near perfect nitrification of the wastewater (TN = 51 mg/L, NO3 = 48 mg/L, TKN = 3
mg/L) and the pump tank effluent samples contain no NO3 (TN = 57 mg/L, NO3 = 0.02 mg/L, TKN = 57 mg/L),
which indicates that all NO3 returned to the primary clarifier is denitrified. Because 50% of the flow is returned to
the primary clarifier, it should follow that close to 50% of the TN discharged from the residence is removed from the
effluent. The actual effectiveness of the denitrification process may be obscured by dilution from the incoming
household wastewater and, possibly, high incoming household waste strengths.
A simplistic estimate of influent waste strength can be calculated by doubling the effluent TN concentrations, which
produces 96, 86 and 130 mg/L TN for System-M, -F, and –S respectively. (This is not an accurate representation of
waste strength because the return flow is governed by timer while the system receives whatever flow the house is
discharging. Therefore the return flow will be a varying percentage of the total.) The average influent TN
concentration using this approach would be 102 mg/L, which is somewhat high but still within the range of average
concentrations discharged by single-pass septic tanks in the La Pine Project. Thirty-five percent of the La Pine
septic tanks discharged TN concentrations more than 70 mg/L on average and with values ranging to a maximum of
233 mg/L. It is somewhat unusual to have all three households with one type of system all have high waste strength
but not impossible. Two of these households have children that were prescribed antibiotics, one household used
liquid fabric softeners, all the households used antibacterial cleaning products, and one household used every flush
toilet bowl deodorizers. Each house used some of these products and so no control was available to determine if the
chemically or biologically active substances affected the waste strength of the households and/or the performance of
these systems.
The system, as installed for the La Pine Project, is designed to promote denitrification by returning 50% of the
forward flow to the inlet pipe of the septic tank. The amount of forward flow returned to the primary clarifier in
these installations cannot be changed because the rate is controlled by the design of the peat modules rather than by
a splitter basin or other flow splitting device that would allow modification of the recirculation rate based on
treatment needs. Typical recirculation rates for recirculating gravel or sand filters range between 3:1 to 5:1 with the
majority of the flow returned through the treatment system. (Crites and Tchobanoblous, 1998) The 1:1 recirculation
rate set in these Puraflo systems is significantly lower than these typical rates. A study of these systems under
varying recirculation ratios could help clarify the denitrifying capability of the product.
Figure 6-82. Puraflo module.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-70 Innovative System Performance
1
Figure 6-83. Puraflo system schematic.
System-F Puraflo effluent over time
0
10
20
30
40
50
60
12/10/012/10/024/10/026/10/028/10/0210/10/0212/10/022/10/034/10/036/10/038/10/0310/10/0312/10/032/10/044/10/046/10/048/10/0410/10/04mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Std
Figure 6-84. System-F Puraflo effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-71
System-M Puraflo effluent over time
0
10
20
30
40
50
60
70
80
12/10/012/10/024/10/026/10/028/10/0210/10/0212/10/022/10/034/10/036/10/038/10/0310/10/0312/10/032/10/044/10/046/10/048/10/04mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Std
Figure 6-85. System-M Puraflo effluent over time.
System-S Puraflo effluent over time
0
20
40
60
80
100
120
140
160
180
200
4/2/026/2/028/2/0210/2/0212/2/022/2/034/2/036/2/038/2/0310/2/0312/2/032/2/044/2/046/2/048/2/0410/2/0412/2/04mg/LNH4 As N (mg/L)
Nitrate-Nitrite As N (mg/L)
TKN (mg/L)
TN (mg/L)
BOD5 (mg/L)
TSS (mg/L)
Performance Std
Figure 6-86. System-S Puraflo effluent over time.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 6-72 Innovative System Performance
Table 6-21. Puraflo effluent performance statistics.
All Systems' Puraflo
Effluent after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 2.6 3.6 51 12 7.1E+03 2.4 4.8E+03 2.2 171
Geometric Mean 267 2.1 205 2.0
Median 1.9 3.0 52 9.5 195 2.3 120 2.1 162
Standard Deviation 2.6 3.7 14 6.1 3.2E+04 1.1 2.0E+04 1.0 56
Minimum ND ND 28 5.1 ND 0.3 ND 0.3 93
Maximum 16 18 91 25 2.3E+05 5.4 1.4E+05 5.1 366
Count 54 54 53 54 54 54 54 54 62
95% Confidence Level 0.7 1.0 3.9 1.7 8.8E+03 0.3 5.6E+03 0.3 14
99% Confidence Level 0.9 1.3 5.2 2.2 1.2E+04 0.4 7.4E+03 0.4 19
System-M Puraflo
Effluent after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 1.7 2.8 48 9.1 688 1.8 597 1.7 140
Geometric Mean 49 1.4 49 1.5
Median 1.6 3.0 47 8.4 40 1.6 42 1.6 116
Standard Deviation 1.0 2.0 12 2.5 2.1E+03 0.9 1.9E+03 0.9 47
Minimum ND ND 28 6.1 ND 0.3 ND 0.3 97
Maximum 3.9 8.0 72 16 8.6E+03 3.9 7.8E+03 3.9 241
Count 17 17 17 17 17 17 17 17 20
95% Confidence Level 0.5 1.0 6.1 1.3 1.1E+03 0.5 9.7E+02 0.4 22
99% Confidence Level 0.7 1.4 8.4 1.8 1.5E+03 0.7 1.3E+03 0.6 30
System-F Puraflo
Effluent after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 2.8 4.2 43 8.2 1.4E+04 2.7 8.8E+03 2.5 207
Geometric Mean 597 2.6 336 2.2
Median 2.2 3.0 43 8.8 340 2.5 210 2.3 217
Standard Deviation 2.0 4.7 9.1 1.6 5.0E+04 1.0 3.1E+04 1.1 63
Minimum ND ND 29 5.1 16 1.2 ND 0.3 93
Maximum 7.7 18 57 10 2.3E+05 5.4 1.4E+05 5.1 366
Count 21 21 20 21 21 21 21 21 22
95% Confidence Level 0.9 2.1 4.3 0.7 2.3E+04 0.5 1.4E+04 0.5 28
99% Confidence Level 1.2 2.9 5.8 1.0 3.1E+04 0.6 1.9E+04 0.7 38
System-S Puraflo
Effluent after
maturation
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Total
Phosphorus
(mg/L)
Fecal
Coliform
Log
Fecal E. coli
Log E.
coli GPD
Mean 3.3 3.5 65 21 5.0E+03 2.5 4.1E+03 2.4 164
Geometric Mean 655 2.4 529 2.4
Median 1.9 2.0 63 21 345 2.5 130 2.1 159
Standard Deviation 3.9 3.6 11 2.0 1.5E+04 1.0 1.3E+04 1.0 30
Minimum ND ND 51 18 10 1.0 10 1.0 117
Maximum 16 16 91 25 6.0E+04 4.8 5.2E+04 4.7 225
Count 16 16 16 16 16 16 16 16 20
95% Confidence Level 2.1 1.9 6.0 1.1 8.0E+03 0.6 6.9E+03 0.5 14
99% Confidence Level 2.9 2.7 8.3 1.5 1.1E+04 0.8 9.5E+03 0.7 19
ND = non detect
La Pine National Decentralized Wastewater Treatment Demonstration Project
Innovative System Performance Page 6-73
Conclusions
The La Pine National Demonstration Project produced a large amount of information on the field performance of
innovative onsite wastewater treatment systems. While the primary goal of the study was to identify the best
denitrifying technologies and designs, useful information was also collected on the performance of septic tanks,
conventional systems, and those innovative systems that may be useful for situations where there may be treatment
needs other than denitrification (ex. BOD5/TSS or bacteria reduction).
The findings of the field test highlight the need for a formal, well-organized approach to developing the maintenance
provider profession. The La Pine Project required the vendors of the innovative systems to select and train their
designated maintenance providers which resulted in an uneven level of training from one product to the next. The
baseline level of training (ex. basic information on the biochemistry of wastewater treatment processes) was missing
in most cases, which created difficulties and additional instances of miscommunication when vendors were
troubleshooting system performance from a distance. The lack of defined maintenance schedules and reporting
requirements also served to undercut the effectiveness of this type of maintenance program. A main
recommendation of the project is to promote the development of the maintenance provider profession so that
individual providers can focus on onsite system maintenance as a primary business. The combination of the
excavator/installer business with providing onsite system maintenance did not work well in this demonstration
project because these individuals tended to respond first to the needs of the excavation/installation business and
secondly to maintenance requirements. The maintenance provider profession can be promoted by enlarging the pool
of systems participating or required to participate in the maintenance program. Sand filter and pressure distribution
systems are as technologically complex as most innovative treatment systems (i.e. both types of systems are
controlled by comparable control panels, floats, pumps and effluent distribution systems) and therefore require
comparable maintenance for the long term. The EPA voluntary maintenance guidelines assume that all
decentralized systems are included in maintenance programs.
Another recommendation of this project is to develop long-term data on the performance of onsite systems. Most
studies, including this demonstration, are short lived and do not provide extended examination of systems that are
expected to operate for twenty years or more. Informal observations of effluent quality from the La Pine Project
systems after the field test ended indicate that the performance of these systems has changed. Without continued
organized monitoring and evaluation, it is not possible to determine whether these changes are detrimental or
beneficial to the environmental protection goals of the region. And, if decentralized systems are expected to be
permanent solutions to wastewater treatment needs, then long-term attention to the quality of their performance is
warranted.
Alternative or innovative wastewater treatment systems can provide comparable or improved performance over
conventional systems, particular where such systems are designed and installed to promote denitrification. Recent
information generated by studies of trace constituents in wastewater, including personal care products and
pharmaceuticals, indicates that decentralized wastewater treatment systems can provide high levels of treatment for
traditionally measured wastewater constituents. However, the emerging focus on trace constituents in wastewater is
highlighting the need to maintain sufficient separation in the soil between wastewater discharges and water tables
(Hinkle, 2005; George Tchobanaglous, personal communication) because the soil provides additional adsorption
and treatment capacity to attenuate these trace constituents.
References
Burks, B.D. and M.M. Minnis. 1994. Onsite Wastewater Treatment Systems. Hogwarth House, Limited, Madison,
WI.
Crites, R., and G. Tchobanoglous. 1998. Small and Decentralized Wastewater Management Systems. McGraw-
Hill, Boston, MA.
Hinkle, S.R., R.J. Weick, J.M. Johnson, J.D. Cahill, S.G. Smith, B.J. Rich. 2005. Organic Wastewater Compounds,
Pharmaceuticals, and Coliphage in Ground Water Receiving Discharge from Onsite Wastewater Treatment Systems
near La Pine, Oregon: Occurrence and Implications for Transport. US Geological Survey Scientific Investigations
Report 2005-5055, 98 p.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Developing a Management Program Recommendation Page 7-1
Chapter 7: Development of the Management Program Recommendation
The La Pine National Demonstration Project work plan included a requirement to develop a maintenance program or
entity. While the innovative systems field tested by the project were automatically considered to require an
additional level of maintenance, the thousands of existing systems, many with pumps, have historically lacked the
most basic preventative care. This paper will illustrate how the elements of a management program for onsite
wastewater treatment systems were identified in Deschutes County, Oregon through a citizen-based consensus
building process and how those recommendations translated into public policy and regulation.
Education Campaign
At the same time that the Operation and Maintenance Advisory Committee was in development, the project team
began implementing an education program. The project team recognized a need for basic information for the public
and certain professionals and that educational opportunities needed to occur or be created early and often. The
activities undertaken in this program include:
• TV spots – the local network affiliate provided 2 minute spots called “Good Neighbor” segments on the
morning news to cover a particular topic. These are free to local organizations that have a topic or event of
general interest. Some of the innovative system installations and other project related events have also
been the subject of televised news stories or radio spots.
• Newspaper articles – periodic newspaper articles have generated a good response from the public and has
helped develop the project’s reputation.
• Realtor training program – the project team developed and presented a one hour training program during a
regularly scheduled meeting of the Central Oregon Association of Realtors including information on how a
septic system works, why it does what it does and why maintenance is important. Over fifty realtors
attended the training session and responded very favorably to the material. Many of the evaluations
recommended that all realtors should be required to take this type of training on septic systems. Since the
original presentation to the Central Oregon Association of Realtors, this program has been presented to
seven different regional realtor associations around the state of Oregon and at the annual statewide realtor
association meeting.
• Handouts – new handouts were developed or existing handouts revised to accompany permits, certificates
of satisfactory completion or provided over the counter. On-line counterparts to the handouts were
published on the county web site.
• Direct mail – Deschutes County mailed a postcard to all property owners with sand filter or pressure
distribution systems with tips and suggestions for proper operation and maintenance of their systems.
These educational activities occurred before and during the period when the Operation and Maintenance Advisory
Committee met.
Advisory Committee Development
The La Pine Project Team brought together an advisory committee, appointed by both Oregon DEQ and the
Deschutes County Board of Commissioners, to represent various aspects of the community affected by or dealing
with onsite wastewater treatment systems. The advisory committee was charged with the development of a
recommendation for a maintenance program as a function of the La Pine Demonstration Project for local or
statewide implementation. The interests represented by the stakeholders are provided in Table 7-1.
Deschutes County and DEQ were represented at the meetings in a participatory but non-voting capacity. Both
agencies provided staff and technical support to the committee and the La Pine Project coordinator facilitated the
meetings. Several of the committee members served in more than one capacity or brought additional skills or
knowledge to the process, for example, one of the La Pine Project participants is also a realtor, another is a Forest
Service employee. Almost all of the members live in the study area and all work or have worked in the area.
The project team members felt that the members of the advisory committee needed to be given the charge for the
committee’s work in a formal fashion. This charge came in the form of a joint letter of appointment signed by the
Deschutes County Board of Commissioners and the Director of DEQ. This letter initiated the committee’s work
with an “official seal” and helped impress upon the members the importance of their work.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 7-2 Developing a Management Program Recommendation
Table 7-1. Operation and Maintenance Advisory Committee representation.
Representation Number
Property owner/La Pine Project participant 4
DEQ licensed installer (2) 2
Onsite system service provider 1
DEQ licensed pumper 2
Realtor 2
Electric cooperative 1
Financial institution 1
Sewer district 1
The number of types of representation is greater than the number of actual
participants because of overlapping professional activities and interests.
The committee’s charge was to recommend the structure of and an implementation plan for a management program
for the proper operation and maintenance of onsite septic systems. Note that the committee was not charged with
determining whether or not onsite systems should be used. Deschutes County undertook a significant public process
several years prior to the beginning of the La Pine Project that worked through the issues pertaining to sewering the
unincorporated area of the county. During that process, the residents and other stakeholders of the area decided that
sewering was not the best solution for the community based on the costs associated with sewering rural
subdivisions, the engineering challenges of serving dispersed development, the economic status of many of the
residents and the development pressures that would be created by establishing the urban level of service associated
with centralized sewers. With this background, the committee began work from a similar standpoint to EPA’s report
to Congress that onsite systems are a viable long-term option for the treatment and dispersal of residential
wastewater given proper operation and maintenance.
Work Plan Development: February – March 2001
The first task that the committee undertook was to develop a work plan. The first meeting, organized by DEQ and
Deschutes County, actually included a work plan outline but the committee decided to draft their own (contained in
Appendix D). The result was a step-by-step plan for the process the committee was to follow including a committee
charter, specific topics for discussion, and administrative procedures. Because of the large number of members that
had little professional experience with onsite systems, the committee decided that fact-finding and education was
one of the most important aspects of the process and so became one of the most significant time investments in the
process.
The committee agreed to meet monthly and selected a chair to keep the committee in line with its stated process and
agenda. DEQ provided staff support including meeting facilitation. Each meeting was advertised in local media
outlets and by direct mail to a list of interested persons.
Fact Finding: April – September 2001
The committee spent six months obtaining information on how septic systems work (both the conventional and
advanced treatment systems), the land use, environmental health and property sale processes in the county, the
groundwater study and 3-dimensional model developed for south Deschutes County, and models and examples of
existing maintenance programs from around the nation. This educational phase was a challenge to some of the
persons involved in the process because it seemed an extraordinary amount of time to spend on very basic issues.
However, this phase laid important groundwork for all the members involved because it allowed some basic
misunderstandings, misinformation and mistrust to be introduced and addressed. For example, a couple of members
of the committee were quite distrustful of government and did not believe that nitrates were a problem in the
groundwater. At one of these members’ suggestion, a consulting soil scientist spoke to the committee about the
limitations of the soil in the area to treat wastewater for nitrogen. Having this information come from someone who
was seen as an impartial third party was a powerful way to overcome a portion of that distrust.
The other advantage that this extended fact finding provided was an opportunity for the committee members to
become more familiar and comfortable with each other and the staff before having to jump into the more contentious
topics of discussion. This comfort and familiarity did not eliminate disagreements, if anything, members of the
La Pine National Decentralized Wastewater Treatment Demonstration Project
Developing a Management Program Recommendation Page 7-3
committee were more willing to bring up a dissenting point because they either overcame their initial reserve in
dealing with strangers and/or they felt assured that they would be heard and their point considered during the
process. An additional possible benefit
Fact Finding Topics
• Onsite system operation – first and foremost the committee recognized that they needed to have a solid
working knowledge of onsite wastewater treatment systems. The committee members received training
and information on the different components of an onsite system and how they function, what is involved
in advanced treatment processes and a field trip to see actual systems in operation or under construction.
During this discussion the committee also reviewed information provided by the county on local onsite
system failures and typical causes.
• Current onsite system permit procedures – The onsite system permitting process followed in Deschutes
County (established by statewide rule) eventually became the foundation for the recommended
maintenance program. The committee started their review by developing a flow chart of the steps followed
as properties worked their way through the permitting process (Figure 7-1). The current rule contains a
provision for proper operation and maintenance of systems; however, there is no way to enforce the rule
after the construction and installation phase of the system because the regulatory “hooks” disappear after
the construction phase when the Certificate of Satisfactory Completion is issued. The permit process flow
chart became an important starting point for discussions by the advisory committee because they had a
visual tool to look at the existing system and identify those points at which maintenance actions could be
inserted.
• Transferable Development Credit program – The committee reviewed information to date on Deschutes
County’s program to transfer development rights out of the densely platted and unsewered areas in the
south county region. The goal of this program is to reduce the impacts from residential development on the
groundwater, wildlife, and reduce the density of the area by transferring development from the “sending
area” to a planned development served by centralized sewer and water.
• Results of the Regional Problem Solving (RPS) Project – Although the committee was not charged to
determine whether or not septic systems are appropriate for the area, the committee reviewed the work of
the subcommittee formed under the RPS project to consider other waste treatment options besides onsite
systems for southern Deschutes County.
• Onsite system permitting process – The licensed installers, pumpers and service providers participating in
the advisory committed provided their insight on the current procedures for installation and O & M
procedures.
• Land use constraints and issues – The Oregon land use rules have created a highly structured system that
governs development in the state. The statewide land use planning goals affect a broad scope of
disciplines. Goal 11, for example, prohibits the creation or expansion of sewer systems outside Urban
Growth Boundaries or Urban Unincorporated Community Boundaries because of the growth pressures that
typically accompany the creation or extension of these services.
• The 3-D model and groundwater study – A major task of the La Pine Project was to complete a detailed
groundwater study of the La Pine Sub-basin and produce a three-dimensional groundwater and nutrient fate
and transport model. The USGS personnel provided the committee with an update on the progress to date
on these portions of the project in terms of findings of the groundwater investigation and early iterations of
the model development.
• Property sales procedures – The two committee members who were realtors explained the types of
requirements currently placed on property transactions. One process that the committee thought might be a
good analogy for a possible time of sale inspection requirement is the requirement in the City of Bend and
Deschutes County to have wood stoves inspected and removed or replaced if they are found to be
substandard. This is an example of how the committee often found good models for concepts they were
exploring outside the onsite field.
• Models of existing maintenance programs – The committee wanted to see if there were other maintenance
programs operating in other parts of the country to determine how they were operating and if there were
lessons learned. This is the point at which the committee also reviewed and discussed the various model
programs described in the EPA’s voluntary guidelines for onsite system management (EPA, 2003)
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 7-4 Developing a Management Program Recommendation
The fact-finding portion of the committee work plan ended with a discussion of the pros and cons of having a
maintenance program. This facilitated meeting included a brainstorming session to draw out all possible pros and
cons imagined by the committee and staff. The facilitator then gave each participant six dots to use to vote for the
pros and cons of most concern to them as individuals (Table 7-2). The group then discussed the items that received
the most votes to come to a consensus on whether or not these represented the group’s thinking. This process at the
end of the education/fact-finding phase helped bring the focus of the group back to the committee’s charge and to
help highlight the main hopes and concerns that the committee members had about developing such a program. DenialNo development
permits issued
D e n ie d
ApprovedApproved
C o n s t r u c t e d p r o p e r l y
Operate
System
Correction
System not adequate for proposed change
System
malfunctions
or fails
Site Evaluation and
Re-evaluation
DEQ Variance
Process
Improvement/
Addition/ Change of
Use (Authorization
Notice)
Errors in construction
System is adequateSeptic Permit
and Inspection
Figure 7-1. Existing permit process flow chart.
An interesting outcome of the multi-voting process is that the concept of better protection of the aquifer received the
most votes on the pro side while protecting drinking water received none. Also, the concept of protecting the
homeowner’s investment did not receive any votes. This outcome runs counter to “conventional wisdom” that
would suggest that the concepts of protecting drinking water sources and financial investments would be an
effective way to “sell” a maintenance program to the public because these types of issues tend to appeal to the
layperson’ sense of selfish self-interest more than the more esoteric environmental protection arguments. A review
of the list of attendees at this particular meeting reveals that those in attendance were dominated by persons who
would either see an increase in their business activities if systems failed or who would continue to do business
regardless of the status of the onsite system; the homeowner/local representation was largely missing at this meeting.
Regardless of the outcome of the multi-voting process, this activity served to return the committee’s focus to their
charge after a wide ranging and diverse fact finding period.
Recommendation Development: October 2001 –April 2002
After the long educational process undertaken by the committee, the recommendation development process actually
took a relatively short period and appeared, to the participants of being a fast process. The committee started by
revisiting the county’s permit process and the property sale and land use processes and decided that these would be
good tools to use to insert O&M steps and educational opportunities identified through the following discussions.
The flow chart of the permitting process became the picture of the O&M program and the object around which
future discussions revolved.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Developing a Management Program Recommendation Page 7-5
The committee defined what they believed to be the three primary players in the maintenance program, the
relationships that would ideally develop between them, and the roles and responsibilities of each player. The players
included the regulatory/permitting agency, the service provider (including maintenance providers, installers and
pumpers) and the property owner (Figure 7-3).
Table 7-2. The results of the “pros and cons” brainstorming and multi-voting session.
Pros Cons
Better protect aquifer (said twice) – 9 Is there science to justify it – 8
Forces education and community awareness – 8 Too many variables – 6
Improved public health for entire community – 7 How to ensure compliance – 6
Know system is working, know history – 7 Cost – 4
Reduces time in failure, prevents failure – 3 Added regulation – 4
Inspect whole system properly – 2 May need election – 2
Neutral party to preview problems – 1 Burden on property owner – 1
Ensures regular maintenance – 1 More regs – 1
Reduces cost of failure – 1 Lose property rights – 1
Increase life (of system?) – 0 Intrusive – 1
Protect drinking water – 0 Remembering to do it – 1
Maintenance during turnover – 0 Different systems have different maintenance – 1
Protect investment – 0
Responsibility shifts to maintenance entity, property owner
not as careful – 1
Better system performance – 0 For profit, management abuse – 1
Authority to inspect – 0 Loss of control – 0
Proper repairs – 0 Government liability – 0
Fringe benefit, community improvement – 0 Monitor use of system – 0
Many different options – 0 Complexity increase liability – 0
Creates standards for inspections - 0
The number following the item indicates the number of votes received.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 7-6 Developing a Management Program Recommendation
Figure 7-2. The primary players in the O&MAC maintenance program recommendation.
The regulatory authority lies with the state originally and a portion of that authority can be contracted to county
jurisdictions. Therefore, this is a changing participant who may change depending on the type or size of permit,
certification procedures, or enforcement action.
The committee envisioned the service provider to be a private entity and rejected the idea of a utility model
relatively early because of concerns over the ability to establish a district in which a utility could operate. Some
residents in the La Pine area had proposed, only a few years earlier, to incorporate a large portion of the study area
in order to develop a local government seat. This vote failed and the committee was concerned that trying to
establish a utility district would be met with the same resistance. The committee also believed that the service
providers needed to be certified or otherwise have some kind of minimum specifications to operate in the profession.
The committee viewed this as fulfilling a basic consumer protection function so that homeowners can more easily
identify the pool of minimally qualified persons and have recourse if they turn out to be non-performers.
The homeowners in this scenario are ultimately responsible for the maintenance of their system. As such, the
advisory committee believed that a large effort should be given to education and outreach efforts that would lay the
foundation for increasing awareness over time of proper operation and maintenance activities for onsite systems.
The ideas generated in the discussion of the roles and responsibilities of the homeowner included training and
information transfer at the time of sale, realtor training, and recording permit conditions, including O&M
requirements, in the chain of title for the property. It was at this point that the project staff developed the hour-long
onsite system training program for realtors and began presenting it at realtor association meetings around the state.
The roles and responsibilities of each primary player in the process began to relate naturally to incentives and
educational opportunities that the committee plugged into the permit process flow chart (Figure 7-4). The
committee used the flow chart as the picture of the recommended program and supplemented the picture with a
series of written recommended action items in the final product of this process.
La Pine National Decentralized Wastewater Treatment Demonstration Project Developing a Management Program Recommendation Page 7-7 Site Evaluation and Re-evaluation(II.)DenialDeniedApprovedApprovalC onstructed properly(II.B .2.a)System malfunctions or fails(II.B.5)Errors in construction (II.B.3)DEQ Variance Process (II.A)No development permits issued(II.A.1)Operate System (II.B.2.a.i)System needs a permit to be repaired - Part 2(II.B.5.b)Existing System - those systems in existence at the time the maintenance program begins(III)System function can be restored through maintenance - Part 1 (II.B.5.a)System needs to be replaced(II.B.5.c)Transferable Development Credit (rural house on septic traded for house on sewer in the new La Pine neighborhood)Future possibilityLegal lot (I.)Existing system - voluntary maintenance encouraged (Existing system brought into maint. prog. w/ first surcharge paid)Malfunction detectedSystem functions adequatelyCompliance checks/incentivesEducational opportuntiesSystem with operating permit adequatefor proposed useRecord keeping for maintenance programSystem not adequate for proposed useExisting system brought into maint. programProperty sale inspection & certification & Permit transferSystem installed (II.B.2) or upgraded (repair or replacement)Errors corrected (II.B.3.a)Operating/construction Permit issued (II.B.1)Routine maintenance for a system with an operating permit (II.B.2.a.ii)Improvement/Addition/Change of Use (Authorization Notice) (II.B.4)NEW Permit Process Flow Chart Figure 7-3. Recommended Maintenance Program Produced by the O&MAC
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 7-8 Developing a Management Program Recommendation
The recommendations
Recommendation #1
A combined construction and operating permit should be issued for all onsite systems.
The current permit issued for most onsite systems in Oregon is a construction permit that has no on-going
requirements for proper operation and maintenance of the systems. The recommendation includes provisions for
both construction and long-term system maintenance. The committee members were quite concerned that the cost
of the permit would be exorbitant if the agency’s oversight of the system’s maintenance was included in the permit
fee. The committee recommended that the permit fee cover only the installation of the system, as it currently does.
Then, when the private maintenance providers perform service on systems, the committee proposed that the service
provider would include a surcharge on their bill to the homeowner that is later remitted to the permitting agency
with the report of the maintenance actions. This fee while low, should cover the agency’s record keeping costs for
the maintenance program and hopefully include a small additional amount that the agency can use to fund spot
checks on the performance of the onsite system itself or periodically audit service providers. The committee
expected that the maintenance requirements, and therefore the record-keeping surcharge, would be different for
different systems and would relate to the complexity of the system.
The surcharge also provides a mechanism to create incentives for voluntary compliance with the maintenance
program in that the service provider would normally submit the surcharge with the maintenance report. If the
homeowner does not pay the service provider for the services rendered, and the report cannot be submitted without
the surcharge, the homeowner would be the subject of enforcement actions taken in this situation. If the homeowner
pays for service that is unacceptable or the service provider does not provide timely reports and pay the surcharge,
the homeowner can lodge a complaint, that could reflect on the service provider’s certification, with the permitting
and/or certifying authority.
Recommendation #2
Existing systems should be brought into the O&M program as easily as possible.
Basically, the committee members agreed that existing systems (i.e. systems installed prior to the maintenance
requirements going into effect) should not have to pay an additional fee just to be included in the maintenance
program. The members felt this would create a disincentive to participate in the program. Instead the members
recommended that one way that existing systems could be brought into the maintenance program is at time of
property sale. There could be a small fee charged at this point to generate the record in the maintenance system
record keeping system and/or to record the maintenance requirements on the chain of title of the property. The
committee also recommended that there be a mandatory inspection or certification of the system at time of property
sale by a certified maintenance provider or the permitting agency staff.
Another way that existing systems can be brought into the program is when the first service surcharge is collected.
This approach would bring systems into the maintenance program in advance of property sale and could be
stimulated by homeowner education and outreach programs. Also, over time systems would be brought as forced by
necessity because anecdotal evidence from the study area suggests that existing systems come under maintenance
contracts when they first start experiencing malfunctions or failures. In the event of failures, the permitting agency
would initiate maintenance program involvement for those existing systems undergoing permitted repairs or
replacements.
Recommendation #3
A computerized system for tracking maintenance activities should be developed and the information made
accessible to the public.
The committee believed that the maintenance program should benefit as many different users as possible, including
the property owner, the maintenance provider, the permitting agency, realtors, prospective property owners and
installers. Also, given state of the art web applications, the committee believed that maintenance providers should
La Pine National Decentralized Wastewater Treatment Demonstration Project
Developing a Management Program Recommendation DRAFT Page 7-9
be able to report on-line via a secure log-on process. The accuracy of the reports (determined during periodic
audits) would reflect on the maintenance provider’s certification. The maintenance provider would also report
directly to the homeowner and use this report as an opportunity for on-going homeowner education.
The surcharge on the maintenance providers’ fees should cover the at least the costs of record keeping by the
permitting agency. The committee envisioned that the surcharge should also allow the record-keeping agency to put
a small portion of the fee towards performing periodic spot checks on the system performance and the maintenance
provider’s work. The committee members felt that it was important to be able to provide feedback to the service
provider, the certification entity, the vendors of proprietary treatment devices, and homeowners.
Recommendation #4
A certification program for maintenance providers, installers and pumpers should be mandatory.
During the advisory committee discussions, installers and pumpers in Oregon were required to have a basic license
in order to do business. The pre-requisites for the license were a $2,500 bond and a completed application form.
The committee believed that maintenance providers, pumpers and installers should have a basic educational
requirement in order to do their job properly. This would help ensure that installers install systems that can be
maintained and that service providers have a basic understanding of how onsite systems are supposed to work from
a hydraulic and biologic standpoint. The vendors of proprietary treatment systems should have a separate
certification module for their systems in order for installers or maintenance providers to have the right to work on
that particular kind of system.
The advisory committee also supported a requirement for on-going minimum educational requirements in order to
retain maintenance provider or installer certifications. Also, maintenance providers; pumpers and installers should
be cross-trained in terms of the minimum requirements for the other certifications so that, for example, installers
create systems that can be easily accessed and maintained for the long term. The cross training was an important
issue to several members of the committee who worked with onsite systems because they had encountered systems
that could not be maintained easily because of the manner in which they were installed. Also the committee felt that
maintenance providers must have a solid understanding of onsite system processes so that they effectively evaluate
system performance and are not just “going through the motions.”
The committee agreed that homeowners should be able to service their own system, which they stated in the terms
that there should not be a requirement that a third party performs maintenance. However, the homeowner would be
required to obtain at least a basic certification and specific training to deal with their system. The committee
understood that vendors of proprietary devices would have the discretion to designate their service providers.
Finally, the committee did not want to see a state agency (DEQ) in the business of certifying maintenance providers,
installers and pumpers. They recommended that the training requirements should be set at the state level but the
training should be provided by a third party.
Recommendation #5
The permitting agency should use a variety of methods to ensure compliance.
The advisory committee was especially interested in ensuring that the regulatory agency acted in as proactive a
manner as possible to achieve compliance with the maintenance program requirements. Firstly the committee
recommended that the permitting agency identify those ways that they could foster good working relationships with
the maintenance providers to ensure that proper maintenance is performed and documented. One idea that the
committee developed was to use on-line or web-based applications to make the reporting process as easy and
streamlined as possible for the maintenance provider. This would require that the permitting agency provide the
ability for electronic fee payments so that the surcharge could be submitted at the same time without an office visit.
The advisory committee also wanted to see the regulatory agency achieve homeowner compliance with the program
by using discounted fees as incentives. For example, at time of sale the inspection or permit transfer fee could be
significantly lower if the system’s maintenance records were complete and up-to-date.
The committee members recognized that there are homeowners or service providers that will not always cooperate
and so the regulatory agency will need tools to deal with non-compliance. Even so, the committee members tended
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 7-10 Developing a Management Program Recommendation
to recommend financial incentives or disincentives that could be use to promote compliance, such as varying the fee
charged for record-keeping or some such approach.
Recommendation #6
Continuing education of homeowners should be provided. (Handouts, home show booths, earth day fairs, media
coverage, etc.)
The advisory committee members agreed that basic education is essential to a successful maintenance program.
They recommended that Deschutes County target existing pumped (pressure distribution and sand filter) systems
with informational mailings to start the process. [Note: Deschutes County mailed a postcard to all property owners
with pressure distribution and sand filter systems in 2002 to remind them of appropriate maintenance activities that
could help protect their onsite system.]
During discussions about the septic permit process at the county, the committee found that the educational materials
that accompany the certificate of satisfactory completion often never reaches the homeowner. This occurs, for
example, in the case of speculation homes where the permit applicant is often the builder and not the actual resident
of the house. The committee recommended that the county change their current practice to delay mailing the
certificate of satisfactory completion and/or the educational materials until six months after the system is installed to
try to reach the actual residents of the house.
The committee members recognized that educational efforts about proper operation and maintenance of onsite
systems will have to be repeated and they recommended that Deschutes County’s efforts continue for the long term
on at most a five-year rotation of direct mailings to property owners.
The committee also believed that the maintenance providers could be an important link in the education process for
homeowners in that they can provide direct feedback to the homeowners on how their systems are functioning and
what actions the homeowners can take to protect their investment, not only in the systems itself but also in their
payments to the maintenance provider. The maintenance provider is also seen as perhaps more effective in the role
of educator because they are not affiliated with a government agency. The committee was concerned, however, that
the maintenance provider might not be as forthright as possible because of fear of being fired by the homeowner.
One aspect of the maintenance program that might help this situation is if the homeowner does fire the service
provider, the service provider then would need to notify the permitting agency that the onsite system is no longer
covered by a service contract which would put the homeowner in a potential enforcement situation. A similar
scenario would ensue if the service provider adheres to a code of professional ethics where the relationship with the
homeowner is severed if the system cannot be adequately maintained due to the homeowner’s actions. Here again
the service provider would report to the permitting agency that the system is no longer covered by a service contract.
Recommendation #7
Implementation of the O&M program should be coordinated and phased.
During the meetings when the committee was brainstorming the roles and responsibilities of each player in the
maintenance program, the committee became concerned that different elements of the program could be
implemented before others. This was an important issue for them because they could envision a situation where
maintenance requirements were adopted but no certification program existed. In this scenario, the homeowner
would have no assurance that the person soliciting their business for maintaining their system has the appropriate
training or expertise. The committee recommended that the permitting agency start with educational programs
during the period in which the rules could be adopted for certification of maintenance providers, installers and
pumpers.
Implementation
The advisory committee presented their recommendations at a public meeting in May 2002. Present at the meeting
was the Board of County Commissioners, the advisory committee members, agency staff and about 30 members of
the public. Several members of the public present at the meeting began on quite a hostile note. The staff supporting
the advisory committee process provided an introduction to the meeting but the committee members presented the
La Pine National Decentralized Wastewater Treatment Demonstration Project
Developing a Management Program Recommendation DRAFT Page 7-11
recommendations themselves. The committee members knew many of the hecklers personally or through business
associations and responded quite firmly to the complaints or issues raised. One committee member responded to
criticism by saying that the committee had looked at the issues the person was raising, discussed them thoroughly
and came up with a solution that the members thought would be equitable and still achieve the goal. He added that
he was their neighbor and would have to live under the same requirements but that he thought it was worthwhile and
so he was willing to support a maintenance program for the area. An added benefit was having several members of
the public stand up to say that they believed the committee did a good job. By the end of the meeting many of the
openly hostile members of the audience were quieted and some voiced their opinion that perhaps they had jumped to
conclusions.
The committee ended their presentation with a strong statement in support of their proposal:
“As a committee:
• We met for 15 months in order to develop this recommendation
• We have evaluated programs and models from around the country
• We have taken local requirements and conditions into account
As a committee, and as homeowners, we believe this is a reasonable approach to meeting the goal.”
The thoughtfulness of the proposal and the solidarity exhibited by the members impressed the Board of County
Commissioners. They voiced their support for the idea of the maintenance program with the understanding that
many of the details would still need to be worked out.
Following the public meeting, DEQ staff presented the proposal to a statewide advisory committee that was
reviewing the onsite program rules with the goal of improving the rules where possible. During the summer 2003,
the DEQ published draft rules revising many aspects of the onsite program in Oregon. The revisions included many
of the core elements of the Operation and Maintenance Advisory committee recommendations such as certification
of maintenance providers, pumpers and installers and requiring on-going proper operation and maintenance of active
systems (i.e. systems that require pumps or other electrical components). The idea of a surcharge on the
maintenance provider fee is also included in the draft rule to fund the program.
Conclusion
The process of developing a maintenance program for an element of residential life that is as personal as onsite
wastewater treatment can be highly contentious or adversarial. Many of the cons for a maintenance program
identified by the advisory committee relate to the personal nature of sewage; that maintenance is going to be
intrusive and a burden to the property owners. It is somewhat ironic that many of the folks living in the rural areas
of south Deschutes County chose that area because it does not have an urban level of control in terms of subdivision
rules or the high density and yet they may be subject to a higher level of scrutiny in terms of wastewater
management than their urban counterparts on municipal sewer. Any public process can become more robust and the
product more defensible by being sensitive to these types of issues and including members with diverse viewpoints.
For example, the members of the O&M advisory committee that were less that supportive of some of the
maintenance program concepts in the beginning contributed some of the most thoughtful or insightful ideas to the
process.
An important basis for any such public process is the information gathering stage. This committee went through an
extensive self-education process that served them well in the recommendation development stage. One issue that we
were not able to resolve to everyone’s satisfaction however was the issue of there being a scientific justification for a
maintenance program. Committee members were convinced that there are financial justifications for a maintenance
program and possible environmental gains from avoiding failing systems (i.e. catching malfunctions early) but staff
supporting the process were not able to point to studies that maintenance in and of itself avoids a certain amount of
pollution that would convince certain members of the scientific need for a maintenance program.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 7-12 Developing a Management Program Recommendation
The La Pine Project Operation and Maintenance Advisory Committee was highly successful in their effort because
of the time they were willing to commit to produce a recommendation the members could support overall.
Recommendation development synopsis
An essential element of any public process is public participation. Inviting the public to join the decision making
process was essential to the integrity of La Pine Project process and was accomplished by issuing press releases for
advisory committee meetings and mailing informational postcards to an established list of interested persons. Even
if few or no persons took advantage of the opportunity it was essential that the opportunity existed or the elected
officials faced with adopting an ordinance or rule could have questioned the validity of the process.
The advisory committee should include diverse interests and representation, including those that may be less
supportive of some of the concepts under consideration because they may contribute the most thoughtful or
insightful ideas to the process.
An extensive fact-finding or educational process for the members can result in increased solidarity within the group
and increased investment in the process. The fact finding portion of the Operation & Maintenance Advisory
Committee was self-designed by committee members and did not originate with the staff support or other county or
state personnel. Lack of patience or a rushed time line during this period had the potential to de-rail the process
because the committee included individuals that objected if they perceived information was covered too quickly or
with insufficient detail. This tendency to object to the pace at which events progressed may have stemmed from a
distrust of the source of the information or the suspicion that staff supporting the advisory committee had an
underlying agenda for the process. A positive result of the extended fact-finding agenda was that members arrived
at a consensus on a recommendation for an O&M program without significant argument or dissention among the
group.
The most beneficial side effect of the extensive educational process was that committee members took ownership of
the overall recommendation development process and the product. In this context, “ownership” meant a belief that
the process was acceptable and the product was supported. When committee members presented the
recommendations to the public and county commissioners, they defended the proposal to an initially hostile crowd
and defended it so well that the audience’s mood significantly improved by the end of the public meeting.
Committee acceptance of the method and the product is the highest goal in a public participation process and, in this
case, was facilitated by the project team’s commitment to allowing the educational/fact-finding portion to take as
long as needed for members to feel comfortable with the subject. At the same time that members were becoming
comfortable with the subject, they were also becoming comfortable with each other and began to work through each
other’s statements and assumptions in a constructive manner. This sense of a team approach to the work at hand
may not occur if the work agenda is pushed along too quickly. Additionally, the recommendation coming out of an
abbreviated or hastened process may not truly reflect the consensus of the group because there was inadequate time
for members to feel comfortable enough with the rest of the committee to adequately voice their opinions or
concerns.
Recommendations produced by the Operation & Maintenance Advisory Committee were presented to the Board of
County Commissioners and an advisory committee charged with reviewing and suggesting revisions to the statewide
onsite rules. The long-term implementation or adoption of these recommendations extends beyond the scope of the
La Pine Project and are not reported here.
References
US Environmental Protection Agency (EPA). 2003. Voluntary National Guidelines for Management of Onsite and
Clustered (Decentralized) Wastewater Treatment Systems. EPA 832-B-03-001. US Environmental Protection
Agency, Cincinnati, OH.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Groundwater Quality and Three-D Model Page 8-1
Chapter 8: Groundwater Quality and the Three-dimensional Groundwater and Nutrient Fate and Transport
Model
The primary point of concern in the La Pine region is the long-term quality of the drinking water aquifer serving the
residents of the sub-basin. As a result, the La Pine Project monitored the groundwater in order to characterize the
resource in three ways:
• Background water quality (also described as existing conditions);
• The impacts of onsite wastewater treatment systems;
• The quality of the drinking water well network.
A small monitoring well network surrounds each onsite system monitored during the La Pine Project field test
program. These wells consisted of an average of three background and down gradient wells and one well located in
or immediately downgradient of the soil absorption unit. The best location for the drainfield wells was estimated
given the best available knowledge of groundwater flow direction. As a result, the drainfield wells (identified as
"MW Drain" in the statistics tables) occasionally missed the effluent plume or captured conditions at the edge of
plume produced by the onsite system. The presence of chloride in groundwater indicates the influence of human
wastewater sources, particularly when paired with elevate nitrogen concentrations. Background conditions are
characterized by water with less than 1 mg/L TN and less than 2 mg/L chloride [Dunne and Leopold, 1978; Lazaro,
1990].
The data supporting the discussions in this chapter are provided in Appendix C, Table C-18. This dataset includes
the field and lab water quality data collected from the shallow monitoring wells installed for the purposes of the field
test program. Reference is made below to specific wells within the study area as examples of the point under
discussion; an in-depth analysis of each site is not attempted here.
This data in addition to the data collected by the USGS for detailed groundwater investigations supported the
development of the three dimensional groundwater and nutrient fate and transport simulation model of the La Pine
sub-basin.
Background and/or network monitoring wells
The drinking water resource of the La Pine sub-basin is groundwater that is cold (average 9 ˚C/48˚F), oxygen rich
(average dissolved oxygen (DO) = 5.1 mg/L) and shallow (average water table was 13 feet). (Table 8-1) Over all
the shallow wells (141) monitored as part of the onsite system field test program that are not located within onsite
system drainfields, most appeared to be showing the impacts of residential development in the area with overall
average TN concentrations of 4.0 mg/L. The range of TN concentrations measured in the region varied between
background levels (0.1 mg/L) and highly impacted (99 mg/L). Sixty percent of the network monitoring wells
produced water with average TN concentrations greater than 1 mg/> and 88% produced water with chloride
concentrations greater than 2 mg/L.
Background groundwater conditions were identified by wells that had little or no known impacts in the upgradient
zone of influence to the well. For example, DEQ well 2052, as illustrated in Figure 8-1, was located far from the
site’s drainfield along a parallel flow path. The upgradient area, or zone of contribution, for this well consisted of
publicly owned forest resource lands supporting second or third growth timber. Typical background conditions, as
illustrated by well 2052, include TN concentrations of less than 1 mg/L and less than 2 mg/L chloride. Figure 8-1
also shows a well (DEQ 2054) downgradient of the drainfield monitoring well (DEQ 2045) that produced slightly
elevated TN concentrations, which suggests the leading edge of the plume may have reached well 2054. In fact,
when the concentrations of TN and chloride are plotted over time for this well (Figure 8-2), the increasing trend is
illustrated.
This figure includes a plot of the electrical conductivity (EC) for the well over the same period to illustrate the
potential value of this field measurement as a screening tool for water quality samples. The relationship between EC
and nitrogen is not entirely reliable because the presence of other dissolved constituents can influence the EC result;
however, in the La Pine Project the correlation between TN concentrations and EC is high (r = 0.82) and, therefore,
EC field measurement could be used as an easily obtained indication of potential nitrogen impacts to oxic
groundwater quality in the La Pine sub-basin.
La Pine National Decentralized Wastewater Treatment Demonstration Project Page 8-2 Groundwater Quality and Three-D Model Table 8-1. Network monitoring well summary statistics. Mean of means - Network monitoring wells (MW) BOD5 (mg/L) TSS (mg/L) TN (mg/L) Total Phosphorus (mg/L) Total Alkalinity (mg/L) Chloride (mg/L) Fecal Coliform E. coli pH DO (mg/L)EC (μmhos/ cm) Temp. (C) Depth to Water Table (ft) Mean N/A 11 4.00.25012N/AN/A 7.05.11908.913.1Geometric Mean N/A N/A 1.3 N/A 48 6.5 N/A N/A 7.0 3.3 N/A 8.8 12.0Median ND 3.0 1.50.2515.9NDND 6.96.21578.711.9Standard Deviation N/A 28 11 0.4 16 20 N/A N/A 0.3 2.8 147 1.7 5.7Minimum ND ND 0.1ND190.5NDND 6.40.1504.94.6Maximum 39 170 99 3.8 88 139 41 41 8.3 8.3 1141 20 29.9Count 47 46 14110546141139139 14114114114114195% Confidence Level N/A 8.2 1.8 0.08 4.8 3.3 N/A N/A 0.05 0.5 25 0.3 0.999% Confidence Level N/A 11 2.40.106.44.3N/AN/A 0.070.6320.41.2 Mean of means Network MW -anoxic water BOD5 (mg/L) TSS (mg/L) TN (mg/L) Total Phosphorus (mg/L) Total Alkalinity (mg/L) Chloride (mg/L) Fecal Coliform E. coli pH DO (mg/L)EC (μmhos/ cm) Temp. (C) Depth to Water Table (ft) Mean N/A 4 3.40.35410N/AN/A 7.10.51998.313.0Geometric Mean N/A N/A 0.5 0.3 52 5.0 N/A N/A 7.1 0.3 170 8.3 12.6Median ND 2.0 0.30.3585.3NDND 7.10.41698.412.4Standard Deviation N/A 4 14 0.1 14 21 N/A N/A 0.4 0.3 187 0.8 3.1Minimum ND ND 0.10.1300.5NDND 6.50.1677.15.5Maximum 2 9 76 0.5 64 114 ND ND 8.3 1.1 1141 10 19.6Count 6 5 29255292929 292929292995% Confidence Level N/A 5.2 5.3 0.05 17 7.8 N/A N/A 0.15 0.1 71 0.3 1.299% Confidence Level N/A 8.7 7.20.072811N/AN/A 0.210.2960.41.6 Mean of means Network MW - oxic water BOD5 (mg/L) TSS (mg/L) TN (mg/L) Total Phosphorus (mg/L) Total Alkalinity (mg/L) Chloride (mg/L) Fecal Coliform E. coli pH DO (mg/L)EC (μmhos/ cm) Temp. (C) Depth to Water Table (ft) Mean 1.2 12 4.60.25013N/AN/A 6.96.21889.113.2Geometric Mean N/A N/A 2.1 N/A 47 7.0 N/A N/A 6.9 5.9 162 8.9 11.8Median ND 3.0 2.20.2467.2NDND 6.96.81568.711.5Standard Deviation 6.2 30 11 0.5 17 19 N/A N/A 0.3 1.8 140 2.0 6.5Minimum ND ND 0.1ND190.7NDND 6.41.4504.94.6Maximum 39 170 99 3.8 88 139 41 41 7.9 8.3 1131 20 29.9Count 39 39 10173391019999 10110110110110195% Confidence Level 2.0 9.7 2.1 0.11 5.5 3.8 N/A N/A 0.06 0.3 28 0.4 1.399% Confidence Level 2.7 13 2.80.157.35.0N/AN/A 0.080.5370.51.7ND = Non detect; N/A = statistic not calculable
La Pine National Decentralized Wastewater Treatment Demonstration Project
Groundwater Quality and Three-D Model Page 8-3
The shallow groundwater in the La Pine sub-basin is typically oxic although a significant proportion (40%) of the
network monitoring wells produced water with low DO concentrations for at least a portion of the sampling period.
The TN concentrations in the low DO wells is less than 1 mg/L in 75% of the anoxic wells with a corresponding
average chloride concentration in that population of wells of 5.4 mg/L (minimum = 0.5 mg/L, maximum = 20
mg/L). The chloride concentrations indicate an impact on the groundwater from wastewater but the low nitrogen
concentrations support the findings of the USGS (Hinkle et al, 2007) that there is some natural denitrification
capacity with the anoxic portions of the aquifer that typically underlie the upper oxic layer near the water table.
Background Monitoring
Well
Averages:
TN = 0.5 mg/L
Chloride = 1.1 mg/L
Depth to Water = 7.0 ft
Drainfield Monitoring Well
Averages:
TN = 52 mg/L
Chloride = 34 mg/L
Depth to Water = 6.9 ft
System Effluent:
Average TN = 70 mg/L
Average Chloride = 44
mg/L
(comparable to septic
tank effluent quality)
Downgradient Monitoring Well
Averages:
TN = 0.9 mg/L
Chloride = 2 mg/L
Depth to Water = 7.1 ft
Large publicly owned
tract
Downgradient
Monitoring Well
Averages:
TN = 1.9 mg/L
Chloride = 2 mg/L
Depth to Water = 6.7 ft
N
Figure 8-1. Background groundwater quality.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 8-4 Groundwater Quality and Three-D Model
The anoxic groundwater conditions encountered during the field test appeared to be localized and were exhibited in
a variety of manners. One well (Table 8-2) changed conditions over time during the sampling period; the remaining
network wells on this site were consistently anoxic and the drainfield well DO ranges from 1.1 to 4.3 mg/L without
a particular trend. Another field test site had one oxic well and 2 anoxic or suboxic wells with the drainfield well
trending from anoxic to oxic. (Figure 8-3) A third example had one anoxic well and three oxic wells (Table 8-3).
Therefore, it appears that DO concentrations near the water table can change within a relatively small area and can
change in an area over time.
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Mar-02Apr-02May-02Jun-02Jul-02Aug-02Sep-02Oct-02Nov-02Dec-02Jan-03Feb-03Mar-03Apr-03May-03Jun-03Jul-03Aug-03Sep-03mg/L0
20
40
60
80
100
120
140
μmhos/cmTN (mg/L)
Chloride (mg/L)
EC (mmhos/cm)
Figure 8-2. TN and chloride concentrations over time in Well 2054.
The other factor which may contribute to the persistence of DO concentrations near the water table is the period of
lower than normal precipitation that coincided with the sampling period for the La Pine Project. The USGS
(Morgan et al, in press) found that only 1-2 inches of the average annual 13 inches per year of precipitation reaches
the aquifer. If the recharge rates are lower than the rate at which oxic water moves down through the aquifer and is
depleted of oxygen, then it is possible that the oxic portions of the aquifer could thin.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Groundwater Quality and Three-D Model Page 8-5
Table 8-2. Changing DO conditions from anoxic to oxic in a monitoring well.
Site ID
Point
ID
DEQ
Well
ID
Sample
Date
NH4 as
N (mg/L)
Nitrate-
Nitrite as
N (mg/L)
TKN
(mg/L)
TN
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
51309-N MW 2093 5/29/01 0.01 1.3 3.5 0.2 7.37
51309-N MW 2093 2/19/02 0.00 2.6 0.1 2.7 2.7 ND ND 0.1 12.61
51309-N MW 2093 5/13/02 0.01 9.6 0.3 9.9 7.7 ND ND 0.5 12.51
51309-N MW 2093 8/19/02 0.01 5.9 0.1 6.0 4.6 ND ND 0.4 12.6
51309-N MW 2093 11/4/02 0.05 2.8 0.1 2.9 3.0 ND ND 0.5 12.57
51309-N MW 2093 2/18/03 0.03 2.5 0.2 2.7 3.4 ND ND 1.2 12.63
51309-N MW 2093 5/12/03 0.01 4.3 0.1 4.4 3.8 ND ND 1.6 13.21
51309-N MW 2093 8/18/03 0.01 2.1 0.1 2.2 2.9 ND ND 1.7 12.62
51309-N MW 2093 11/18/03 0.01 1.6 0.1 1.7 2.6 ND ND 1.6 12.59
51309-N MW 2093 12/6/04 0.01 2.3 0.1 2.4 3.6 ND ND 2.6 12.64
ND = non detect
Other data suggests that the denitrification capacity of the anoxic portions of the aquifer may be limited. The 25%
of the anoxic wells with TN concentrations of 1 mg/L or greater included wells with elevated levels of TN and
chloride where it appeared the denitrification capacity was limited. Two of the wells, 2183 and 2184, located on the
same property, contained TN concentrations that are predominantly TKN. This results in conditions where the
nitrogen cannot be reduced to nitrogen gas because there is no oxygen, in the form of NO3, being carried into the
anoxic portion of aquifer for use in microbial metabolic processes. Of the remaining anoxic wells with elevated TN
concentrations, however, the nitrogen was predominantly in the NO3 form. One well in particular, well 2140 (Table
8-4), produced water with average concentrations of nitrogen of 76 mg/L and chloride of 113 mg/L. The DO
concentrations in this well ranged from 0.1 mg/L to 2.6 mg/L with an average of 0.7 mg/L. The sampling record
included two events where the DO is elevated at 2.5 and 2.6 mg/L. Often this type of high value in an otherwise
anoxic record was the result of air introduced to the sample during well pumping. These measurements, however,
appear to be actual high concentrations in the aquifer because the sampling team did not report any difficulties with
obtaining a sample and the nitrogen concentrations in the nutrient sample increased during these periods, which
implies that some denitrification did occur at this location when the groundwater was anoxic. It should be noted that
the extremely high TN concentrations in this well were due to the presence of a horse corral with an associated
unlined manure storage area. Farm uses in the study area, as evidenced by this site, can significantly impact the
aquifer; the proportion of land devoted to farm use in the area, however, is only 1.1% (Tim Berg, Deschutes County
Community Development Department, written communication) of the study area and nitrogen loading from the
much larger area and more numerous sites devoted to residential uses is the dominant source of nitrogen in the sub-
basin.
The actual mechanisms driving the appearance of anoxic water near the water table would need to be further
investigated to define the spatial and temporal persistence of the anoxic conditions if the denitrification capability of
the aquifer were to be exploited for nitrogen attenuation.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 8-6 Groundwater Quality and Three-D Model
Figure 8-3. Spatial changes in DO concentrations on a site.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Groundwater Quality and Three-D Model Page 8-7
Table 8-3. Variable oxic conditions in monitoring wells on a single property.
NiteLess-T MW 2138
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 25 1.6 139 N/A N/A 7.5 7.0
Geometric Mean 20 1.6 87 N/A N/A 7.4 7.0
Median 22 1.6 109 ND ND 7.4 6.8
Standard Deviation 19 N/A 140 N/A N/A 1.0 0.5
Minimum 5.8 1.6 20 ND ND 5.7 6.4
Maximum 57 1.6 400 ND ND 9.2 7.9
Count 6 1 6 6 6 7 13
95% Confidence Level 20 N/A 147 N/A N/A 1.0 0.3
99% Confidence Level 31 N/A 230 N/A N/A 1.5 0.4
NiteLess-T MW 2139
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 27 0.1 38 N/A N/A 7.3 6.9
Geometric Mean 26 0.1 37 N/A N/A 6.7 6.8
Median 28 0.1 37 ND ND 7.8 6.6
Standard Deviation 7.1 N/A 8.5 N/A N/A 2.5 0.9
Minimum 14 0.1 29 ND ND 2.1 6.0
Maximum 36 0.1 57 ND ND 9.7 8.8
Count 8 1 9 8 8 9 12
95% Confidence Level 5.9 N/A 6.5 N/A N/A 1.9 0.5
99% Confidence Level 8.8 N/A 9.5 N/A N/A 2.7 0.8
NiteLess-T MW 2140
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 76 0.2 114 N/A N/A 0.7 7.1
Geometric Mean 49 0.2 89 N/A N/A 0.3 7.1
Median 70 0.2 110 ND ND 0.3 7.0
Standard Deviation 63 N/A 76 N/A N/A 1.0 0.6
Minimum 7.4 0.2 23 ND ND 0.05 6.2
Maximum 209 0.2 280 ND ND 2.6 8.3
Count 8 1 10 8 8 10 13
95% Confidence Level 53 N/A 55 N/A N/A 0.7 0.4
99% Confidence Level 78 N/A 79 N/A N/A 1.0 0.5
NiteLess-T MW Drain
TN
(mg/L)
WTS TN
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 41 63 28 N/A N/A 6.8 6.5
Geometric Mean 40 62 27 N/A N/A 6.7 6.4
Median 40 61 27 ND ND 7.0 6.4
Standard Deviation 7.4 16 3.5 N/A N/A 1.2 0.7
Minimum 29 47 23 ND ND 4.5 5.2
Maximum 61 120 34 ND ND 9.4 7.9
Count 20 23 20 20 20 22 21
95% Confidence Level 3.4 7.0 1.6 N/A N/A 0.5 0.3
99% Confidence Level 4.7 9.5 2.2 N/A N/A 0.7 0.4
ND = non detect N/A = statistic not calculable WTS = wastewater treatment system
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 8-8 Groundwater Quality and Three-D Model
Table 8-4. Well 2140 concentrations over time.
Sample
Date
NH4 as N
(mg/L)
Nitrate-
Nitrite as
N (mg/L)
TKN
(mg/L)
TN
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli pH
Dissolved
Oxygen
(mg/L)
EC
(umhos/
cm)
Temp.
(C)
Depth to
Water
Table (ft)
9/27/01 0.04 27 70 6.6 0.05 768 10.2 7.7
2/26/02 0.05 207 1.5 209 280 ND ND 6.4 2.6 2445 7.0 6.6
5/22/02 0.04 7.1 0.3 7.4 23 ND ND 6.8 0.3 390 7.2 6.2
8/26/02 0.09 88 1.6 89 160 ND ND 6.5 0.1 1476 10.3 7.0
11/12/02 0.08 94 1.3 96 160 ND ND 6.5 2.5 1422 9.8 8.3
2/25/03 0.08 68 0.1 68 100 ND ND 6.7 0.3 1168 6.8 6.9
5/19/03 0.04 8.1 0.1 8.2 24 ND ND 6.7 0.5 406 7.4 6.6
8/27/03 0.09 72 1.4 73 130 ND ND 6.6 0.1 1353 9.5 7.2
11/5/03 0.04 59 0.1 60 120 ND ND 6.6 0.2 1217 9.9 8.1
ND = Non detect
Drainfield Monitoring wells
The sampling team monitored the drainfield wells on the same schedule as the onsite system in order to pair the final
discharge samples with drainfield well data. These wells were also monitored each quarter at the same time as the
surrounding network wells. This approach caused the drainfield monitoring wells to be the most intensively
monitored locations in the field test program because the onsite system and network well monitoring events were on
different schedules (monthly/bimonthly vs. quarterly).
The performance statistics for each drainfield monitoring well are provided in Appendix C. The statistics provided
in the tables include the TN concentrations measured directly from the samples and the TN concentrations
discharged by the onsite wastewater treatment system discharging to the related drainfield. The tables are numbered
for reference during the following discussion. Each well will not be discussed in detail, rather, particular wells will
be identified as examples of specific discussion points.
Table 8-5 contains the overall statistics representing the average water quality underlying the drainfields in the field
test. The statistics were generated by producing the mean values for individual wells and then averaging the means.
In general, the BOD5 concentrations recorded for these wells are very low. The higher TSS concentrations typically
indicated well development and/or the difficulty obtaining samples from very deep wells using a peristaltic pump.
For example, the highest concentrations reported for TSS samples primarily came from one well that produced an
average value of 146 mg/L. The average water table depth for this monitoring well was 29 feet, which is essentially
the maximum depth from which a peristaltic pump can elevate water at the altitude of the La Pine study area. As a
result, the flow from these deeper wells was erratic and disturbed the sediments surrounding the well screens. The
number of non-detects for BOD5 concentrations and the difficulties associated with obtaining representative TSS
samples suggest that these parameters could be omitted from a sampling plan for groundwater monitoring wells. As
a result, the La Pine project eliminated BOD5 and TSS sampling from the network monitoring wells and took these
parameters only from the drainfield wells. The data, even from the drainfield wells, suggests that these parameters
may be of limited utility in groundwater investigations because the data obtained from 47 wells produced non-
detects for BOD5 on average with one well producing the highest value (BOD5 = 26 mg/L) during well purging; this
well produced the highest individual average concentration of 1.8 mg/L. The TSS data, while producing higher
overall average concentrations, is largely suspect because of the low mean and median values, which indicate that
the mean is skewed by high concentrations which tended to come from the deepest wells.
Two wells produced individual positive results for fecal coliform and E. coli bacteria but these results were not
duplicated at later sampling events. During the project nearly 1,080 samples from 48 drainfield wells were analyzed
for bacteria in the La Pine Project and the positive results comprised only 0.2 % of the total. Given that it was not
clear whether the positive counts indicated actual bacteria contamination in the aquifer or if they were a result of
contamination introduced during sampling it appears that, overall, the vertical separation between the point at which
effluent is dispersed into the environment and the water table provides significant protection from bacterial
contamination.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Groundwater Quality and Three-D Model Page 8-9
The field parameters indicated some differences between the drainfield wells and the network wells. Particularly,
the conductivity measurements were significantly higher (99% confidence level) on average than the network
monitoring wells, which could be related to the higher average chloride and total nitrogen values found in the
drainfield monitoring wells. The depth to water table appeared to be less in the drainfield monitoring wells than the
network wells on average and the average water table elevation (mean elevation = 4195.2 feet above mean sea
level) is higher for the drainfield monitoring wells than the network wells (95% confidence level); however,
confirmation of any potential groundwater mounding inferred by this difference would require site by site analyses
of water table gradients.
The average TN concentrations from drainfield monitoring wells were significantly higher (99% confidence level)
than that produced from the network monitoring wells. The difference between the mean TN and chloride
concentrations suggests the presence of anoxic water in some of the drainfield wells. Indeed, Table C-2, AX20-M,
and Table C-8, IDEA-H, (Appendix C) provide examples of drainfield monitoring wells tapping anoxic water. The
anoxic water present in these and other locations may have facilitated denitrification that caused the mean
concentrations of TN to decline in comparison to mean chloride concentrations. When the anoxic well data is
removed from the statistics, average TN concentrations increase (Table 8-6).
The drainfield wells did not consistently illustrate the effects of the onsite system on the aquifer because of
difficulties experienced in placing the well in the effluent plume. For example, the wells monitoring the bottomless
sand filters, Systems-H3 and –B, were located in the upgradient end of the sand filter. The third bottomless sand
filter’s monitoring well was placed in the downgradient end of the sand filter and showed impacts that correlated
better with the effluent quality discharged from the sand filter. (Appendix C, Table C-4) Due to the placement of
several drainfield wells, the statistics reported in Tables 8-5 and 8-6 may not accurately represent the conditions at
the water table below drainfields.
Several drainfield monitoring wells illustrated the adverse impacts that conventional onsite wastewater treatment
systems have on the aquifer. For example, the bottomless sand filter mentioned above, (Appendix C, Table C-4,
System-A) discharged 81 mg/L on average and the well monitoring the top of the aquifer below the sand filter
(depth to water table averaged 15.7 feet) discharged water with average TN concentrations of 50 mg/L. At another
site, the septic tank serving a standard system discharged 56 mg/L TN on average (Appendix C, Table C-17,
System-PE) and the well monitoring the top of the aquifer underlying the drainfield discharged water with average
TN concentrations of 36 mg/L.
State rules specified, at the time of the La Pine Project and under current regulations, that a failing system is “any
system that discharges untreated or incompletely treated sewage or septic tank effluent directly or indirectly onto the
ground surface or into public waters.” The definition of public waters includes “lakes, bays, ponds, … and all other
bodies of surface or underground waters, natural or artificial… which are wholly or partially within or bordering the
state or within its jurisdiction.” Treatment is defined as “the alteration of the quality of wastewaters by physical,
chemical, or biological means or combination thereof such that tendency of said wastes to cause degradation in
water quality, risk to public health or degradation of environmental conditions is reduced.” “Pollution” or “Water
Pollution” means any alteration of the physical, chemical, or biological properties of any waters of the state, or any
discharge of any liquid … or other substance into any waters of the state that … threatens to create a public nuisance
or render such waters harmful, detrimental, or injurious to public health safety, or welfare or to domestic,
commercial, industrial, agricultural, recreational or other legitimate beneficial uses or to livestock, wildlife, fish, or
other aquatic life or the habitat thereof.” The La Pine Project demonstrated, by monitoring onsite systems and the
groundwater below the soil absorption units, that onsite wastewater treatment systems degraded water quality by
discharging nitrogen and other wastewater constituents to the groundwater environment. The degradation of water
quality by onsite system discharges implies that the wastewater was incompletely treated and, therefore, onsite
systems failed and caused water pollution even when constructed according to prescriptive standard. Research
results reported by Weyer, et al (2001) indicate that public health is threatened by chronic exposure to low levels of
nitrate (> 2.5 mg/L) in drinking water.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 8-10 Groundwater Quality and Three-D Model
Table 8-5. Overall water quality statistics for drainfield monitoring wells.
Mean of means
MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli pH
Dissolved
Oxygen
(mg/L)
EC
(umhos/
cm)
Temp.
(C)
Depth to
Water
Table (ft)
Mean N/A 6.6 9.2 17 33 47 6.9 5.3 261 8.8 12.6
Geometric Mean N/A 2.9 3.6 12 N/A N/A 6.9 3.7 230 8.8 11.6
Median ND 2.8 4.2 11 ND ND 6.9 6.4 228 8.6 11.1
Standard Deviation N/A 21 13 15 N/A N/A 0.3 2.6 138 1.0 5.6
Minimum ND 0.4 0.1 0.7 ND ND 6.5 0.1 94 7.3 4.9
Maximum 1.8 146 52 72 1500 2190 8.1 8.5 651 12.0 29.0
Count 47 47 48 48 48 48 48 48 48 48 48
95% Confidence Level N/A 6.2 3.8 4.3 N/A N/A 0.08 0.8 40 0.3 1.6
99% Confidence Level N/A 8.2 5.0 5.8 N/A N/A 0.11 1.0 54 0.4 2.2
ND = non detect N/A = statistic not calculable
Table 8-6. Water quality statistics for drainfield monitoring wells located in the oxic portion of the aquifer.
Mean of means MW
Drain- oxic water
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli pH
Dissolved
Oxygen
(mg/L)
EC
(umhos/
cm)
Temp.
(C)
Depth to
Water
Table (ft)
Mean N/A 7.7 11 19 N/A N/A 6.9 6.2 273 8.9 12.8
Geometric Mean N/A 3.3 5.9 14 N/A N/A 6.9 6.0 240 8.9 11.7
Median ND 3.0 6.7 16 ND ND 6.9 6.7 247 8.8 10.9
Standard Deviation N/A 23 14 16 N/A N/A 0.2 1.6 146 1.1 6.0
Minimum ND 0.4 0.5 2.0 ND ND 6.5 2.1 106 7.5 6.2
Maximum 1.8 146 52 72 ND ND 7.3 8.5 651 12.0 29.0
Count 38 38 39 39 39 39 39 39 39 39 39
95% Confidence Level N/A 7.6 4.4 5.1 N/A N/A 0.06 0.5 47 0.3 1.9
99% Confidence Level N/A 10 5.9 6.8 N/A N/A 0.09 0.7 63 0.5 2.6
ND = non detect N/A = statistic not calculable
Drinking water wells
The La Pine Project team completed four synoptic sampling events at the beginning of the project between 1999 and
2001. These synoptic, or snapshot, events focused on private drinking water wells to define drinking water quality
of the region and to identify any developing areas of concern. An early hypothesis of the project was a relatively
rapid travel time of groundwater through the aquifer and therefore a rapid change in the groundwater quality due to
wastewater discharges. Based on this hypothesis, the Project team scheduled all the synoptic sampling events at the
beginning of the project. Once the USGS completed a portion of the groundwater investigation, particularly the part
dealing with chlorofluorocarbon sampling for age dating, the findings indicated that the water is moving more
slowly than expected. The study found that, while recharge could move rapidly through the unsaturated soils above
the water table, groundwater velocities are slow because of the small percentage of the annual recharge that reaches
the aquifer. Given this information, scheduling the drinking water well sampling throughout the study may have had
greater utility in illustrating the changes in the aquifer quality over the project period. However, the data was
essential to the timely development of the 3-D model and, given the groundwater velocities found by the USGS
investigations and the ages found in the aquifer, the period for repeating the synoptic events is on the order of 7 to
10 years, which is a longer period than planned for the La Pine Project.
Another source of data available for characterizing the drinking water quality was the results from samples taken
during real estate transactions. This dataset was large (1,466 reported results between 1989 and 2003); however, the
results could not be incorporated into the 3-D model because of the lack of any quality assurance or control on how
La Pine National Decentralized Wastewater Treatment Demonstration Project
Groundwater Quality and Three-D Model Page 8-11
and where the samples were taken. This data (summarized in Figure 8-4) indicated that there have been a significant
number of samples (18%) taken at the time of sale that contained elevated levels of nitrate. Of these, 17% represent
concentrations between 3 and 9.9 mg/L. Some of these represent properties that were sampled repeatedly because of
the high property turnover rate in the area.
La Pine nitrate data, 1989-2003
(source: ODEQ real estate data)
774
180 193
90 69 30 58 51 21
0
200
400
600
800
<= 0.5 .51-1 1.01-2 2.01-3 3.01-4 4.01-5 5.01-7 7.01-10 >10
Nitrate concentration, mg/LNumber of wells1,466 analyses
Figure 8-4. La Pine area nitrate data from real estate transactions, 1989-2003.
The data collected during the synoptic events indicated that the quality of the region’s drinking water supply was
good on average (Table 8-7). In October 1999, about 90% of the wells discharged water with less than 2 mg/L of
nitrogen in any form. Ten percent of the wells discharged water with elevated ammonium levels, which in
conjunction with a deep well depth and anoxic water, indicates that the water was drawn for a portion of the aquifer
with buried organic material. Data from the synoptic events in 2000 and 2001 indicated that a large proportion of
the wells were screened in the anoxic portion of the aquifer; the synoptic events in the fall of 2000 and the spring of
2001 had smaller proportions of the wells located in the anoxic part of the aquifer in order to devote more effort to
characterizing the oxic, and nitrate vulnerable portion.
Nine percent of the samples in the drinking wells sampled in October 1999 showed elevated nitrate concentrations.
This proportion changed to 12% for the two synoptic sampling events completed in 2000 and to 15% in the 2001
synoptic. The elevated concentrations occurred primarily in the 3.0 – 9.9 mg/L range, which is less than the 10
mg/L maximum contaminant level for drinking water. However this level of contamination warrants investigation
because of the increase in nitrate concentrations predicted for the region and because research has indicated a
correlation between chronic ingestion of nitrate concentrations as low as 2.5 mg/L and certain types of cancer.
[Weyer et al, 2001]
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 8-12 Groundwater Quality and Three-D Model
Table 8-7. Summary of synoptic drinking water well sampling, 1999-2001.
October 1999 Ammonia TKN Nitrate Chloride Percent Ammonia TKN Nitrate Chloride
ND 64 82 46 3 ND 48% 62% 34% 2%
ND-0.9 45 26 65 27 ND-0.9 34% 20% 48% 20%
1.0-2.9 10 9 12 71 1.0-2.9 8% 7% 9% 53%
3.0-4.9 5 8 5 13 3.0-4.9 4% 6% 4% 10%
5.0-6.9 1 2 2 7 5.0-6.9 1% 2% 1% 5%
7.0-9.9 0 0 4 5 7.0-9.9 0% 0% 3% 4%
10.0-14.9 3 3 1 4 10.0-14.9 2% 2% 1% 3%
15.0-19.9 1 1 0 3 15.0-19.9 1% 1% 0% 2%
>20.0 3 2 0 0 >20.0 2% 2% 0% 0%
Totals 132 133 135 133
June 2000 Ammonia TKN Nitrate Chloride Percent Ammonia TKN Nitrate Chloride DO # %
ND 65 129 62 ND 34%67%32% 0% 0.0-1.5 88 47%
ND-0.9 95 30 88 43 ND-0.9 49% 16% 46% 23%
1.6-2.0 63%
1.0-2.9 10 10 23 90 1.0-2.9 5%5%12% 47% >2.0 94 50%
3.0-4.9 9 10 9 25 3.0-4.9 5% 5% 5% 13%
total 188
5.0-6.9 2 2 3 9 5.0-6.9 1%1%2% 5%
7.0-9.9 3 3 5 12 7.0-9.9 2% 2% 3% 6%
10.0-14.9 6 5 0 6 10.0-14.9 3%3%0% 3%
15.0-19.9 0 1 1 3 15.0-19.9 0% 1% 1% 2%
>20.0 2 2 1 3 >20.0 1%1%1% 2%
Totals 192 192 192 191
October 2000 Ammonia TKN Nitrate Chloride Percent Ammonia TKN Nitrate Chloride DO # %
ND 49 71 17 0 ND 49%80%17% 0% 0.0-1.5 36 36%
ND-0.9 43 10 55 25 ND-0.9 43% 11% 55% 26%
1.6-2.0 33%
1.0-2.9 2 3 16 42 1.0-2.9 2%3%16% 43% >2.0 62 61%
3.0-4.9 2 3 5 8 3.0-4.9 2% 3% 5% 8%
total 101
5.0-6.9 1 0 2 6 5.0-6.9 1%0%2% 6%
7.0-9.9 1 1 4 5 7.0-9.9 1% 1% 4% 5%
10.0-14.9 0 0 0 6 10.0-14.9 0%0%0% 6%
15.0-19.9 0 0 0 3 15.0-19.9 0% 0% 0% 3%
>20.0 2 1 1 1 >20.0 2%1%1% 1%
Totals 100 89 100 96
June 2001 Ammonia TKN Nitrate Chloride Percent Ammonia TKN Nitrate Chloride DO # %
ND 57 102 24 1 ND 46%82%19% 1% 0.0-1.5 43 34%
ND-0.9 59 15 59 26 ND-0.9 48% 12% 47% 21%
1.6-2.0 65%
1.0-2.9 2 2 23 53 1.0-2.9 2%2%18% 43% >2.0 76 61%
3.0-4.9 3 3 8 10 3.0-4.9 2% 2% 6% 8%
total 125
5.0-6.9 0 0 3 6 5.0-6.9 0%0%2% 5%
7.0-9.9 2 2 6 12 7.0-9.9 2% 2% 5% 10%
10.0-14.9 0 1 9 10.0-14.9 0%0%1% 7%
15.0-19.9 0 0 0 4 15.0-19.9 0% 0% 0% 3%
>20.0 1 1 1 3 >20.0 1%1%1% 2%
Totals 124 125 125 123
ND = Non detect
La Pine National Decentralized Wastewater Treatment Demonstration Project
Groundwater Quality and Three-D Model Page 8-13
USGS Groundwater Investigations and the Three-Dimensional Groundwater and Nutrient Fate and Transport
Model
The USGS was an integral partner during the entire La Pine Project. The work undertaken and completed is
documented in a series of reports published under separate cover and includes the geochemical investigations,
groundwater study and the 3-D model. The abstracts for these reports follow:
Aquifer-scale controls on the distribution of nitrate and ammonium in ground water near La Pine, Oregon
S.R. Hinkle, U.S. Geological Survey
J.K. Böhlke, U.S. Geological Survey
J.H. Duff, U.S. Geological Survey
D.S. Morgan, U.S. Geological Survey
R.J. Weick, Oregon Department of Environmental Quality
A shallow, sandy sole-source aquifer receives septic tank effluent from most residents in the vicinity of La Pine,
Oregon. High concentrations of NO3- (>10 mg NO3--N/L) have been observed in study area ground water since the
early 1980s. Thus, a framework for understanding NO3- dynamics, and a conceptual model in support of a numerical
NO3- transport model, are needed. Geochemical and hydrologic data were collected at multiple scales to develop an
aquifer scale (640 km2 area, 37-m thickness) understanding of NO3- source, transport, and fate. A network of 193
existing (primarily domestic) wells, transects of monitoring wells installed along ground-water flowpaths, an array
of direct-push wells installed perpendicular to one of the transects, and three wells installed in plumes of septic tank
effluent were sampled and analyzed for major ions, nutrients, dissolved organic carbon, field parameters, dissolved
gases, isotopes of water and nitrogen, and age-dating tracers (CFCs, 3H, 3H/3He). Nitrogen isotopes, N/Cl-
relationships, age gradients, and hydraulic data indicate that septic tank effluent is the predominant source of NO3- in
the aquifer. Most NO3- currently resides in shallow plumes near the water table, due to low recharge rates and low
hydraulic gradients that limit advection. High concentrations of NH4+ (>10 mg NH4+-N/L) were observed in deep
ground water that, for the most part, resides beneath the primary aquifer. Nitrogen isotopes, N/Cl- and N/C
relationships, 3H data, and hydraulic data are consistent with a natural, sedimentary organic matter source for most
NH4+, and contraindicate an origin from septic tanks. Relationships between NO3-, Cl-, and geochemical indicators
of redox conditions, and relationships between concentrations and isotopes of N2, indicate that denitrification is
extensive in the study area. Denitrification occurs near the boundary between oxic and suboxic portions of the
aquifer. Laboratory denitrification experiments with aquifer sediments demonstrate a denitrification capacity in
sediments currently exposed to NO3-, and also demonstrate denitrification capacity in sediments collected from what
is currently NO3--free ground water. Our data were used to develop a framework and conceptual model for a NO3-
transport model. Septic tank effluent is the dominant NO3- source. Census data were combined with study area septic
tank effluent data to estimate NO3- loading. Concentration data from the direct-push array allowed estimation of
dispersion. Advection of NO3- occurs until NO3- reaches the oxic/suboxic boundary, at which point denitrification
converts NO3- to N2. To account for aquifer-scale denitrification in the La Pine aquifer, a redox-boundary approach
that implicitly captures spatial variability in the distribution of electron donors is proposed. An early version of these
results were presented at the American Geophysical Union Meeting as Hinkle, S.R., Böhlke, J.K., Duff, J.H.,
Morgan, D.S., Weick, R.J., 2002, Nitrate source, transport and fate in ground water near La Pine, Oregon [abs.],
Eos, Transactions of the American Geophysical Union, v. 83, fall meeting supplement. (Hinkle et al, 2007)
Evaluation of approaches for managing nitrate loading from on-site wastewater systems near La Pine,
Oregon
David S. Morgan, US Geological Survey
Stephen R. Hinkle, US Geological Survey
Rodney W. Weick, Oregon Department of Environmental Quality
The central Oregon community of La Pine is a rapidly growing rural-residential area without centralized wastewater
disposal or drinking water systems. Most homes rely on individual septic systems for wastewater disposal and wells
for water supply. Wells are typically shallow (less than 50 feet) to tap permeable sands and gravels and to avoid
more mineralized ground water found in deeper aquifers. The water table is also shallow (less than 10 feet) and thin
volcanic soils provide little opportunity for removal of nitrogen before septic effluent recharges the aquifer.
Centralized sewer or water systems have been determined to be economically infeasible in the area and, with a large
number of lots still available, planners and regulators are concerned that future growth will render the ground-water
resource unusable.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 8-14 Groundwater Quality and Three-D Model
The purpose of the U.S. Geological Survey (USGS) investigation was to evaluate existing water quality conditions
and to develop an understanding of ground-water flow and geochemical dynamics that would provide a framework
for a numerical simulation model that could be used to evaluate the effects of alternative land-use and wastewater
management strategies on ground-water quality.
An important finding of this investigation is that ground-water velocities are low and much of the nitrate in the
aquifer is concentrated near the water table. Ground water flows downward and toward the rivers that drain the
area, however, nitrate has not moved very far either laterally or vertically since development began in the 1960s.
This finding has helped the public and regulators understand why, at present, relatively few wells have nitrate
concentrations above the drinking water standard of 10 mg/L. Simulations using a ground-water flow and nitrate
transport model show, however, that even if nitrogen loading to the aquifer remained at present levels, peak nitrate
concentrations in the aquifer would not occur for 30 years. Simulations show that doubling of nitrate loading, as is
forecast to occur at buildout in 2020, will result in nitrate concentrations above the drinking water standard over
large areas.
Deschutes County is pursuing two primary options to manage ground-water quality in the area: reduction of housing
density and reduction of nitrate loading using innovative septic-system technology. Innovative septic systems have
been field tested in the La Pine area as part of the National Demonstration Project (NDP). The USGS simulation
model was used to predict the effects of implementing these options and showed that innovative septic systems
could effectively reduce nitrate loading and improve ground-water quality. As a result of the study, the Oregon
Department of Environmental Quality has revised rules regarding septic systems to allow the use of the innovative
systems in Oregon. These results will also have national implications as more rural communities face the issue of
ground-water quality protection under the pressures of population growth.
The simulation model developed under the NDP was enhanced by adding optimization capability. This work was
funded jointly by the USGS and Deschutes County under a grant from the National Decentralized Wastewater
Capacity Development Project. The objective of this project was to develop and demonstrate a method to estimate
the optimal loading of nitrate from decentralized wastewater treatment systems to an aquifer. The method utilizes a
simulation-optimization approach in which a nitrate fate and transport simulation model is linked to an optimization
model. Using this method, maximum (optimal) sustainable loading rates that meet constraints on ground-water
quality and nitrate loading to streams via ground-water discharge can be determined. This method enhances the
value of a simulation model as a decision-support tool in developing performance-based standards for on-site
systems that will protect the quality of ground-water resources.
The La Pine nitrate loading management model (NLMM) was developed by linking the La Pine simulation model to
an optimization model using the response-matrix technique. The NLMM was used to determine the minimum nitrate
loading reductions that would be required in 97 management areas to meet specified water-quality constraints.
Constraints can be set on ground-water nitrate concentration, discharge of nitrate to streams, and maximum or
minimum loading reductions in management areas. Minimum loading reductions are determined for existing and
future on-site systems. Cost factors can be applied to the optimization if the cost of reducing loading favors
reductions for existing or future homes. The NLMM was used to perform trade-off analyses on the cost in terms of
increased loading reductions required to meet more stringent water quality criteria.
The USGS Scientific Investigations Report describes the hydrogeologic framework of the La Pine aquifer system
and documents the development and use of the NLMM and underlying simulation model. The potential uses of the
NLMM in long-term resource management planning processes for La Pine, Oregon, as well as considerations for
application of the optimization method to other areas are also described. (Morgan, et al, 2007)
Conclusion
The aquifer underlying the La Pine sub-basin is a high quality water resource threatened by the effects of
development, particularly the installation of conventional onsite wastewater treatment systems. The drinking water
well network currently produces water that meets drinking water standards; however, some wells are showing
indications of nitrate contamination. The shallow monitoring well networks installed for the onsite system field test
program indicate that nitrate contamination of the aquifer is more prevalent near the water table. Additionally, the
drainfield monitoring wells illustrate the significant impacts that conventional onsite systems have on the aquifer. In
the rapidly draining soils of the La Pine sub-basin, the conventional onsite systems prescribed in rule are not
protecting the drinking water resource of the region.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Groundwater Quality and Three-D Model Page 8-15
Predictions of future impacts to the aquifer, as produced by the USGS three-dimensional nutrient fate and transport
model, indicate that the quality of the aquifer will continue to decline with increased development using
conventional onsite wastewater systems. The model also predicts that the use of innovative onsite technologies to
reduce the nitrogen content of residential wastewater can be effective. The resource protection professionals of the
region have the opportunity to define the desired outcome for the groundwater resource and use the optimization
model developed subsequent to the 3-model to develop the management approaches necessary to meet the goal.
References
Dunne, T., and L. Leopold. 1978. Water in environmental planning. W.H. Freeman and Company, NY
Hinkle, S.R., J.K. Bohlke, J.H. Duff, D.S. Morgan, R.J. Weick, 2007. Aquifer-scale controls on the distribution of
nitrate and ammonium in groundwater near La Pine, Oregon, USA. Journal of Hydrology, 333, 486-503.
Lazaro, T.R. 1990. Urban Hydrology: A Multidisciplinary Perspective – Revised Edition. Technomic Publishing
Company, Inc., Lancaster, PA
Morgan, D.S., S.R. Hinkle, R.W. Weick, 2007. Evaluation of Approaches for Managing Nitrate Loading from On-
Site Wastewater Systems near La Pine, Oregon. Scientific Investigations Report 2007-5237, 66 p.
Weyer, P.J., J.R. Cerhan, B.C. Kross, G.R. Hallberg, J. Kantamneni, G. Breuer, M.K. Jones, W. Zheng, and C.F.
Lynch. 2001. Municipal Drinking Water Nitrate Level and Cancer Risk in Older Women: The Iowa Women’s
Health Study. Epidemiology, May 2001, Vol. 11, No.3, pp. 327-338.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Loan Program Page 9-1
Chapter 9: Loan Program Development
No other component of the La Pine Project was as dependent on the outcome of the other components as the loan
program. The field test program, the groundwater study and three-dimensional model development and the
maintenance program recommendations were largely independent elements that could have been stand alone
projects. The project team could have approached the loan program in a similar manner; however, given the limited
funds available for this endeavor and the large perceived need, the project team agreed the most effective use of the
loan funds would be to ensure they were applied in a realistic and targeted manner. The project team wanted to
create a structured loan program that would “purchase” the maximum reduction in nitrogen load in the most
sensitive receiving environments of the project area.
Firstly, the project team did not envision loaning funds for onsite system retrofits or replacements without a
comprehensive understanding of which treatment systems would be the most effective at reducing nitrogen. The
innovative system field test program took place between the fall of 2000 and winter 2004 with the final analytical
results delivered by the end of March 2005. This program produced the results reported in Chapters 5 and 6 and
highlighted the pros and cons of different denitrifying processes. This program provided information on the levels
of treatment possible with onsite systems in actual residential applications, the general range of costs associated with
the systems, the potential use of various systems as retrofits or replacements, and the homeowners reactions to the
systems.
The groundwater study identified existing areas of elevated nitrate concentrations in the aquifer both at the water
table and at drinking water well depths. This information, coupled with the geologic information available from
well logs and other sources, characterized the existing conditions within the La Pine sub-basin and defined the
baseline for the three-dimensional groundwater and nutrient fate and transport model (3-D model). This information
established a foundation on which to build public support for the necessity for groundwater protection measures
including retrofits to existing onsite wastewater treatment systems. The US Geological Survey (USGS) completed
the compilation of this information in mid-2002. To date, reports on the findings have completed the peer review
process and are awaiting publication.
The 3-D model builds upon the hydrogeologic information available from previous studies and collected during the
La Pine Project to create a state-of-the-art simulation of groundwater in the La Pine sub-basin. This model
incorporated information gained from the onsite system field test program to predict impacts to the aquifer under
eight scenarios including status quo and varying onsite wastewater treatment performance standards. The model
scenarios were completed in mid-2003 with an accompanying presentation to the public on the findings. The report
on this portion of the project has completed peer review and is awaiting publication.
The 3-D model became the focus of an additional grant program as a result of its successful completion. In mid to
late 2003 the National Water Resources Capacity Development Project funded Deschutes County and the USGS to
enhance the 3-D model by linking it with optimization methods to create a real-time resource management tool. The
optimization methods, derived from military modeling techniques for allocating scarce resources, allow resource
managers to define the desired outcome and have the model produce management approaches that most efficiently
produce the desired outcome. This is different from the 3-D model where resource managers are required to
estimate appropriate management approaches in order for the model to predict an outcome of the scenario.
(Morgan, 2005) The development of this model enhancement was an unforeseen event in the work plan for the La
Pine Project and the project team decided it was worth postponing the loan program development in order to use the
optimization model to identify the highest priority areas of the La Pine sub-basin for onsite system retrofits and
replacements. The power of this tool became evident as the early tests of the model illustrated how small
management areas can be identified according to nitrogen reduction required to meet water quality goals of the area.
Not only were total nitrogen reductions for the 96 management areas defined, but also nitrogen reduction, broken
down by existing vs. future development, could be produced. Currently, the optimization model is being updated
with development information on the study area in order to use 2005 vs. 1999 development data. Deschutes County
expects to complete the update in the fall of 2005 and then use the model to produce new scenarios shortly
thereafter.
Loan program plan
In cooperation with DEQ, Deschutes County developed a Request for Proposals for an organization or agency to
contract with the county to provide the loan fund administration function. Potential partner organizations or
agencies include, but are not limited to:
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 9- 2 Loan Program
1. Local housing authority dealing with the Community Block Grant Program
2. Central Oregon Intergovernmental Council
3. Local banks
4. Local office of the US Department of Agriculture
The Deschutes County Board of Commissioners specified to project staff that a third party will be used as the
administrative portion of the program in order to take advantage of the ability of these organizations and agencies to
act as bill collectors.
La Pine project staff, Deschutes County long range planning and financial management staff will establish the loan
fund criteria. The La Pine project staff is concerned about eliminating the opportunity for low-income residents to
participate in the program if traditional financial lending institution criteria are applied to the process. Many of the
lower income residents of the area own properties with the oldest onsite treatment systems and are located in areas
of highest environmental sensitivity. Therefore, project staff intends to include concepts like loan repayment at time
of sale or other such deferred payment options. Additionally, the loan fund criteria, as stated above, are based on:
1. Results of the innovative systems field test program
a. Performance data
b. Basic cost information
c. Potential for the system to be incorporated as a retrofit
d. Homeowner response to the innovative systems
2. 3-D groundwater and nutrient fate and transport model as an:
a. Educational tool
3. The Capacity Development funded project to create a nitrate loading management model (NLMM) to use
in conjunction with the 3-D model
a. Identifies the sub-areas within the overall study area that require the most attention in terms of
retrofitting existing onsite to achieve higher levels of treatment for nitrogen reduction.
b. Identifies the level of nitrogen reduction required in order to protect the aquifer to specific
standards.
Deschutes County is considering applying for state revolving loan fund (SRF) monies directed towards
decentralized systems to augment the existing funds from the La Pine Project. The project team has some
reservations about using the SRF program for the La Pine region because of short repayment periods and the need to
pay interest. More investigation into the demand for such a product is needed before Deschutes County can commit
to using the funds.
References
Morgan, D. S. and R. Everett. 2005. Simulation-Optimization Methods for Management of Nitrate Loading to
Groundwater From Decentralized Wastewater Treatment Systems. Project No. WU-HT-03-37. Prepared for the
National Decentralized Water Resources Capacity Development Project, Washington University, St. Louis, MO, by
US Geological Survey, Oregon Water Science Center, Portland, OR.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Reporting Page 10-1
Chapter 10: Reporting
The La Pine Project, as a requirement of the US Environmental Protection Agency, expended a great deal of time
and effort on reporting the activities and results of the project as it progressed. There were several foci to the
reporting process, including information sharing on the national scale, state or regional onsite professional
education/information sharing, and outreach and education of homeowners, elected officials and realtors, mortgage
brokers and land developers. The following is a list of the basic reporting activities undertaken as a result of the La
Pine Project.
Project inception - March 2001
• Presentation to EPA oversight committee
• Seminar presentation at Oregon State University
• Presentation to Steering Committee of National Decentralized Water Resources Capacity Development
Project.
• Presentation at USGS Regional technical meeting
• Report on progress and planned activities for the overall project to the Oregon Environmental Quality
Commission
• Report on progress and findings to date on the denitrifying systems portion of the project to a meeting of
State and County regulators, installers and consultants in Oregon.
• Report on progress and planned activities for the overall project to the Deschutes County Board of
Commissioners
• Public meeting on the progress and status of the overall project including the denitrifying systems field test
program, the groundwater study and three-dimensional groundwater and nutrient fate and transport model.
Participation included about seventy-five people at the public meeting with an additional thirty-five
individuals or families requesting information in writing because they were unable to attend.
• Two presentations to participants in the Oregon Onsite Wastewater Association’s annual meeting and
conference entitled, “Initial results of the La Pine research project.”
April – June 2001
• Project report mailed to the property owners in the study area via a newsletter.
• Presentation on the project to the Oregon Department of Environmental Quality – Eastern Region staff.
• Presentation on the project to the Deschutes County Community Development Department staff including
the planning, building and environmental health divisions.
July - September 2001
• Led a tour of the innovative systems installed for the project for Deschutes County Environmental Health
Division staff and the La Pine Project Operation and Maintenance Advisory Committee.
• Led a tour of the innovative systems installed for the project for Michael Daly, Deschutes County Board of
Commissioners
• USGS project web page published (http://oregon.usgs.gov/projs_dir/or186/index.html)
October – December 2001
• Several newspaper articles and one television spot on the project. The newspaper are available on the web
page below. This has been a more effective method of reaching the public than the public meetings or
newsletters. The project team has decided to minimize the use of public meetings for reporting purposes
because of their limited effectiveness.
• Presentations on the project to attendees at the National Onsite Wastewater Recycling Association annual
conference in Virginia Beach, Virginia entitled, “La Pine National Decentralized Wastewater
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 10-2 Reporting
Demonstration Project” and “Analysis and Simulation of Flow and Transport Processes Affecting Nitrate
in a Shallow Alluvial Aquifer near La Pine, Oregon.”
• Presentation on the project to Oregon DEQ staff at the Water Quality All Staff meeting.
January – February 2002
• Presentation to attendees at the Oregon DEQ’s annual meeting of on-site regulators, installers and other
onsite professionals on the denitrifying system field test program.
March – May 2002
• Draft report preparation initiated. Report graphics, including representative hydrologic unit cross-sections,
geologic map, well location map and other pertinent maps, figures and tables are in preparation.
• First draft of the geochemistry and nitrogen dynamics report completed and under revision prior to
colleague review.
• First draft of the hydrogeology and modeling report in preparation.
• Project report provided at the annual DEQ on-site meeting of state and county onsite staff, installers, and
consultants. Field visits to innovative system installations by DEQ and county on-site staff.
• Published a newsletter in cooperation with the Deschutes County Planning Division targeting the south
Deschutes County area and providing a progress report on the project’s work to date.
• Information sharing during visits by representatives of the Table Rock Lake Water Quality Group
(Missouri), University of Arkansas, and the New Jersey Department of Environmental Protection.
June – August 2002
• Draft report preparation has been initiated. Report graphics, including site plans for the field test
installation sites and onsite wastewater treatment system schematics are in preparation.
September – December 2002
• The onsite system field test report development initiated. Began development of a web application to make
the field test data available to the public via the Internet.
• Presentation of 3-D model preliminary scenarios to Deschutes County Planning Division and project staff.
• Poster presentations of the groundwater study and 3-D model at the Fall meeting of the American
Geophysical Union in San Francisco, California.
• Report on the Operation and Maintenance Advisory Committee recommendations to the Deschutes County
Board of County Commissioners
• Report on the Operation and Maintenance Advisory Committee recommendations to the DEQ Onsite
Program Improvement Advisory Committee
• Report on the performance of the NITREX, FAST, EnviroServer, RX-30, and Biokreisel systems at the
National Onsite Wastewater Recycling Association conference in Kansas City, Missouri in a paper entitled,
“Early Findings of the La Pine National Decentralized Wastewater Demonstration Project.”
• Report on the preliminary findings of the GW model and the innovative systems portions of the project to
the head of the environmental health program in Klamath County. The northern portion of Klamath
County is upstream in terms of both surface and ground water from Deschutes County.
• Report on the process used in developing and working with the Operation and Maintenance Advisory
Committee at the Decentralized Wastewater Solutions for Communities meeting in Welches, Oregon. The
National Decentralized Water Resources Capacity Development Project and the Green Mountain Institute
for Environmental Democracy sponsored the meeting to solicit feedback to national organizations that
develop tools for communities that are interested in implementing decentralized solutions to their
wastewater needs.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Reporting Page 10-3
January – February 2003
• The web application for getting the field test data available to the public is in the final stages of
development.
• Information sharing on the performance of the innovative systems and the groundwater issues in a meeting
with a representative from Washoe County, Nevada.
• Report on the performance of the NITREX, FAST, EnviroServer, RX-30, AX-20, and Biokreisel systems at
a California Rural Water Association workshop in Redding, California.
• USGS report on the results from the scenario simulations were presented to the Deschutes County Planning
Division staff.
• Report on the performance of the NITREX, FAST, EnviroServer, RX-30, AX-20, and Biokreisel systems at
the Oregon Onsite Wastewater Association meeting and conference in Salem, Oregon.
March – May 2003
• The field and laboratory data is now available to the public through a web application.
http://www.deq.state.or.us/wq/lapine/siterptcriteria.asp. The link at the top of the page goes to a query
page where field and lab data and flow and usage information on individual systems or groups of systems
can be viewed or downloaded.
• “Septic Systems 101” presented to four different realtor associations in Oregon to a total of at least 90
realtors. The training program includes basic septic system information with an emphasis on the need for
proper operation and maintenance of the systems. Response to the training has been very positive.
• Report on the performance of the NITREX, FAST, EnviroServer, RX-30, AX-20, and Biokreisel systems
and the groundwater study and 3-D model presented at a public meeting in South Deschutes County. Over
100 persons attended
• Reprised the public meeting presentations at the DEQ sponsored workshop for the registered sanitarians
working for DEQ and the contract counties in the onsite program.
June – August 2003
• “Septic Systems 101” presented to the realtor association in Salem, Oregon to about 50 realtors. The
training program includes basic septic system information with an emphasis on the need for proper
operation and maintenance of the systems. Response to the training was very positive.
• Two tours of the project area and a selection of the innovative systems. The first tour was for
representatives of the International Finance Corporation, the private arm of the World Bank, and a local
engineering company. The International Finance Corporation is interested in decentralized options for the
projects they finance in developing countries. The second tour was for a member of a small community
near Moab, Utah that is working to protect their high quality sole source aquifer.
September – December 2003
• Performance results for the best five innovative systems presented at the Northwest Onsite Wastewater
Short Course in Seattle, Washington
• Poster presentations on the geochemistry and simulation analyses at the annual USGS conference on
Science in Oregon and Washington.
• The draft geochemistry and nitrogen dynamics report completed and sent to co-authors for review.
• Provided a one hour continuing education course on basic information related to onsite systems and the
need for their proper operation and maintenance for realtors at the Oregon Association of Realtors annual
meeting. Between 60 and 80 realtors participated.
• Informational meetings with the Board of County Commissioners and staff in Klamath County, Oregon.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page 10-4 Reporting
• Presented results of all innovative systems’ performance and the maintenance program development
process at the National Onsite Wastewater Recycling Association annual conference in Franklin,
Tennessee. Presentations included: “Developing a Management Program for Onsite Systems in the La
Pine National Demonstration Project,” “Denitrifying Onsite Systems Using Forced Aeration and Trickling
or Packed Bed Filters,” and “Sequencing Batch Reactor and Rotating Biological Contactor.”
• Participated in a meeting on the statewide rule revisions to determine how the state rules will respond to the
information and recommendations developed through the La Pine Project.
January – March 2004
• Provided one hour training program to onsite regulators in Oregon at the DEQ’s Annual Onsite Meeting.
Provided an update on the performance of the top five systems in the project at the annual conference of the
Oregon Onsite Wastewater Association in Salem, Oregon.
• Provided a one hour course for Redmond realtors with the “Onsite Systems 101” presentation. Provided a
two-hour presentation on advanced treatment processes and systems at the annual meeting of the Idaho
Environmental Health Association in Boise, Idaho.
April- September 2004
• Provided one day’s equivalent training program to onsite regulators in Oregon at the DEQ’s Alternative
Treatment Technology Workshop in Bend, Oregon. The training included advanced wastewater treatment
processes, innovative systems participating in the La Pine Project, including presentations by some of the
vendors, and field trips to installations of the innovative systems.
• The draft hydrogeology and modeling report sent for review.
• Provided a two-hour presentation on advanced treatment processes and innovative systems included in the
Project at the annual National Environmental Health Association conference in Anchorage, Alaska in a
presentation entitled, “Review of Denitrifying Technology Assessment from La Pine (Oregon)
Demonstration.”
• June 2004: One-hour presentation on the innovative systems in the project with discussion at the Pacific
Northwest Precast Concrete Association conference.
October – December 2004
• Provided three presentations at the National Onsite Wastewater Recycling Association annual conference
in Albuquerque, New Mexico. These presentations are available in the proceedings and are titled:
“Residential Waste Strength and Sampling Onsite Systems: The Nuts and Bolts”; “From Public Process to
Recommendation to Rule: the Good, the Bad and the Ugly”; and “Lessons Learned with a Non- or Loosely
Regulated Maintenance Provider Program and a Homeowner Education Program.”
• December 2004: Produced a poster presentation on the La Pine Project for the Oregon DEQ’s Water
Quality Division All Staff meeting.
• The fate and transport model linked with the Nitrate Loading Management Model, which is a resource
optimization module. Preliminary solutions computed using a range of water quality constraints. Each
solution shows the minimum reduction in nitrate loading from onsite wastewater treatment systems needed
to meet specific water quality protection constraints. This extension of the La Pine Project 3-D model’s
capacity for use as a planning and management tool was funded by the National Decentralized Water
Resources Capacity Development Project.
January – March 2005
• Provided a two hour training session on wastewater treatment processes and results from the innovative
systems field test program at the Washington On Site Sewage Association meeting in Bow, Washington.
• The geochemical process journal article completed and awaiting final approval for publication.
• The hydrogeology and modeling report is in preparation for peer review.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Reporting Page 10-5
• Provided two training sessions on innovative onsite systems and maintenance and field monitoring
information from the project at the Utah Onsite Wastewater Association meeting in Ogden, Utah.
• Provided an overview of the innovative systems field test program at the Northeast Onsite Short Course in
Groton, Connecticut.
April – June 2005
• Provided a tour of the innovative systems installations and a presentation of an overview of their
performance at the Oregon Onsite Wastewater Association conference in Redmond, Oregon. Also
presented at this meeting, “Geology and Hydrogeology of the La Pine Area, implications for onsite
systems.”
• Provided a tour of the innovative systems installations for the staff supporting the Willamette (Oregon)
Groundwater Management Area steering committee. A significant proportion of the Willamette GWMA is
adversely affected by nitrogen discharged from onsite wastewater treatment systems.
• A presentation on the La Pine Project and the denitrifying onsite systems field test results to the Willamette
GWMA steering committee.
• A corollary project funded by the National Decentralized Water Resources Capacity Development Project
was reported in a USGS Scientific Investigations Report 2005-5055, “Organic Wastewater Compounds,
Pharmaceuticals, and Coliphage in Ground Water Receiving Discharge from Onsite Wastewater
Treatment Systems near La Pine, Oregon: Occurrence and Implications for Transport.”
Beyond the La Pine Project (chronological order)
• Presentations at the 13th Northwest On-site Wastewater Treatment Short Course and Equipment Exhibition
entitled, “Aquifer-Scale Nitrate Transport of Septic-Tank-Derived Nitrogen in a Sandy Aquifer near La
Pine, Oregon” and “Experiences with Denitrifying Onsite Systems in the La Pine Area of Central
Oregon.” (September 2005)
• Presentations entitled, “Geochemical Framework and a Redox Boundary Approach for an Aquifer-Scale
Transport Model of Septic-Tank-Derived Nitrogen in a Sandy Aquifer near La Pine, Oregon.,” “Use of a
Transport Simulation Model with Optimization Methods to Manage Nitrate Loading from On-site
Wastewater Treatment Systems to a Shallow Aquifer near La Pine, Oregon,” and Application of Three-
Dimensional Groundwater and Nutrient Fate and Transport and Optimization Models for Science Based
Policy Development to Protect a Drinking Water Aquifer in the La Pine Region of Central Oregon”
provided at the Groundwater Under the Pacific Northwest Conference in Stevenson, Washington.
(November 2005)
• Hinkle, S.R., J.K. Bohlke, J.H. Duff, D.S. Morgan, R.J. Weick, 2007. Aquifer-scale controls on the
distribution of nitrate and ammonium in groundwater near La Pine, Oregon, USA. Journal of Hydrology,
333, 486-503.
• Morgan, D.S., S.R. Hinkle, R.W. Weick, 2007. Evaluation of Approaches for Managing Nitrate Loading
from On-Site Wastewater Systems near La Pine, Oregon. Scientific Investigations Report 2007-5237, 66 p.
• Rich, B.J. 2008. Overview of the Field Test of Innovative On-Site Wastewater Treatment Systems during
the La Pine National Demonstration Project. Journal of Hydrologic Engineering, 2008, Vol. 13, No. 8,
752-760.
• Hinkle, S.R., J.K. Böhlke, L.H. Fisher, 2008. Mass balance and isotope effects during nitrogen transport
through septic tank systems with packed-bed (sand) filters. Science of the Total Environment, 2008, 407,
324-332.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Appendix A: Field Test Program Implementation Page A-1
Appendix A
Forms and Other Supporting Documents for Field Test Program Implementation
Figure Document...........................................................................................................................................................Page
A-1 Application form...................................................................................................................................................A-2
A-2 Property owner informational meeting agenda .....................................................................................................A-4
A-3 Innovative system Request for Proposals..............................................................................................................A-6
A-4 Wastewater sampling procedures..........................................................................................................................A-8
A-5 Groundwater sampling procedures........................................................................................................................A-9
A-6 Sampling follow-up activities.............................................................................................................................A-11
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page A-2 Appendix A: Field Test Program Implementation
Figure A-1. Field test program application form.
Application Form
Alternative and Innovative
On-site Sewage Disposal Systems
APPLICATION REQUIREMENTS:
1. Complete the application form and provide the appropriate original signature(s).
2. Include a copy of the deed showing the current property owners.
3. Include a plot plan that shows all property lines and existing and proposed structures, driveway
and parking, landscaping, utilities, etc.
4. A statement indicating your reasons for wanting to participate in the program.
PLEASE PRINT
PROPERTY OWNER: PHONE: ( )
MAILING ADDRESS: CITY: ST: ZIP:
E-MAIL: FAX PHONE: ( )
PROPERTY DESCRIPTION: Township Range Section Tax Lot
PROPERTY ADDRESS:
PROPERTY ZONE(S): PROPERTY SIZE (acres or sq. ft.):
Have you had a site evaluation approved? Date: YES NO
Will this house be used as a second home? YES NO
If so, how often and for how long will you be using the house during a typical year?
Will this house be used as a rental? YES NO
If so, will the rental be long-term (years) or short-term (days, weeks or months) Please be specific:
What number of people will be living in the house?
How many children will be living in the house?
What are their ages? (circle all that apply) 0-5 6-10 11-15 16-20
If you have an existing house please describe any plans for remodels or additions:
If this is new construction, when do you expect to begin construction?
If this is new construction, when do you expect to occupy the house?
La Pine National Decentralized Wastewater Treatment Demonstration Project
Appendix A: Field Test Program Implementation Page A-3
Do you have pets or livestock? YES NO
If so what kind and how many?
BASIC INFORMATION:
Participation in this program will require that the property owner obtain a WPCF (Water Pollution Control
Facilities) permit from OR DEQ for the alternative on-site disposal system. The project team will assist
you with the application. Other permits may be required (electrical, mechanical, plumbing) depending on
the type of installation. The project funds will cover the cost of the permits. The property owner is
expected to pay for power or phone service required by the on-site system. The property owner is
expected to register the monitoring wells installed on the property as part of this project.
The long term success of any on-site sewage disposal system depends upon proper operation and
maintenance. Therefore, the vendor of the alternative/innovative on-site disposal system and the
homeowner will be required to enter into a contract or other binding agreement for routine operation and
maintenance activities.
Participation in this program will require that personnel from Deschutes County Environmental Health, OR
Department of Environmental Quality, and US Geological Survey enter your property on a regular basis to
monitor the performance of the on-site disposal system for the duration of the study. Your signature on
this form will provide your permission to these personnel to perform duties required under the La Pine
National On-Site Wastewater Treatment and Disposal Demonstration Project
BASIC REQUIREMENTS
9 Permanent residents
9 Currently approved for a sand filter, pressure
distribution system or standard system
9 Owner applies for the program (no spec
homes)
9 Owner-occupied
9 Planning to build and occupy by summer of
2001 (Replacement systems may qualify)
9 Willing to allow access to property for
state/county personnel to sample and
otherwise monitor the on-site disposal system
9 Willing to enter into an agreement with the
system vendor/manufacturer or designated
service provider for on-going operation and
maintenance services
9 Willing to keep a log on your experiences with
the system
9 Willing to notify and otherwise work with
vendor/project team in the event of trouble
9 Willing to obtain WPCF permit (including
annual renewal) and other
(electrical/plumbing/etc.) permits as needed
Property Owner Date
original signature required
For office use only:
Septic permit/Site evaluation number:
Building permit status:
Land use permits required:
Notes:
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page A-4 Appendix A: Field Test Program Implementation
Figure A-2. Property owner informational meeting agenda.
Property Owner Informational Meeting Agenda
Name:
Review the purpose/short history of the project
To test on-site sewage treatment systems that remove nitrogen from the wastewater
To study the groundwater, how and where it moves, how fast and how contaminants move with the water
Develop operation and maintenance strategy for on-site systems
Develop a low-interest loan program to replace failing or inappropriately located septic systems
Requirements in the agreement with the county and in the WPCF permit
In the event that the experimental system fails – the system will be repaired or replaced with a system that
will work on the property.
We need to get good consistent data for the first three years so any changes in property ownership are a
significant issue. The WPCF system requires a re-application for the permit. We require full-time owner-
occupied residences for the three years of intensive study. Potential lien on the property in the event of
property transfer and a change in the character of sewage flows at the household.
Homeowner log – record all observations/maintenance activities and submit monthly/quarterly
Contract with Maintenance service provider for the duration of the permit – may transition to a regional
maintenance program at the end of the grant
Sampling schedule
Monthly for the first year then bi-monthly after that
Sampling schedule provided upon request
Sampling the various components of the system and monitoring wells
Monitoring wells on the perimeter of the property will be installed prior to system installation to define the
groundwater gradient.
Monitoring well installation
3-4 monitoring wells per property, tentatively scheduled the second week of October
___________ is the hydrogeologist that will be drilling the wells
Well locations staked
It is the responsibility of the homeowner to record the Oregon well registration forms with the County
Clerk (~$31 each)
Innovative system
Type of system/components to be installed:
Typical requirements – power usage, need power/water to site for testing the system, use of phone line,
possible other permits needed
Permit for the system
WPCF permit – sample provided
Application/renewal fees: During the project all fees will be taken care of through project funds. There is
an annual compliance fee that will become the homeowner’s responsibility after completion of the project.
This fee may be reduced or eliminated if a maintenance program is created for the county.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Appendix A: Field Test Program Implementation Page A-5
After the Grant
Permitting issues with WPCF
Operation and Maintenance requirements will continue after the project is completed
Timelines
Our expected timelines
Any homeowner timing constraints?
Other Issues
Property owner signature:
Date:
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page A-6 Appendix A: Field Test Program Implementation
Figure A-3. Innovative System Request for Proposals
La Pine National Decentralized Wastewater Treatment Demonstration Project
Appendix A: Field Test Program Implementation Page A-7
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page A-8 Appendix A: Field Test Program Implementation
Figure A-4. Wastewater sampling procedures.
WASTEWATER SAMPLING PROCEDURES
Equipment:
PH meter (calibrated daily to standard in lab)
Conductivity meter (calibrated daily to standard in lab)
Bailers
Dippers
Buckets (2)
Ratchet socket wrench, 9/16
Knife
Field notebooks
Supplies:
Sample bottles (P, R, C, DP, and X)
Blue ice/ice
Ice chests
Sulfuric acid (sample preservative)
Distilled water
Sanitizer
Gloves
Garbage bag
Pens
Cleaning setup (detergent, rinse, sanitizer)
Bottle type Parameter Preservative
Basic 1 (STP): BOD5; TSS; TOTAL P; TOTAL ALK Ice
Nutrient (R): NH4-N; NO2+NO3-N; TKN 12 drops H2SO4
Basic 2: (DP): Cl- Ice, filtered 45μm filter
Bacteria (C): Fecal Coliform; E. Coli Ice
Organic (X): Fats. Oil and Grease 12 drops H2SO4
UPON ARRIVAL ON SITE
1. Perform an instrument check upon arrival at the site.
a. Calibrate dissolved oxygen to the altitude (4200 feet).
b. Calibrate the ambient air temperature. Record in field notebook.
2. Record the flow meter reading in the field notebook.
3. Record the event and time meters in the control panels for septic tank and treatment unit effluent pumps as
appropriate. Remember to also record data in each logbook inside the control panels.
WASTEWATER SAMPLING
1. Always take wastewater treatment samples from “clean to dirty.” In other words, start with the lysimeter
effluent and work up the treatment train to end with the septic tank/primary clarifier.
2. Sludge judge quarterly at the inlet and outlet of the septic tank. Record measurements in the field book
3. Use the number and type of sample bottles specified in the Quality Assurance Project Plan.
4. Record bottle numbers in the field notebook.
5. Rinse the dipper or dedicated bailer with effluent and then use it to rinse and fill field parameter bottle.
Take field measurements from this sample and record readings.
6. Single-rinse the sample bottles. Fill the sampling containers and screw cap back on.
7. Add 12 drops of acid to the nutrient bottle, replace the lid securely and shake the bottle gently to mix.
8. Place all the bottles into the ice chest.
9. Repeat Steps 3-9 for each sample station.
10. After completing the sampling at each site, clean and sanitize the sampling equipment.
11. Filter the chloride sample in the lab.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Appendix A: Field Test Program Implementation Page A-9
Figure A-5. Groundwater sampling procedures.
MONITORING WELL SAMPLING PROCEDURE
1. Transport necessary equipment from vehicle to well.
Socket wrench, screwdriver, padlock key
Water level reader
Knee pad (optional)
Meters – Conductivity and pH
Peristaltic pump
Tubing for peristaltic pump
Extension cord
Field notebook, pen
5 gallon bucket containing 1 P bottle for field parameters and appropriate sample bottles:
Drainfield well: 2 P bottles, 1 R, 1 DP, 1 Coli-lert
Non-drainfield well: 1 R, 1 DP, 1 Coli-lert
2. Open well
a. Use socket wrench to loosen bolts
b. Pry off lid with screwdriver.
c. Unlock and remove padlock
d. Raise metal clip and twist white cap to loosen and remove.
3. Take water level measurement
a. Test water level reader by pushing red button on side to make sure buzz sounds. Sensitivity dial
should be set to 7 or 8.
b. Lower end of reader into ½ inch PVC pipe until it hits bottom of well screen (meet resistance),
back tape out until buzzing sound stops.
c. Take measurement to mark point (black mark on end of 2 inch PVC pipe).
d. Repeat measurement to confirm reading. Record in field notebook.
How to Read the Water Level Tape:
Water levels are measured in 1/10th and 1/100th of feet. The feet and 1/10th measurements are
printed on the tape. Feet measurements are shown in yellow and 1/10th of ft. measurements are
shown in white. The feet measurements are shown in the middle of the first 1/10th of the
corresponding foot. The 1/10th measurement is written in the middle of the corresponding 1/10th
of ft. interval. The 1/100th measurements are shown by hash marks within the 1/10th intervals.
4. Set up equipment to purge well.
a. Using extension cord, connect pump to power source.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page A-10 Appendix A: Field Test Program Implementation
b. Thread sterile tubing into ½ inch PVC pipe (careful not to let tubing touch ground) until it hits
bottom of well screen (meet resistance).
c. Put tubing that remains outside well through peristaltic pump and close latch.
d. Turn pump on and place end of tubing into the bottom of a P bottle.
e. Secure tubing to side of 5 gallon bucket using a large binder clip.
5. Prepare meters.
a. Conductivity meter should already be “on” to accommodate equilibration.
b. At the first well of the day, the conductivity meter needs to be calibrated for altitude:
i. Press the up arrow and down arrow at the same time, this will show the programmed
elevation.
ii. Press the up arrow to 42 (4200 ft).
iii. Press “enter” twice.
c. Put the probe into P bottle with groundwater flowing through it.
d. Turn pH meter on. Place glass probe in P bottle.
e. Place temperature probe in shaded place to obtain ambient air temperature.
f. Do not enable “auto” on pH meter.
6. Take field measurements.
a. When temperature on pH meter has stabilized, record A.A. (ambient air) temperature in the field
notebook and place the probe into the P bottle.
b. Begin taking groundwater readings, record in field notebook:
i. Time
ii. Temperature (small numbers in lower portion of conductivity meter screen)
iii. Specific conductivity (push “mode” on conductivity meter until shows “μs” with flashing
“C”)
iv. pH (large numbers on pH meter)
v. Dissolved Oxygen (push “mode” on conductivity meter until shows “Mg/L”).
c. Repeat measurements every few minutes until parameters have stabilized.
7. Take samples.
a. Rinse P bottles 3 times with groundwater and fill to top.
b. Rinse R and DP bottles 3 times and fill to shoulder.
c. DO NOT rinse Coli-lert bottle, use sterile technique and fill to 100-ml. fill-line.
8. Clean-up.
a. Pull tubing from ½ inch PVC pipe and turn pump off.
b. Replace well cap, lock and lid.
c. Remove meter probes from P bottle, rinse with DI (de-ionized) water. Leave Conductivity meter
on, but turn pH meter off.
d. Load all equipment and samples in vehicle.
9. Sample storage.
a. Add 12 drops sulfuric acid to R (nutrient) bottles, close lid tightly and shake lightly to mix.
b. Place all samples in ice chest.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Appendix A: Field Test Program Implementation Page A-11
Figure A-6. Sampling follow-up activities.
End-of-Sampling-Day Activities
To complete sampling event:
1. Unload vehicles.
2. Sort and put away dirty/clean supplies.
3. Filter chloride samples.
4. Add reagent to today’s Coli-lert samples and put in
incubator.
5. Complete paperwork, make copies, put originals in zip-loc
inside cooler.
6. Secure coolers with strapping tape.
7. Take samples to UPS for overnight delivery.
8. Call DEQ lab to notify that samples are on the way. Call
Oregon Health Dept Lab and report the number of bacteria
samples being sent for analysis.
Other jobs:
1. Check Coli-lert samples in incubator from yesterday.
Record results on Bacteria Log Sheet.
2. Sanitize hoses and lysimeter containers.
3. Unload cooler/supply shipments.
4. Compile supplies for next sampling day (bottles, coolers,
pump, tubing, etc).
5. Take inventory. Make list of needed lab supplies. Make
small purchases. Requisition other needed supplies.
6. Fill vehicles with gas if needed.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Appendix B: Field Test Program Data Page B-1
Appendix B
Innovative System Field Test Program Water Quality Data
LEGEND
Acronym Definition
AMP-E Amphidrome Effluent
ATE Anoxic Trench Effluent
AXE AX-20 Effluent
BKE Biokreisel Effluent
BMS Below Mason Sand
ESE Enviroserver Effluent
FE(C or P) Fast Effluent (Chamber or Pipe)
GFE Gravel Filter Effluent
IE IDEA Effluent
LE Lysimeter Effluent
MW Drain Monitoring Well in or downgradient of the drainfield
NAME-X Site identifier, for example the different sand filter sites are identified as
Bottomless Sand Filter-A, Bottomless Sand Filter-B, etc.
NDE Nayadic Unit Effluent
NFE(C or P) Nitrex Filter Effluent (Chamber or Pipe)
NTE Niteless Effluent
PFE Peat Filter Effluent
SATR-E Sand Trench Effluent
SFE Sand Filter Effluent
STD-E Standard trench effluent
STE Septic Tank Effluent
STM Septic Tank Mixing Chamber
TFE(C or P) Trickling Filter Effluent (Chamber or Pipe)
WE Wetland Effluent
WTE Wood tube effluent
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page B-2 Appendix B: Field Test Program Data
This page intentionally left blank.
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesAmphidrome-ADAMP-E08/27/0213.0 12 28.00 5.50 31.00 36.50 3.39 240 26620,000 5.8 700,000 5.8 7.6 3.2 596 16.0Amphidrome-ADAMP-E09/24/024.9 23 0.35 15.10 4.00 19.10 4.74 158 36660,000 5.8 820,000 5.9 7.3 2.9 537 13.0Amphidrome-ADAMP-E10/23/0213.0 431321.1E+07 7.0 9.6E+06 7.0 7.3 4.1 515 10.0Not enough flow for nitrogen and chloride analysis.Amphidrome-AD AMP-E 11/13/027.2 9 0.58 12.70 3.50 16.20 4.10 113 32590,000 5.8 390,000 5.6 7.2 4.6 281 6.3Amphidrome-ADAMP-E12/04/029.5 2 0.26 16.70 3.30 20.00 4.14 108 346.8E+06 6.8 6.8E+06 6.8 7.1 7.0 414 6.9Amphidrome-ADAMP-E01/15/0316.0 6 20.00 7.21 24.00 31.21 4.64 203 33120,000 5.1 120,000 5.1 7.5 4.4 655 4.6Chloride, Dissolved Oxygen is est.Amphidrome-AD AMP-E 02/25/0331.0 11 1.32 14.60 5.00 19.60 5.87 126 4150,000 4.7 62,000 4.8 6.8 3.1 586 4.0Amphidrome-ADAMP-E03/05/0325.0 13 1.60 11.80 5.70 17.50 5.03 122 373.4E+06 6.5 3.6E+06 6.6 6.9 3.3 538 3.8Amphidrome-ADAMP-E04/22/0346.0 6 6.20 7.10 11.00 18.10 6.52 158 43112,000 5.0 98,000 5.0 6.9 5.3 556 7.5Amphidrome-ADAMP-E05/21/0314.0 12 0.29 19.20 5.00 24.20 6.36 105 4312,000 4.1 9,800 4.0 7.1 4.1 470 9.9Amphidrome-ADAMP-E06/17/0313.0 20 0.44 12.10 4.70 16.80 6.64 116 391,900 3.3 2,300 3.4 7.0 2.5 541 14.2Amphidrome-ADAMP-E07/30/0318.0 3 0.15 9.62 4.00 13.62 5.5296 3317,000 4.2 14,000 4.1 7.0 2.8 445 18.9Amphidrome-ADAMP-E09/24/035.2 2 0.08 6.22 1.70 7.92 1.7666 127.2 4.2 240 13.6Fecal, E coli cancelled; Not enough flow for sampleAmphidrome-ADAMP-E10/29/033.2 2 0.05 6.23 0.90 7.13 1.9177 151,5003.2 1,3003.1 7.2 6.1 245 9.9Amphidrome-ADAMP-E03/16/042.3 2 0.06 17.501.50 19.004.71 132 35200,0005.3 130,0005.1 7.2 6.5 548 7.2QA DuplicateAmphidrome-AD AMP-E 03/16/042.0 0.5 0.06 17.60 1.70 19.30 4.76 132 34340,000 5.5 190,000 5.3 7.2 6.6 566 7.2TSS <1Amphidrome-AD AMP-E 04/27/0411.0 2.0 0.22 8.07 3.00 11.07 6.42 174 357.2 5.0 271 9.3Fecal, Ecoli VoidAmphidrome-AD AMP-E 08/04/041.6 1.0 0.14 4.97 1.30 6.27 7.44 190 4174,000 4.910 1.0 7.3 4.1 581 18.6Amphidrome-ADAMP-E11/03/041.6 1.0 0.10 7.50 1.50 9.00 6.53 160 432 0.32 0.3 7.2 6.2 567 6.5Amphidrome-ADLE08/27/0219.0 17.0 10.50 23.60 12.00 35.60 1.48 116 43160,000 5.2 160,000 5.2 7.1 4.3 542 15.7Amphidrome-ADLE09/24/022.9 48.0 0.08 16.80 1.40 18.20 1.3987 34660,000 5.8 600,000 5.8 6.9 5.2 455 12.8Amphidrome-ADLE11/13/022.5 15.0 0.05 14.10 1.60 15.70 2.5192 3086,000 4.9 83,000 4.9 7.1 7.0 414 6.9Amphidrome-ADLE12/04/021.3 3.0 0.03 16.30 1.30 17.60 2.4796 348,800 3.9 6,400 3.8 7.2 4.6 281 6.3Cond. is est.Amphidrome-AD LE 01/15/0314.0 11.0 1.60 37.80 1.90 39.70 2.8374 3318,000 4.3 14,000 4.1 6.8 5.4 626 4.9Amphidrome-ADLE02/25/032.7 6.0 0.07 21.10 1.60 22.70 4.1676 41120,000 5.1 110,000 5.0 6.7 7.3 540 4.5Amphidrome-ADLE03/05/033.3 7.0 0.07 17.10 1.90 19.00 3.7389 39280,000 5.4 98,000 5.0 6.7 8.5 517 4.6Amphidrome-ADLE04/22/038.4 5.0 0.08 16.00 1.90 17.90 4.97 100 4056,000 4.7 62,000 4.8 7.0 2.5 597 10.0Amphidrome-ADLE05/21/036.0 2.0 0.09 20.50 2.10 22.60 5.0092 4615,000 4.2 17,000 4.2 7.0 5.5 569 9.8Amphidrome-ADLE06/17/0312.0 12.0 0.11 15.20 0.10 15.30 6.2496 418,200 3.9 8,600 3.9 6.7 4.7 597 12.4TKN<0.2Amphidrome-AD LE 07/30/0310.0 7.0 0.04 12.10 2.30 14.40 5.4588 3520,000 4.3 7,400 3.9 6.8 4.1 461 17.5Amphidrome-ADLE09/24/031.3 15.0 0.04 5.48 1.60 7.08 1.7066 149,600 4.0 400 2.6 6.9 4.8 247 15.1BOD5 is est.Amphidrome-AD LE 10/29/032.0 19.0 0.02 3.67 0.40 4.07 1.4286 141,200 3.1 1,000 3.0 7.1 7.1 258 10.7Amphidrome-ADLE03/16/041.5 11.0 0.02 18.20 0.90 19.10 2.88 110 334,250 3.6 4,500 3.7 7.1 7.1 518 5.4BOD5 is est.Amphidrome-AD LE 04/27/042.8 1.0 0.04 7.53 0.90 8.43 4.81 172 3756,000 4.7 4,000 3.6 7.1 6.4 564 8.8Amphidrome-ADLE08/04/041.4 3.0 0.07 3.72 0.90 4.62 8.17 210 10056 1.72 0.3 7.3 3.9 679 15.0BOD5 is est.Amphidrome-AD LE 11/03/040.5 2.0 0.04 1.66 0.70 2.36 6.03 180 472 0.32 0.3 7.1 7.7 564 7.1BOD5<1.0Amphidrome-AD MW Drain 2112 05/09/020.01 1.45 0.10 1.55116.6 0.4 207 7.7 9.96Background/well development; NH4<0.02; TKN <0.2Amphidrome-AD MW Drain 2112 08/28/020.5 3.0 0.01 1.59 0.30 1.8963 121 0.01 0.0 6.7 0.7 195 7.9 9.98BOD5<1.0, NH4 <0.02Amphidrome-AD MW Drain 2112 08/28/020.5 4.0 0.01 1.58 0.10 1.6862 111 0.01 0.0 6.7 0.7 195 7.9 9.98QA Duplicate - BOD5<1.0, NH4 <0.02, TKN<0.2Amphidrome-AD MW Drain 2112 09/24/020.5 10.0 0.03 1.59 0.10 1.6967 121 0.01 0.0 6.8 0.6 187 8.1 9.99BOD5 < 1.0; TKN <0.2Amphidrome-AD MW Drain 2112 10/23/020.5 5.0 0.03 1.48 0.10 1.5867 111 0.01 0.0 6.6 0.6 188 8.3 8.39BOD5 <1.0, TKN <0.2Amphidrome-AD MW Drain 2112 11/13/020.5 3.0 0.03 1.57 0.10 1.6766 111 0.01 0.0 6.8 0.6 186 8.2 8.28BOD5 <1.0, TKN <0.2Amphidrome-AD MW Drain 2112 12/03/020.5 0.5 0.01 1.63 0.10 1.7365 101 0.01 0.0 6.7 0.4 201 8.3 9.97BOD5 <1.0, TSS<1 NH4 <0.02, TKN <0.2Amphidrome-AD MW Drain 2112 01/14/030.5 2.00 0.01 1.47 0.10 1.5764 101 0.01 0.0 6.1 0.6 196 7.9 10.01BOD5<1.0, NH4<0.02, TKN<0.2, pH is est.Amphidrome-AD MW Drain 2112 01/14/030.5 1.00 0.02 1.48 0.10 1.5864 101 0.01 0.0QA Duplicate; BOD5<1.0, TKN<0.2Amphidrome-AD MW Drain 2112 02/24/030.5 8.00 0.04 1.29 1.40 2.6966 101 0.01 0.0 6.8 0.3 194 8.1 7.32BOD5<1.0Amphidrome-AD MW Drain 2112 03/03/030.5 0.50 0.03 1.25 0.10 1.3566 101 0.01 0.0 6.7 0.3 194 7.9 9.94BOD5<1.0, TSS<1, TKN <0.2Amphidrome-AD MW Drain 2112 04/21/030.5 12.00 0.01 0.99 0.10 1.0968 101 0.01 0.0 6.7 0.3 194 7.8 9.91BOD5<1.0 NH4 <0.02, TKN <0.2Amphidrome-AD MW Drain 2112 05/21/030.5 2.00 0.02 1.07 0.10 1.1769 101 0.01 0.0 6.5 0.4 195 7.8 9.94BOD5<1.0, TKN<0.2Amphidrome-AD MW Drain 2112 05/21/030.5 2.00 0.02 1.07 0.10 1.1769 101 0.01 0.0QA Duplicate; BOD5<1.0, TKN<0.2Amphidrome-AD MW Drain 2112 06/16/030.5 0.50 0.04 1.14 0.10 1.2470 101 0.01 0.0 6.9 0.4 193 8.5 9.94BOD5<1.0, TSS<1, TKN<0.2Amphidrome-AD MW Drain 2112 07/28/030.5 0.50 0.01 1.30 0.10 1.4068 101 0.01 0.0 6.7 0.6 192 8.8 9.96BOD5<1.0, TSS<1 NH4<0.02, TKN<0.2Amphidrome-AD MW Drain 2112 07/28/030.5 0.50 0.01 1.32 0.10 1.4268 101 0.01 0.0QA Duplicate; BOD5<1.0, TSS<1 NH4<0.02, TKN<0.2Amphidrome-AD MW Drain 2112 09/22/030.5 0.50 0.01 1.49 0.90 2.3967 101 0.01 0.0 6.7 0.5 191 9.0 9.98BOD5 <1.0, TSS<1, NH4AsN<0.02Amphidrome-AD MW Drain 2112 10/20/030.5 4.00 0.01 1.49 0.10 1.5966 101 0.01 0.0 6.7 0.9 190 8.9 8.78BOD5<1.0, NH4AsN<0.02, TKN<0.2Amphidrome-AD MW Drain 2112 10/27/030.5 0.50 0.01 1.34 0.10 1.4467 101 0.01 0.0 6.7 0.9 191 8.7 9.96BOD5<1.0, TSS<1, NH4AsN<0.02, TKN<0.2Amphidrome-AD MW Drain 2112 10/27/030.5 0.50 0.01 1.34 0.10 1.4466 101 0.01 0.0QA Dupl.; BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2Amphidrome-AD MW Drain 2112 03/15/040.02 1.06 0.10 1.16101 0.01 0.0 6.7 0.4 191 8.7 9.90TKN<0.2Amphidrome-AD MW Drain 2112 04/26/040.03 0.82 0.10 0.92101 0.01 0.0 6.8 0.4 189 8.4 9.95TKN<0.2Amphidrome-AD MW Drain 2112 08/04/040.01 0.95 0.10 1.0596.5 0.9 178 8.2 8.30NH4<0.02, TKN<0.2Amphidrome-AD MW Drain 2112 08/04/040.01 0.96 0.10 1.069QA Duplicate; NH4<0.02, TKN<0.2Amphidrome-AD MW Drain 2112 11/02/040.02 0.86 0.10 0.9691 0.01 0.0 6.6 0.6 179 9.1 9.97TKN<0.2Amphidrome-AG AMP-E 10/09/0257.0 28.00 29.00 0.02 34.00 34.02 5.59 298 3782,000 4.9 42,000 4.6 7.4 0.1 702 12.6Amphidrome-AGAMP-E11/05/02120.0 37.00 41.00 0.03 42.00 42.03 8.11 316 63640,000 5.8 190,000 5.3 7.4 0.2 824 9.4Appendix B: Innovative System Field Test DataPage B-3
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesAmphidrome-AGAMP-E12/04/0272.0 40.00 33.00 0.02 42.00 42.02 6.97 325 39680,000 5.8 660,000 5.8 7.5 0.5 948 9.2Amphidrome-AGAMP-E01/15/0324.0 11.00 31.00 0.01 35.00 35.01 5.88 309 4317,000 4.2 12,000 4.1 7.5 2.0 415 5.3cond. is est.Amphidrome-AG AMP-E 02/19/0354.0 33.00 29.00 0.01 36.00 36.01 8.64 281 3860,000 4.8 58,000 4.8 7.5675 12.5Amphidrome-AGAMP-E03/05/03190.0 20.00 36.00 0.04 51.00 51.04 12.40 374 4260,000 4.8 78,000 4.9 7.2 0.4 928 4.8Amphidrome-AGAMP-E04/23/0328.00 0.04 44.00 44.04 12.707.6 3.5 864 11.3Alk, BOD5, TSS cancelled; insuff. flow for all samplesAmphidrome-AG AMP-E 05/14/0330.0 23.00 30.00 0.03 38.00 38.03 7.90 299 3838,000 4.6 28,000 4.4 7.6 0.4 838 14.3Amphidrome-AGAMP-E06/17/0313.0 6.00 27.00 0.39 32.00 32.39 6.34 247 331,000 3.0 100 2.0 7.3 1.8 698 17.2Amphidrome-AGAMP-E07/30/0342.0 24.00 7.80 0.03 13.00 13.03 7.30 180 4360 1.820 1.3 7.2 0.4 600 19.6Amphidrome-AGAMP-E09/24/0340.0 24.00 25.00 0.02 33.00 33.02 7.06 311 6769,000 4.8 51,000 4.7 7.4 0.6 891 15.0Amphidrome-AGAMP-E11/05/0334.0 7.00 28.00 0.01 32.00 32.01 7.95 338 5180,000 4.9 23,000 4.4 8.1 1.0 915 10.1Amphidrome-AGAMP-E02/04/0414.0 8.00 24.00 0.02 26.00 26.02 5.65 235 308,800 3.9 7,800 3.9 7.4 0.9 643 10.0Amphidrome-AGAMP-E04/27/04100.0 18.000.01 29.00 29.01 5.07 273 29240,000 5.4 120,000 5.1 7.2 0.2 732 13.7NH4 VOID, nitrate/nitrite est.Amphidrome-AG AMP-E 07/14/0434.0 16.00 21.00 0.01 26.00 26.01 5.99 200 4368,000 4.8 44,000 4.6 6.9 0.6 635 17.2Amphidrome-AGAMP-E11/03/0443.0 18.00 33.00 0.02 37.00 37.02 6.52 280 591.2E+06 6.1 980,000 6.0 7.3 0.6 834 12.1Amphidrome-AGMW Drain 2161 05/09/020.05 8.07 0.30 8.37196.8 8.5 259 8.6 14.06Well developmentAmphidrome-AG MW Drain 2161 08/12/020.5 1.00 0.03 9.21 0.40 9.6148 341 0.01 0.0 6.8 7.0 314 8.2 14.40TKN <0.2 est., BOD5 <1Amphidrome-AG MW Drain 2161 10/08/020.5 2.00 0.03 7.06 0.30 7.3652 231 0.01 0.0 6.8 9.1 251 8.5 14.65BOD5 <1Amphidrome-AG MW Drain 2161 11/05/020.5 2.00 0.02 5.59 0.10 5.6947 211 0.01 0.0 6.8 6.2 221 8.6 14.70BOD5 <1.0, TKN <0.2Amphidrome-AG MW Drain 2161 12/03/020.5 1.00 0.01 5.17 0.20 5.3745 191 0.01 0.0 7.0 5.6 225 8.6 14.76 BOD5 <1.0 NH4 <0.02Amphidrome-AG MW Drain 2161 01/14/030.5 1.00 0.03 4.97 0.10 5.0732 191 0.01 0.0 6.5 5.5 217 8.3 14.89BOD5<1.0, TKN<0.2Amphidrome-AG MW Drain 2161 02/18/030.5 2.00 0.03 4.85 0.10 4.9544 181 0.01 0.0 6.6 6.5 207 8.5 14.92BOD5<1.0, TKN <0.2Amphidrome-AG MW Drain 2161 03/03/030.5 2.00 0.01 5.34 0.10 5.4444 181 0.01 0.0 6.7 6.6 213 8.2 14.95BOD5<1.0, NH4AsN <0.02, TKN <0.2Amphidrome-AG MW Drain 2161 04/23/030.5 0.50 0.01 7.10 0.10 7.2043 191 0.01 0.0 6.6 8.2 232 8.2 14.94BOD5<1.0, TSS <1 NH4 <0.02, TKN <0.2Amphidrome-AG MW Drain 2161 05/13/030.5 2.00 0.01 6.83 0.10 6.9348 201 0.01 0.0 6.5 7.3 245 8.7 15.00BOD5<1.0 NH4 <0.02, TKN <0.2Amphidrome-AG MW Drain 2161 06/16/030.5 0.50 0.02 7.08 0.20 7.2848 201 0.01 0.0 6.9 8.1 236 9.7 15.26BOD5<1.0, TSS<1Amphidrome-AG MW Drain 2161 07/28/030.5 0.50 0.01 7.56 0.10 7.6646 201 0.01 0.0 6.8 7.4 243 9.8 15.32BOD5<1.0, TSS<1 NH4<0.02, TKN<0.2Amphidrome-AG MW Drain 2161 09/23/030.5 0.50 0.01 7.68 0.10 7.7846 181 0.01 0.0 6.9 6.4 244 9.6 15.60BOD5<1.0, TSS<1, NH4AsN<0.02, TKN<0.2Amphidrome-AG MW Drain 2161 10/07/030.5 0.50 0.01 8.86 0.10 8.9646 181 0.01 0.0 6.8 7.3 255 9.8 15.66BOD5 <1.0, TSS<1, NH4AsN<0.02, TKN<0.2Amphidrome-AG MW Drain 2161 11/05/030.5 0.50 0.01 10.90 0.10 11.0045 201 0.01 0.0 6.6 7.1 290 8.3 15.73BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2Amphidrome-AG MW Drain 2161 02/04/040.03 18.00 0.70 18.70361 0.01 0.0 6.9 8.9 406 8.4 15.85Amphidrome-AGMW Drain 2161 04/26/040.01 21.70 0.10 21.80411 0.01 0.0 6.8 7.2 460 8.7 15.50TKN<0.2, NH4<0.02Amphidrome-AG MW Drain 2161 04/26/040.01 22.20 0.10 22.30421 0.01 0.0QA Duplicate; TKN<0.2, NH4<0.02Amphidrome-AG MW Drain 2161 07/12/040.01 24.10 0.10 24.20386.9 9.5 510 9.3 15.92NH4<0.02, TKN<0.2Amphidrome-AG MW Drain 2161 07/12/040.01 23.60 0.10 23.7037QA duplicate, NH4<0.02, TKN<0.2Amphidrome-AG MW Drain 2161 11/02/040.02 20.90 0.10 21.00681 0.01 0.0 6.8 7.6 452 10.1 16.22TKN<0.2Amphidrome-P AMP-E 07/30/0224.0 8.00 54.00 0.01 60.00 60.01 7.23 361 849.6E+06 7.0 7.8E+06 6.9 7.8 1.1 1053 17.9Amphidrome-PAMP-E08/27/0222.0 15.00 3.00 0.70 52.00 52.70 5.88 342 83400,000 5.6 500,000 5.7 7.5 1.3 457 16.4field cond. is est.Amphidrome-P AMP-E 09/16/0230.0 21.00 7.70 1.01 13.00 14.01 4.99 205 801.4E+06 6.1 400,000 5.6 7.2 3.5 710 15.5Amphidrome-PAMP-E10/16/029.6 17.00 0.89 4.17 4.60 8.77 4.48 202 869,800 4.0 4,200 3.6 7.2 3.1 720 10.9Amphidrome-PAMP-E11/04/0214.0 12.00 5.70 1.47 11.00 12.47 4.90 222 92420 2.6 400 2.6 7.1 2.7 426 7.4Amphidrome-PAMP-E12/09/0215.0 28.00 24.00 1.93 27.00 28.93 6.24 268 7786,000 4.9 46,000 4.7 7.3 3.3 762 4.0Amphidrome-PAMP-E01/15/0316.0 19.00 46.00 1.44 62.00 63.44 11.20 376 9346,000 4.7 32,000 4.5 7.6 1.9 1178 4.9Chloride is est.Amphidrome-P AMP-E 02/11/0321.0 38.00 43.00 1.08 49.00 50.08 8.82 324 98120,000 5.1 120,000 5.1 7.2 0.9 794 5.9BOD5, cond. is est.Amphidrome-P AMP-E 03/17/0338.0 20.00 4.80 23.50 17.00 40.50 8.44 118 8348,000 4.7 42,000 4.6 7.1 3.1 815 6.9Amphidrome-PAMP-E04/23/0320.0 10.00 0.51 22.30 9.10 31.40 8.14 131 9060,000 4.8 64,000 4.8 7.4 2.7 812 7.6TKN is est.Amphidrome-P AMP-E 05/12/0325.0 22.00 0.26 15.60 11.00 26.60 7.77 142 887,400 3.9 6,800 3.8 7.3 3.0 728 11.1Amphidrome-PAMP-E06/23/0318.0 18.00 0.88 4.10 13.00 17.10 7.47 172 87250,000 5.4 2,000 3.3 7.1 1.8 745 14.7Amphidrome-PAMP-E07/21/0327.0 19.00 0.30 0.60 12.00 12.60 7.93 195 9282,000 4.9 800 2.9 7.1 2.2 759 19.1Amphidrome-PAMP-E09/15/030.5 16.00 0.27 3.63 5.30 8.93 5.0378 85580,000 5.82 0.3 7.2 2.3 730 17.6BOD5<1Amphidrome-P AMP-E 11/17/034.8 5.00 0.12 14.50 2.00 16.50 7.84 154 9370 1.82 0.3 7.2 5.6 820 8.8Amphidrome-PAMP-E03/01/045.4 7.00 14.40 1.04 20.00 21.04 6.58 241 984,800 3.7 2,560 3.4 7.0 2.3 389 7.4BOD5 is est.Amphidrome-P AMP-E 04/27/0474.0 33.00 26.00 0.10 42.00 42.10 6.56 282 87240,000 5.4 22,000 4.3 6.9 0.4 773 12.5Amphidrome-PAMP-E08/04/043.9 3.00 4.70 5.32 6.90 12.22 5.56 200 9438 1.630 1.5 7.2 1.7 490 19.7Amphidrome-PAMP-E11/03/042.7 8.00 0.14 9.24 2.50 11.74 4.73 160 180580 2.8 460 2.7 7.0 4.2 427 6.6Amphidrome-PMW Drain 2130 05/09/020.04 1.14 0.10 1.24187.5 8.9 211 9.0 9.49Well Development; TKN <0.2Amphidrome-P MW Drain 2130 07/29/020.5 2.00 0.03 3.69 0.30 3.9940 451 0.01 0.0 7.4 8.6 256 11.4 9.43BOD5 <1.0Amphidrome-P MW Drain 2130 08/27/020.5 2.00 0.51 3.59 0.10 3.6940 511 0.01 0.0 7.1 7.6 290 10.1 9.48BOD5 <1.0, TKN <0.2Amphidrome-P MW Drain 2130 09/16/021.1 3.00 0.03 3.71 0.10 3.8144 501 0.01 0.0 7.1 5.8 282 11.8 9.42BOD5 is est., TKN<0.2Amphidrome-P MW Drain 2130 10/14/020.5 5.00 0.02 5.06 0.30 5.3644 501 0.01 0.0 7.0 8.5 303 8.4 9.16BOD5<1.0, Chloride is est.Amphidrome-P MW Drain 2130 11/04/020.5 4.00 0.01 4.57 0.40 4.9742 561 0.01 0.0 7.2 7.1 298 11.6 9.38BOD5 <1.0 NH4 <0.02Amphidrome-P MW Drain 2130 12/09/020.5 3.00 0.01 4.59 0.10 4.6940 601 0.01 0.0 7.2 8.3 333 8.5 8.81NH4 <0.02, BOD5 <1.0, TKN <0.2Amphidrome-P MW Drain 2130 01/14/030.5 2.00 0.02 5.14 0.10 5.2440 611 0.01 0.0 7.0 8.5 342 8.9 9.43BOD5<1.0, TKN<0.2Amphidrome-P MW Drain 2130 02/11/030.5 3.00 0.01 5.90 0.20 6.1050 611 0.01 0.0 7.1 5.9 368 10.9 9.38BOD5<1.0, NH4AsN <0.02Amphidrome-P MW Drain 2130 03/18/030.5 25.00 0.02 7.28 0.10 7.3848 571 0.01 0.0 7.2 7.1 374 11.4 8.31BOD5<1.0, TKN <0.2Appendix B: Innovative System Field Test DataPage B-4
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesAmphidrome-PMW Drain 2130 04/23/030.5 0.50 0.01 7.62 0.40 8.0247 581 0.01 0.0 6.8 7.1 394 9.0 9.35BOD5<1.0, TSS <1 NH4 <0.02Amphidrome-P MW Drain 2130 05/12/031.7 2.00 0.02 7.19 0.10 7.2946 631 0.01 0.0 6.9 8.9 384 9.7 8.23TKN <0.2Amphidrome-P MW Drain 2130 06/23/031.1 0.50 0.01 6.26 0.10 6.3648 541 0.01 0.0 7.4 7.6 347 10.9 8.59BOD5<1.0, TSS<1 NH4<0.02, TKN<0.2Amphidrome-P MW Drain 2130 07/21/030.5 1.00 0.01 6.58 0.10 6.6849 521 0.01 0.0 7.2 7.5 362 15.5 8.78BOD5<1.0 NH4<0.02, TKN<0.2Amphidrome-P MW Drain 2130 09/15/030.5 0.50 0.02 9.25 0.10 9.3548 541 0.01 0.0 7.3 6.9 379 13.0 9.38TKN<0.2, TSS<1, BOD5<1Amphidrome-P MW Drain 2130 10/15/030.1 0.50 0.01 10.70 0.10 10.8046 671 0.01 0.0 7.2 8.2 417 10.3 9.40BOD5<0.1, TSS<1, NH4AsN<0.02, TKN<0.2Amphidrome-P MW Drain 2130 11/17/030.5 0.50 0.01 9.27 0.10 9.3743 561 0.01 0.0 6.8 6.2 408 9.6 9.38BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2Amphidrome-P MW Drain 2130 03/01/040.02 13.50 0.20 13.70501 0.01 0.0 7.1 8.6 405 6.8 9.45Amphidrome-PMW Drain 2130 04/26/04601 0.01 0.0 7.1 7.5 541 15.4 8.20R (Nutrient) bottle broke. Nutrient tests cancelled.Amphidrome-P MW Drain 2130 08/04/040.01 14.70 0.10 14.80627.0 9.5 446 12.1 8.83NH4<0.02, TKN<0.2; Slow, bubbly flowAmphidrome-P MW Drain 2130 11/03/040.01 11.70 0.10 11.80591 0.01 0.0 7.2 8.8 391 9.7 9.35TKN<0.2, NH4<0.02AX-20-I AXE 01/23/0210.0 5.00 45.00 1.20 62.00 63.20 13.10 410 3714,000 4.1 11,000 4.0 8.0 6.7 1080 9.6AX-20-IAXE02/20/028.2 10.00 0.50 6.80 5.00 11.80 14.30 186 34240 2.4 140 2.1 7.5 3.8 677 10.4AX-20-IAXE03/18/023.0 4.00 0.30 13.00 2.70 15.70 16.10 212 449,000 4.0 6,800 3.8 7.7 4.2 767 10.0AX-20-IAXE04/16/021.6 0.50 0.36 19.30 3.70 23.00 16.70 185 481,100 3.0 740 2.9 7.4 3.6 795 11.4 TSS <1AX-20-I AXE 05/14/023.0 2.00 0.29 8.73 2.40 11.13 15.30 185 39240 2.4 220 2.3 7.4 6.0 679 14.3AX-20-IAXE06/19/027.2 3.00 0.18 5.88 2.60 8.48 15.90 233 40940 3.0 280 2.4 7.1 4.4 676 16.8AX-20-IAXE07/22/023.0 6.00 0.24 7.21 2.50 9.71 14.70 210 34400 2.6 480 2.7 7.4 2.8 622 21.2AX-20-IAXE08/19/0211.0 7.00 0.24 7.50 3.00 10.50 16.00 210 551,500 3.2 1,200 3.1 7.5 2.8 718 20.9AX-20-IAXE09/17/023.0 2.00 0.13 9.91 3.10 13.01 16.50 186 4314,000 4.1 5,800 3.8 7.3 3.8 564 17.8pH is est.AX-20-I AXE 10/14/020.5 0.50 0.06 7.54 1.73 9.27 168.00 220 53920 3.0 500 2.7 7.7 4.5 311 14.3BOD5<1.0, TSS <1, Chloride is est.AX-20-I AXE 11/06/024.8 2.00 0.20 15.00 1.80 16.80 15.70 198 487,400 3.9 6,200 3.8 7.6 4.6 698 12.5AX-20-IAXE11/06/022.4 1.00 0.17 15.10 1.90 17.00 15.90 196 487,600 3.9 7,400 3.9 7.7 4.3 693 13.0QA DuplicateAX-20-I AXE 12/11/023.3 3.00 0.21 7.48 2.50 9.98 15.60 251 541,600 3.2 1,100 3.0 7.8 4.5 856 10.3AX-20-IAXE02/10/034.8 4.00 0.28 8.95 2.00 10.95 13.40 208 5312,000 4.1 8,000 3.9 7.7 5.2 704 9.5AX-20-IAXE04/16/034.8 2.00 1.80 18.10 4.10 22.20 13.60 202 386,400 3.8 6,200 3.8 7.6 2.8 777 13.5AX-20-IAXE06/16/030.5 0.50 0.52 13.30 2.60 15.90 15.10 215 39840 2.9 300 2.5 7.5 2.9 714 21.1BOD5<1.0, TSS<1AX-20-I AXE 08/11/035.7 8.00 0.23 10.80 2.70 13.50 16.20 242 48560 2.7 440 2.6 7.4 3.4 1012 21.1AX-20-IAXE11/03/032.0 0.50 0.34 13.00 2.30 15.30 17.30 194 471,600 3.2 1,500 3.2 7.7 4.9 727 13.5QA Duplicate; TSS<1AX-20-I AXE 11/03/035.6 5.00 0.37 13.10 2.20 15.30 17.30 194 471,700 3.2 1,700 3.2 7.6 4.5 793 12.5AX-20-IAXE03/29/0449.0 27.00 0.30 9.47 35.00 44.47 19.70 320 48130,000 5.1 80,000 4.9 7.5 0.6 949 12.0AX-20-IAXE03/29/0440.0 22.00 0.30 4.82 37.00 41.82 19.70 316 44210,000 5.3 135,000 5.1 7.7 0.8 920 11.0QA DuplicateAX-20-I AXE 06/21/043.7 1.00 0.18 14.30 1.80 16.10 17.80 130 441,400 3.1 1,500 3.2 7.1 5.6 669 17.5BOD5 is est.AX-20-I AXE 09/13/043.2 0.50 0.42 16.40 1.90 18.30 14.90 140 405,000 3.7 3,200 3.5 7.3 3.3 690 16.3BOD5 is est., TSS<1AX-20-I LE 02/20/020.10 5.40 0.90 6.30 0.1031640 2.8 720 2.9 7.2 7.8 362 2.0AX-20-ILE02/10/031.5 10.00 0.07 13.00 1.00 14.00 0.06 124 512 0.32 0.3 7.6 10.9 314 0.6BOD5, cond. is est.AX-20-I LE 04/16/032.0 14.00 0.20 17.80 1.80 19.60 0.19 135 398.2 8.4 888 5.5BOD5 is est., cond. void; insuff. flow for bacteriaAX-20-I LE 06/16/03No samples due to no flow.AX-20-I LE 11/03/0311.0 6.00 0.01 14.40 2.30 16.70 0.69 169 6428 1.424 1.4 7.7 7.3 737 4.4NH4AsN<0.02AX-20-I LE 03/29/041.6 2.00 0.01 5.62 1.50 7.12 1.00 120 206 0.82 0.3 7.7 7.2 404 4.6BOD5 is est.; NH4<0.02AX-20-I LE 06/21/040.11 25.20 1.70 26.90 0.61382 0.32 0.3 7.0 5.4 631 19.1BOD5,TSS, Alk cancelledAX-20-I MW Drain 2002 01/02/029.15 Background/well development; No rechargeAX-20-I MW Drain 2002 01/23/028.00 0.00 0.30 0.40 0.70 1.2021 0.01 0.0 6.6 6.5 84 4.7 8.94AX-20-IMW Drain 2002 02/20/020.00 0.20 0.10 0.30 0.2051 0.01 0.0 7.4 9.8 101 5.6 8.50TKN <0.2AX-20-I MW Drain 2002 03/19/020.5 41.00 0.00 0.53 0.10 0.63 0.1038 91 0.01 0.0 7.0 8.7 126 5.8 8.43 BOD5 <1.0, TKN <0.2AX-20-I MW Drain 2002 04/16/020.5 2.00 0.01 1.13 0.10 1.23 0.0937 141 0.01 0.0 6.6 7.3 156 5.5 8.25TKN <0.2; BOD5 <1.0; NH4 <0.02AX-20-I MW Drain 2002 05/14/021.0 6.00 0.02 1.49 0.30 1.7938 107.0 8.5 144 6.6 8.24 BOD5 is est.AX-20-I MW Drain 2002 06/19/020.5 7.00 0.03 1.62 0.40 2.0238 91 0.01 0.0 6.9 9.8 124 7.7 8.28 BOD5<1.0AX-20-I MW Drain 2002 07/22/020.5 4.00 0.01 2.94 0.10 3.0438 101 0.01 0.0 6.7 7.3 130 9.2 8.40 TKN <0.2, NH4<0.02, BOD5<1.0AX-20-I MW Drain 2002 07/22/020.5 1.00 0.01 2.96 0.10 3.0638 101 0.01 0.0 6.7 7.3 130 9.2 QA Duplicate; TKN <0.2, NH4<0.02, BOD5<1.0AX-20-I MW Drain 2002 08/21/020.5 3.00 0.02 5.65 0.10 5.7536 201 0.01 0.0 6.8 6.4 163 11.2 8.71TKN <0.2, BOD5 <1AX-20-I MW Drain 2002 08/21/020.5 2.00 0.02 5.69 0.10 5.7936 161 0.01 0.0 6.8 6.4 163 11.2QA Duplicate; TKN <0.2AX-20-I MW Drain 2002 09/18/020.5 8.00 0.01 6.99 0.10 7.0938 141 0.01 0.0 6.7 9.8 187 12.6 8.89BOD5<1.0, NH4 <0.02, TKN<0.2AX-20-I MW Drain 2002 09/18/020.5 12.00 0.01 6.99 0.10 7.0938 151 0.01 0.0 6.7 9.8 187 12.6QA Duplicate; BOD5<1.0, NH4 <0.02, TKN<0.2AX-20-I MW Drain 2002 10/14/020.5 9.00 0.01 7.63 0.30 7.9336 141 0.01 0.0 6.9 8.7 188 7.4 9.03BOD5<1.0, NH4 <0.02, Chloride is est.AX-20-I MW Drain 2002 11/05/020.5 9.00 0.01 11.90 0.10 12.0032 161 0.01 0.0 6.8 7.3 213 12.6 9.21BOD5 <1.0 NH4 <0.02, TKN <0.2AX-20-I MW Drain 2002 12/10/020.5 23.00 0.02 23.10 0.10 23.2024 201 0.01 0.0 7.2 8.5 353 6.6 9.27BOD5 <1.0, TKN <0.2 est.AX-20-I MW Drain 2002 02/11/030.5 2.00 0.04 23.60 0.10 23.7019 381 0.01 0.0 6.8 8.3 396 6.0 8.34BOD5<1.0, TKN <0.2AX-20-I MW Drain 2002 02/11/030.5 2.00 0.03 23.90 0.10 24.0018 381 0.01 0.0QA Duplicate; BOD5<1.0, TKN <0.2AX-20-I MW Drain 2002 04/15/030.5 2.00 0.01 15.80 0.30 16.1022 421 0.01 0.0 6.9 9.0 381 6.2 7.98BOD5<1.0 NH4 <0.02AX-20-I MW Drain 2002 05/21/030.5 3.00 0.03 13.10 0.10 13.2032 441 0.01 0.0 6.5 8.5 375 6.6 8.03BOD5<1.0, TKN<0.2AX-20-I MW Drain 2002 06/16/030.5 2.00 0.10 11.10 0.20 11.3032 381 0.01 0.0 6.7 8.5 349 7.4 8.12BOD5<1.0AX-20-I MW Drain 2002 08/11/030.5 0.50 0.01 13.00 0.40 13.4037 351 0.01 0.0 6.7 6.4 360 10.2 8.61BOD5<1.0, TSS<1, NH4AsN<0.02AX-20-I MW Drain 2002 11/03/031.8 5.00 0.01 17.80 0.10 17.9028 421 0.01 0.0 6.9 8.8 397 5.5 9.17NH4AsN<0.02, TKN<0.2Appendix B: Innovative System Field Test DataPage B-5
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesAX-20-IMW Drain 2002 03/29/040.01 9.85 0.50 10.35361 0.01 0.0 6.8 10.4 339 6.2 8.14NH4<0.02AX-20-I MW Drain 2002 06/21/040.01 2.48 0.10 2.58101 0.01 0.0 6.9 4.0 147 8.1 8.08NH4<0.02, TKN<0.2AX-20-I MW Drain 2002 09/14/040.01 2.98 0.10 3.08111 0.01 0.0 6.8 7.6 160 11.4 8.84NH4<0.02, TKN<0.2AX-20-I STE 01/23/0262.0 44.00 56.00 0.00 68.00 68.00 14.00 420 40460,000 5.7 480,000 5.7 8.1 0.9 1049 8.5AX-20-ISTE02/20/0276.0 90.00 5.90 0.00 16.00 16.00 15.60 260 35 10.00 42,000 4.6 38,000 4.6 7.7 0.9 693 11.4AX-20-ISTE03/18/0226.0 30.00 5.10 6.00 11.00 17.00 16.40 252 43 2.50 60,000 4.8 70,000 4.8 7.6 1.5 791 9.9 Oil & Grease <5AX-20-I STE 04/16/0234.0 31.00 6.40 8.23 24.00 32.23 19.30 143 44 2.50 200,000 5.3 150,000 5.2 7.4 1.1 376 11.2 O&G <5AX-20-I STE 05/14/0221.0 15.00 4.80 0.04 11.00 11.04 14.40 230 37 2.50 60,000 4.8 26,000 4.4 7.7 1.1 665 13.3O&G <5AX-20-I STE 06/19/0290.0 50.00 6.00 0.05 11.00 11.05 16.40 238 43 2.50 52,000 4.7 52,000 4.7 7.6 0.3 705 17.6 O&G <5AX-20-I STE 07/22/02380.0 260.00 5.30 0.01 9.40 9.41 15.00 258 34 7.00 400,000 5.6 520,000 5.7 7.3 0.5 660 21.1AX-20-ISTE08/19/0241.0 60.00 5.40 0.03 9.80 9.83 16.30 241 52 2.50 860,000 5.9 860,000 5.9 7.6 0.7 631 20.6O&G <5AX-20-I STE 09/17/0221.0 20.00 3.90 5.07 11.00 16.07 17.40 217 42 2.50 70,000 4.8 36,000 4.6 7.4 1.0 663 18.3O&G<5, pH is est.AX-20-I STE 10/14/0232.0 39.00 2.70 3.81 9.30 13.11 17.00 246 54 2.50 40,000 4.6 46,000 4.7 7.6 1.3 686 14.3Chloride is est., O&G <5AX-20-I STE 11/06/0224.0 21.00 3.90 9.05 9.00 18.05 16.30 230 49 2.50 820,000 5.9 640,000 5.8 7.8 0.9 706 13.0O&G <5AX-20-I STE 12/11/0237.0 35.00 5.20 0.03 16.00 16.03 16.20 300 54 2.50 480,000 5.7 440,000 5.6 8.0 1.0 870 11.6O&G <5AX-20-I STE 02/10/0336.0 70.00 4.80 2.63 13.00 15.63 14.00 253 37 2.50 600,000 5.8 460,000 5.7 7.7 1.1 700 10.4O&G <5AX-20-I STE 04/16/0382.0 13.00 0.19 0.04 26.00 26.04 15.30 330 38 7.00 278,000 5.4 600,000 5.8 7.7 0.7 816 14.5AX-20-ISTE06/16/0350.0 76.00 12.00 0.01 23.00 23.01 16.30 311 42 17.00 240,000 5.4 20,000 4.3 7.6 0.5 782 18.7AX-20-ISTE08/11/0338.0 40.00 1.44 0.02 17.00 17.02 16.60 309 50 8.00 62,000 4.8 44,000 4.6 7.3 0.3 830 21.0AX-20-ISTE11/03/0323.0 25.00 7.80 2.35 14.00 16.35 18.10 256 47 2.50 74,000 4.9 70,000 4.8 7.7 1.3 772 13.6O&G<5AX-20-I STE 03/29/04110.0 150.00 0.38 0.03 50.00 50.03 20.00 379 44460,000 5.7 200,000 5.3 7.7 0.4 950 11.6AX-20-ISTE06/21/0426.0 13.00 5.60 7.29 9.00 16.29 18.60 180 4442,000 4.6 84,000 4.9 7.2 1.0 961 17.6AX-20-ISTE09/13/0437.0 37.00 13.00 0.01 19.00 19.01 14.50 240 383,800 3.6 2,600 3.4 7.6 1.0 707 17.5AX-20-MAXE01/08/024.5 3.00 33.00 0.15 38.00 38.15 3.50 240 341,700 3.2 940 3.0 7.4 4.3 727 9.7AX-20-MAXE02/05/028.0 6.00 17.00 3.77 22.00 25.77 2.60 160 314,800 3.7 4,400 3.6 7.4 3.7 516 11.6AX-20-MAXE03/05/0210.0 7.00 2.70 3.60 5.20 8.80 2.40 123 3310,000 4.0 9,800 4.0 7.2 4.2 390 10.1AX-20-MAXE04/02/0220.0 7.00 3.00 2.70 6.30 9.00 2.20 112 3098,000 5.0 72,000 4.9 7.0 4.5 476 12.9AX-20-MAXE04/30/026.9 11.00 3.60 2.54 6.30 8.84 3.17 114 3940,000 4.6 40,000 4.6 7.3 4.5 511 12.6AX-20-MAXE06/04/0210.0 2.00 3.00 2.71 5.70 8.41 3.64 115 3519,000 4.3 18,000 4.3 7.1 3.3 431 16.0AX-20-MAXE06/04/0218.0 1.00 3.40 2.29 6.60 8.89 3.41 120 3523,000 4.4 11,000 4.0 7.1 3.3 431 16.0QA duplicateAX-20-M AXE 07/08/0214.0 15.00 1.70 4.90 4.50 9.40 4.53 115 4016,000 4.2 13,000 4.1 7.0 3.5 468 18.8AX-20-MAXE08/06/028.1 3.00 1.37 4.38 3.70 8.08 3.67 112 411,100 3.0 1,100 3.0 7.3 3.0 437 18.6QA DuplicateAX-20-M AXE 08/06/0216.0 7.00 0.41 6.13 1.90 8.03 3.69 112 398,800 3.9 8,600 3.9 7.3 3.0 437 18.6AX-20-MAXE09/03/023.5 2.00 0.71 6.33 2.50 8.83 3.24 108 401,300 3.1 740 2.9 7.1 4.1 422 18.7AX-20-MAXE09/03/024.6 1.00 0.21 7.17 1.60 8.77 3.12 108 411,600 3.2 1,400 3.1 7.1 4.1 422 18.7QA DuplicateAX-20-M AXE 10/02/024.6 4.00 0.94 4.68 3.10 7.78 3.60 120 401,600 3.2 2,000 3.3 7.3 3.5 952 14.6AX-20-MAXE10/02/0210.0 11.00 1.15 4.23 3.90 8.13 3.35 122 4026,000 4.4 22,000 4.3 7.2 3.1 458 15.1QA DuplicateAX-20-M AXE 10/28/0212.0 7.00 1.70 5.53 4.60 10.13 3.13 120 3517,000 4.2 1,200 3.1 7.1 3.7 446 12.6AX-20-MAXE10/28/029.2 12.00 1.42 6.01 3.50 9.51 3.03 120 3519,000 4.3 1,200 3.1 7.2 4.1 440 12.8AX-20-MAXE11/18/023.4 2.00 0.26 7.82 1.70 9.52 2.79 105 401,800 3.3 1,400 3.1 7.2 4.1 514 10.3AX-20-MAXE11/18/024.0 4.00 1.03 6.51 3.00 9.51 2.89 106 4042,000 4.6 4,400 3.6 7.4 4.4 501 10.9AX-20-MAXE02/03/031.5 12.00 0.64 7.13 3.50 10.63 3.53 116 458,200 3.9 7,000 3.8 7.7 4.2 488 11.4BOD5 is est.AX-20-M AXE 02/03/037.6 4.00 1.14 6.42 4.20 10.62 3.74 108 4510,000 4.0 7,200 3.9 7.5 3.8 480 12.3QA DuplicateAX-20-M AXE 04/01/035.7 30.00 2.70 7.12 5.70 12.82 4.06 104 43660 2.8 200 2.3 7.4 5.1 490 10.6AX-20-MAXE04/01/0314.0 25.00 1.00 8.89 2.90 11.79 3.25 116 437,600 3.9 2,200 3.3 7.3 5.0 492 10.5QA DuplicateAX-20-M AXE 06/04/0319.0 5.00 5.10 9.08 7.90 9.08 3.41 132 3814,200 4.2 7,800 3.9 6.9 2.8 564 16.4AX-20-MAXE08/04/0326.0 24.00 9.10 0.73 14.00 14.73 3.05 188 48160,000 5.2 160,000 5.2 7.0 1.6 591 22.2BOD5 is est.AX-20-M AXE 11/05/0350.0 29.00 9.10 1.26 14.00 15.26 2.91 170 3392,000 5.0 8,800 3.9 7.5 2.1 564 13.0AX-20-MAXE11/05/0391.0 34.00 9.50 1.27 14.00 15.27 3.33 160 3499,000 5.0 11,000 4.0 7.5 1.9 547 14.0QA DuplicateAX-20-M AXE 03/01/0445.0 24.00 16.00 3.38 21.00 24.38 4.59 165 43270,000 5.4 160,000 5.2 7.5 2.4 571 11.0AX-20-MAXE05/24/0429.0 14.00 5.40 1.94 7.40 9.34 3.85 150 3224,400 4.4 12,400 4.1 7.2 3.5 483 14.1AX-20-MAXE05/24/0425.0 14.00 5.40 1.94 7.20 9.14 3.79 140 3140,000 4.6 10,200 4.0 7.3 4.0 486 14.1AX-20-MAXE10/04/0440.0 100.00 4.60 4.18 14.00 18.18 14.00 150 32250,000 5.4 28,000 4.4 7.3 2.2 468 18.4AX-20-MLE02/03/030.41 3.96 3.00 6.96 0.551602 0.32 0.3 7.8 4.9 697 3.0AX-20-MLE06/04/030.10 2.17 2.00 4.17 1.79417.2 5.4 459 12.4AX-20-MLE08/04/03No samples; no flow from lysimeterAX-20-MLE11/05/035.1 5.00 0.09 2.51 2.50 5.01 1.89 121 4238 1.632 1.5 7.7 6.4 467 4.7AX-20-MLE03/01/049.5 1.00 0.12 9.10 2.40 11.50 1.14 104 2722 1.314 1.1 7.6 4.8 411 4.4AX-20-MLE05/24/040.03 1.25 1.60 2.85 1.60347.5 7.3 382 10.3Bacteria, Alk, BOD5, TSS cancelled due to low flowAX-20-M MW Drain 2185 11/16/010.61 0.0117.5 1.0 101 8.9 13.01Background/well dev'ment; No TKN result reported.AX-20-M MW Drain 2185 01/08/020.5 17.00 0.60 0.00 0.60 0.60 0.3045 11 0.01 0.0 8.0 0.3 87 8.4 13.03BOD5 <1.0AX-20-M MW Drain 2185 02/05/020.5 2.00 0.60 0.00 0.60 0.60 0.3045 11 0.01 0.0 8.1 0.1 97 8.2 13.04BOD5 <1; D.O. is <0.1AX-20-M MW Drain 2185 02/05/020.5 3.00 0.60 0.00 0.60 0.60 0.3045 11 0.01 0.0 8.1 0.1 97 8.2QA Duplicate; D.O. is <0.1AX-20-M MW Drain 2185 03/04/020.5 5.00 0.60 0.00 0.50 0.50 0.3044 11 0.01 0.0 8.5 0.1 96 7.9 13.07 BOD5 <1.0Appendix B: Innovative System Field Test DataPage B-6
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesAX-20-MMW Drain 2185 03/04/020.5 11.00 0.60 0.00 0.50 0.50 0.3044 11 0.01 0.0 8.5 0.1 96 7.9 QA Duplicate; BOD5 <1.0AX-20-M MW Drain 2185 04/02/020.5 2.00 0.50 0.00 0.50 0.50 0.3042 11 0.01 0.0 8.3 0.1 97 7.9 12.99 BOD5 <1.0. Dissolved oxygen <0.1AX-20-M MW Drain 2185 04/02/020.5 2.00 0.60 0.00 0.50 0.50 0.3043 11 0.01 0.0 8.3 0.1 97 7.9 QA Duplicate - BOD5 <1.0, dissolved oxygen <0.1AX-20-M MW Drain 2185 04/30/020.5 3.00 0.57 0.00 0.60 0.6042 11 0.01 0.0 7.9 0.1 101 7.8 13.08 BOD5 <1.0; D.O. <0.1AX-20-M MW Drain 2185 04/30/020.5 2.00 0.58 0.00 0.60 0.6042 11 0.01 0.0 7.9 0.1 101 7.8 BOD5 <1.0; D.O. <0.1; QA duplicateAX-20-M MW Drain 2185 06/04/021.1 0.50 0.58 0.00 0.50 0.5040 11 0.01 0.0 8.5 0.1 89 7.8 13.00 NO3 <0.005, TSS <1, BOD5 is est.; D.O. <0.1AX-20-M MW Drain 2185 06/04/020.5 0.50 0.58 0.00 0.50 0.5042 11 0.01 0.0 8.5 0.1 89 7.8QA Dupl; NO3 <0.005, TSS <1, BOD5<1.0; D.O. <0.1AX-20-M MW Drain 2185 07/08/020.5 1.00 0.59 0.00 0.60 0.6048 11 0.01 0.0 8.2 0.8 86 8.0 13.02Nitrate/nitrite <0.005, BOD5<1.0AX-20-M MW Drain 2185 08/06/020.5 1.00 0.56 0.00 0.50 0.5043 11 0.01 0.0 8.3 0.1 88 8.2 13.06 Nitrate <0.005, bod5 <1.0AX-20-M MW Drain 2185 09/03/020.5 1.00 0.62 0.00 0.60 0.6043 11 0.01 0.0 8.1 0.1 91 8.9 13.14BOD5<1.0, Nitrate<0.005AX-20-M MW Drain 2185 10/02/020.5 0.50 0.55 0.00 0.80 0.8046 11 0.01 0.0 8.2 0.1 91 8.9 13.01BOD5 <1; nitrate < 0.0050; TSS <1AX-20-M MW Drain 2185 10/28/020.5 3.00 0.59 0.01 0.60 0.6146 11 0.01 0.0 8.2 0.2 89 9.0 12.99BOD5<1.0AX-20-M MW Drain 2185 11/18/020.5 0.50 0.62 0.01 0.70 0.7146 11 0.01 0.0 8.1 0.2 101 9.0 13.04BOD5 <1.0, TSS<1AX-20-M MW Drain 2185 11/18/021.0 0.50 0.63 0.01 0.60 0.6146 11 0.01 0.0QA Duplicate; BOD5 is est., TSS<1AX-20-M MW Drain 2185 02/03/030.5 0.50 0.58 0.00 0.80 0.8046 11 0.01 0.0 8.2 0.1 93 8.5 12.95BOD5<1.0, TSS<1, Nitrate-Nitrite <0.0050AX-20-M MW Drain 2185 04/01/030.5 1.00 0.59 0.01 0.60 0.6146 11 0.01 0.0 7.9 0.1 96 7.9 13.04BOD5<1.0AX-20-M MW Drain 2185 04/29/030.5 2.00 0.56 0.00 0.50 0.5046 01 0.01 0.0 8.0 0.1 95 7.7 13.01BOD5<1.0, Nitrate <0.005, Chloride <0.5, D.O. <0.1AX-20-M MW Drain 2185 04/29/030.5 0.50 0.56 0.00 0.60 0.6046 11 0.01 0.0QA Duplicate; BOD5<1.0, TSS <1, Nitrate <0.005AX-20-M MW Drain 2185 06/04/030.5 2.00 0.56 0.00 0.60 0.6046 11 0.01 0.0 8.3 0.1 94 7.9 13.00BOD5<1.0, nitrate/nitrite<0.005AX-20-M MW Drain 2185 08/05/030.5 7.00 0.55 0.00 0.70 0.7046 18.1 0.1 95 9.2 13.06BOD5<1.0, Nitrate<0.0050AX-20-M MW Drain 2185 08/11/032 0.32 0.3 8.2 0.1 95 8.6Bacteria Re-sampleAX-20-M MW Drain 2185 11/05/030.5 0.50 0.58 0.00 0.60 0.6048 12 0.32 0.3 8.1 0.2 96 8.8 12.94BOD5<1.0, TSS<1, Nitrate<0.0050AX-20-M MW Drain 2185 11/05/030.5 0.50 0.57 0.00 0.60 0.6048 12 0.32 0.3QA Duplicate; BOD5<1.0, TSS<1, Nitrate<0.0050AX-20-M MW Drain 2185 03/01/040.55 0.00 0.60 0.6012 0.32 0.3 8.3 0.1 95 8.4 13.00nitrate <0.005AX-20-M MW Drain 2185 05/24/040.56 0.00 0.60 0.6012 0.32 0.3 8.3 0.1 95 8.1 13.01nitrate<0.0050AX-20-M MW Drain 2185 10/04/040.56 0.01 0.50 0.5111 0.01 0.0 8.0 0.1 97 9.8 12.99AX-20-MSTE01/08/0245.0 44.00 33.00 0.00 42.00 42.00 4.10 238 35 7.00 72,000 4.9 34,000 4.5 7.2 1.2 686 10.1AX-20-MSTE02/05/0234.0 31.00 20.00 0.06 26.00 26.06 3.30 189 32 5.00 56,000 4.7 58,000 4.8 7.7 1.2 517 9.0AX-20-MSTE03/05/0258.0 40.00 6.10 0.00 12.00 12.00 2.70 146 34 2.50 92,000 5.0 62,000 4.8 7.6 1.1 449 9.9AX-20-MSTE04/02/0234.0 22.00 2.80 0.00 6.40 6.40 1.40 135 31 2.50 1,200 3.1 400 2.6 7.2 0.7 463 11.3Oil & Grease <5AX-20-M STE 04/30/0223.0 31.00 5.80 0.04 10.00 10.04 3.47 134 38 2.50 110,000 5.0 76,000 4.9 7.3 0.9 517 12.0O&G <5AX-20-M STE 06/04/0253.0 35.00 5.70 0.03 10.00 10.03 4.51 142 35 6.00 70,000 4.8 32,000 4.5 7.2 0.5 443 16.4AX-20-MSTE07/08/0229.0 35.00 5.80 0.01 14.00 14.01 5.08 144 40 2.50 100,000 5.080 1.9 7.2 0.2 482 18.2O&G <5AX-20-M STE 08/06/0233.0 31.00 4.80 0.02 8.80 8.82 4.22 140 40 2.50 48,000 4.7 42,000 4.6 7.4 0.8 447 19.0o&g <5AX-20-M STE 09/03/0229.0 28.00 5.30 0.04 11.00 11.04 3.69 146 41 2.50 130,000 5.1 90,000 5.0 7.2 0.7 477 18.9O&G <5AX-20-M STE 10/02/0230.0 80.00 4.30 0.03 9.80 9.83 3.36 160 41 2.50 82,000 4.9 54,000 4.7 7.2 0.8 469 15.0Oil & Grease <5AX-20-M STE 10/28/0221.0 32.00 4.90 0.99 11.00 11.99 3.79 148 35 2.50 22,000 4.3 1,000 3.0 7.2 1.0 460 13.1O&G <5AX-20-M STE 11/18/0221.0 26.00 4.70 1.00 10.00 11.00 3.34 142 40 2.50 1.0E+07 7.0 5.0E+06 6.7 7.4 1.4 501 10.9O&G <5AX-20-M STE 02/03/0343.0 62.00 2.50 0.15 11.00 11.15 4.12 157 47 2.50 54,000 4.7 42,000 4.6 7.4 1.2 505 11.3O&G <5AX-20-M STE 04/01/0348.0 48.00 9.70 0.01 17.00 17.01 3.98 169 43 6.00 28,000 4.4 8,000 3.9 7.5 0.9 529 11.4AX-20-MSTE06/04/0350.0 29.00 14.20 0.03 20.00 20.03 4.07 202 39 7.00 88,000 4.9 42,000 4.6 7.3 1.0 604 15.6AX-20-MSTE08/04/0374.0 48.00 12.10 0.03 20.00 20.03 4.44 214 48 15.00 480,000 5.7 480,000 5.7 6.9 0.3 625 22.5AX-20-MSTE11/05/03110.0 100.00 17.00 0.01 30.00 30.01 6.76 208 36 17.00 520,000 5.7 42,000 4.6 7.4 1.0 583 15.5AX-20-MSTE03/01/0430.0 33.00 22.00 0.01 30.00 30.01 5.07 222 42940,000 6.0 110,000 5.0 7.5 0.7 619 11.0AX-20-MSTE05/24/0446.0 55.00 9.50 0.00 15.00 15.00 4.89 180 3234,700 4.5 17,400 4.2 7.3 1.3 512 18.5nitrate<0.0050AX-20-M STE 10/04/0460.0 130.00 10.00 0.01 43.00 43.01 11.50 190 3024,000 4.4 23,000 4.4 7.0 0.3 521 19.7AX-20-TAXE01/23/028.0 3.00 0.50 22.60 3.60 26.20 8.6050 37280,000 5.4 280,000 5.4 7.3 9.9 507 7.6AX-20-TAXE02/20/0222.0 5.00 0.60 31.10 4.00 35.10 8.8062 355.0E+06 6.7 3.3E+06 6.5 7.1 5.3 587 10.3AX-20-TAXE03/18/025.1 4.00 0.30 33.80 5.60 39.40 9.0024 45150,000 5.2 130,000 5.1 6.8 6.8 612 7.4QA DuplicateAX-20-T AXE 03/18/026.0 5.00 0.30 34.10 5.00 39.10 9.0924 45560,000 5.7 740,000 5.9 6.8 6.8 612 7.4AX-20-TAXE04/16/0211.0 7.00 2.10 22.30 6.50 28.80 6.9887 412.2E+07 7.3 2.3E+07 7.4 7.3 3.6 611 11.1AX-20-TAXE05/13/027.0 9.00 0.67 17.50 4.00 21.50 8.81 110 402.6E+06 6.4 2.2E+06 6.3 7.5 4.0 625 16.0AX-20-TAXE06/18/022.2 3.00 0.33 7.26 2.70 9.96 9.86 112 359,400 4.0 8,600 3.9 7.2 3.7 462 17.4QA duplicateAX-20-T AXE 06/18/021.9 2.00 0.29 7.31 2.40 9.71 10.00 128 3415,000 4.2 15,000 4.2 7.2 3.7 462 17.4chloride is est.AX-20-T AXE 07/22/025.2 8.00 0.13 7.35 3.40 10.75 10.00 110 368,000 3.9 7,800 3.9 7.1 4.6 481 20.4AX-20-TAXE08/19/023.9 3.00 0.25 22.00 2.20 24.20 9.6592 424,200 3.6 4,800 3.7 7.5 4.5 539 18.8AX-20-TAXE09/17/023.9 3.00 0.35 26.70 2.20 28.90 10.00 82 4414,000 4.1 13,000 4.1 6.4 4.0 560 16.4pH is est.AX-20-T AXE 09/17/023.9 2.00 0.36 27.40 2.30 29.70 9.9882 4419,000 4.3 16,000 4.2 6.4 4.0 560 16.4QA Duplicate , pH is est.AX-20-T AXE 10/14/023.9 4.00 0.33 21.10 2.60 23.70 9.0074 41600,000 5.8 600,000 5.8 7.4 0.8 489 15.0Chloride is est.AX-20-T AXE 11/05/026.7 4.00 1.42 32.50 3.40 35.90 9.3674 48820,000 5.9 720,000 5.9 7.3 4.5 584 12.5AX-20-TAXE11/05/025.4 8.00 1.60 32.10 3.50 35.60 9.1974 491.6E+06 6.2 1.4E+06 6.1 7.5 4.4 586 12.8AX-20-TAXE12/11/024.2 2.00 0.60 19.90 3.10 23.00 8.79 104 491.1E+06 6.0 860,000 5.9 7.4 4.2 620 10.0QA DuplicateAX-20-T AXE 12/11/025.7 3.00 0.81 19.60 2.80 22.40 8.84 105 481.2E+06 6.1 960,000 6.0 7.3 4.0 625 9.9AX-20-TAXE02/11/0313.0 11.00 0.68 19.10 3.00 22.10 7.5588 44200 2.3 200 2.3 7.5 4.4 532 11.2Appendix B: Innovative System Field Test DataPage B-7
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesAX-20-TAXE04/14/034.5 2.00 0.23 19.20 1.70 20.90 7.0562 44760 2.9 400 2.6 7.4 4.7 526 10.8AX-20-TAXE06/16/030.5 1.00 0.07 13.30 1.40 14.70 7.0550 36200 2.310 1.0 6.8 4.3 407 18.5BOD5<1.0AX-20-T AXE 08/11/036.0 7.00 1.16 17.40 2.20 19.60 8.778 37680 2.8 420 2.6 6.3 4.2 399 20.1AX-20-TAXE10/06/032.2 0.50 1.45 14.00 1.60 15.60 9.5636 39640 2.8 580 2.8 6.9 4.5 415 16.6BOD5 is est., TSS<1AX-20-T AXE 03/15/042.2 3.00 2.70 16.60 4.10 20.70 8.0220 3746,000 4.7 36,000 4.6 6.8 5.1 405 10.2BOD5 is est.AX-20-T AXE 06/07/04130.0 76.00 3.70 9.97 15.00 24.97 10.80 33 3998,000 5.0 120,000 5.1 6.7 3.6 418 14.0BOD5 is est.AX-20-T AXE 10/04/042.7 2.00 0.48 19.90 1.80 21.70 7.995 3822,000 4.3 24,000 4.4 6.4 5.0 409 14.3BOD5 is est.AX-20-T LE 02/11/031.1 8.00 1.47 23.30 2.60 25.90 2.1352 4910 1.010 1.0 7.5 7.5 327 1.6BOD5 is est.AX-20-T LE 04/14/03All tests CANCELLED; No lysimeter flowAX-20-T LE 06/16/03No samples due to no flow.AX-20-T LE 10/06/03all tests cancelled; Not enough flowAX-20-T LE 03/15/043.6 7.00 0.10 3.89 1.10 4.99 1.9149 407.5 6.1 306 6.0Not enough flow to collect bacteria sample.AX-20-T LE 06/07/040.00 0.00 0.00tests cancelledAX-20-T MW Drain 2193 11/21/010.02 0.86 0.20 1.06 0.4027.2 7.8 79 8.0 10.09Background/well developmentAX-20-T MW Drain 2193 01/23/020.5 17.00 0.00 1.20 0.10 1.30 0.2030 21 0.01 0.0 6.9 6.8 77 7.4 10.75NH4 <0.02, BOD5 <1.0, TKN <0.2AX-20-T MW Drain 2193 01/23/020.5 13.00 0.00 1.20 0.10 1.30 0.2030 21 0.01 0.0 6.9 6.8 77 7.4QA Duplicate; TKN <0.2AX-20-T MW Drain 2193 02/19/020.5 19.00 0.00 1.20 0.30 1.50 0.2030 31 0.01 0.0 6.4 8.6 85 7.6 10.76BOD <1.0AX-20-T MW Drain 2193 03/19/020.5 26.00 0.00 0.90 0.10 1.00 0.2028 41 0.01 0.0 7.1 6.2 84 7.6 10.94BOD5 <1.0, TKN <0.2AX-20-T MW Drain 2193 03/19/020.5 37.00 0.00 0.90 0.10 1.00 0.2028 41 0.01 0.0 7.1 6.2 84 7.6QA duplicate - BOD5 <1.0, TKN <0.2AX-20-T MW Drain 2193 04/15/020.5 28.00 0.01 1.39 0.10 1.49 0.2026 51 0.01 0.0 7.1 7.7 92 7.4 10.71TKN <0.2; BOD5 <1.0; NH4 <0.02AX-20-T MW Drain 2193 05/14/020.5 20.00 0.01 1.56 0.10 1.6626 41 0.01 0.0 7.1 6.7 96 7.4 10.70TKN <0.2, BOD5<1.0, NH4 <0.02AX-20-T MW Drain 2193 06/19/0240.00 0.03 1.65 0.10 1.7528 31 0.01 0.0 6.9 8.3 81 7.6 10.69TKN <0.2AX-20-T MW Drain 2193 07/22/020.5 17.00 0.01 1.74 0.10 1.8428 31 0.01 0.0 7.2 6.9 83 7.9 10.70TKN <0.2, N<0.02, BOD5<1.0AX-20-T MW Drain 2193 08/20/020.5 6.00 0.01 1.84 0.10 1.9428 31 0.01 0.0 7.2 10.2 83 8.1 10.73TKN <0.2, BOD5 <1, NH4 <0.02AX-20-T MW Drain 2193 08/20/020.5 5.00 0.01 1.84 0.10 1.9429 31 0.01 0.0 7.2 10.2 83 8.1QA Duplicate; TKN <0.2, BOD5 <1, NH4 <0.02AX-20-T MW Drain 2193 09/17/020.5 9.00 0.01 1.90 0.10 2.0029 31 0.01 0.0 6.1 8.0 88 8.0 10.73BOD5<1.0, NH4 <0.02, TKN<0.2, pH is est.AX-20-T MW Drain 2193 09/17/020.5 7.00 0.01 1.89 0.20 2.0932 31 0.01 0.0 6.1 8.0 88 8.0QA Duplicate - BOD5<1.0, NH4 <0.02, pH is est.AX-20-T MW Drain 2193 10/14/020.5 16.00 0.03 1.99 0.10 2.0932 41 0.01 0.0 7.1 7.6 89 8.2 10.79BOD5<1.0, TKN <0.2, Chloride is est.AX-20-T MW Drain 2193 10/14/020.5 14.00 0.02 1.98 0.10 2.0832 31 0.01 0.0QA Duplicate; BOD5<1.0, TKN <0.2, Chloride is est.AX-20-T MW Drain 2193 11/05/020.5 35.00 0.05 2.10 0.10 2.2032 31 0.01 0.0 6.9 9.2 90 8.4 10.97BOD5 <1.0, NH4, NO3 is est, TKN <0.2 est., TKN <0.2AX-20-T MW Drain 2193 11/05/020.5 20.00 0.05 2.07 0.10 2.1732 31 0.01 0.0QA Duplicate; BOD5 <1.0, TKN <0.2AX-20-T MW Drain 2193 12/09/020.5 6.00 0.01 2.21 0.10 2.3132 31 0.01 0.0 6.9 7.3 103 8.3 10.95NH4 <0.02, BOD5 <1.0, TKN <0.2AX-20-T MW Drain 2193 02/11/030.5 5.00 0.01 11.10 0.50 11.6026 171 0.01 0.0 6.8 7.6 223 8.0 11.10BOD5<1.0, NH4AsN <0.02AX-20-T MW Drain 2193 04/14/030.5 0.50 0.05 3.08 0.10 3.1833 61 0.01 0.0 7.0 9.8 115 7.6 11.18BOD5<1.0, TSS <1, TKN <0.2AX-20-T MW Drain 2193 05/06/030.5 3.00 0.01 3.40 0.10 3.5032 71 0.01 0.0 6.9 8.2 124 8.1 11.19BOD5<1.0 NH4 <0.02, TKN <0.2AX-20-T MW Drain 2193 06/16/030.5 1.00 0.03 2.83 0.10 2.9334 61 0.01 0.0 6.9 6.7 113 8.0 11.18BOD5<1.0, TKN<0.2AX-20-T MW Drain 2193 08/11/030.5 5.00 0.01 2.27 0.10 2.3734 41 0.01 0.0 6.9 7.5 104 8.7 11.36BOD5<1.0, NH4AsN<0.02, TKN<0.2AX-20-T MW Drain 2193 10/06/030.5 2.00 0.01 2.19 0.10 2.2934 41 0.01 0.0 6.8 8.0 102 8.6 11.54BOD5 <1.0, NH4AsN<0.02, TKN<0.2AX-20-T MW Drain 2193 11/04/030.5 1.00 0.01 2.45 0.10 2.5534 41 0.01 0.0 6.8 7.6 106 8.0 11.60BOD5<1.0, NH4AsN<0.02, TKN<0.2AX-20-T MW Drain 2193 11/04/030.5 2.00 0.01 2.45 0.10 2.5534 41 0.01 0.0QA Duplicate; BOD5<1.0, NH4AsN<0.02, TKN<0.2AX-20-T MW Drain 2193 03/15/040.03 3.57 0.10 3.67351 0.01 0.0 6.8 9.1 240 8.3 11.04TKN<0.2AX-20-T MW Drain 2193 06/07/040.01 3.22 0.10 3.3281 0.01 0.0 6.7 8.0 122 7.6 10.70NH4<0.02, TKN<0.2AX-20-T MW Drain 2193 10/04/040.01 3.83 0.10 3.93111 0.01 0.0 6.7 8.7 144 8.6 11.25NH4 <0.02, TKN<0.2AX-20-T STE 01/23/0222.0 15.00 6.80 17.10 13.00 30.10 8.70 110 36 2.50 1.1E+07 7.0 1.3E+07 7.1 7.8 1.3 540 7.9Oil and Grease <5AX-20-T STE 02/20/0239.0 13.00 9.20 22.00 31.00 53.00 9.00 125 37 2.50 2.0E+07 7.3 1.0E+07 7.0 8.7 1.2 628 9.0Oil & Grease <5AX-20-T STE 03/18/0211.0 11.00 5.50 27.30 13.00 40.30 9.3870 45 2.50 880,000 5.9 760,000 5.9 7.3 1.6 617 8.1Oil & Grease <5AX-20-T STE 04/16/0221.0 12.00 9.90 12.90 18.00 30.90 7.30 141 41 8.00 2.8E+08 8.4 3.3E+08 8.5 7.6 0.6 652 11.1AX-20-TSTE05/13/0229.0 16.00 8.10 8.65 13.00 21.65 8.84 160 41 2.50 2.8E+07 7.4 2.1E+07 7.3 8.0 0.8 645 15.2O&G <5AX-20-T STE 06/18/0233.0 19.00 6.60 0.02 12.00 12.02 10.30 162 34 2.50 920,000 6.0 860,000 5.9 7.6 0.6 483 17.1O&G <5AX-20-T STE 07/22/0217.0 22.00 4.30 1.06 8.80 9.86 9.85 146 36 2.50 200,000 5.3 170,000 5.2 7.3 1.1 481 19.8O&G <5AX-20-T STE 08/19/0223.0 29.00 6.60 13.50 11.00 24.50 9.78 137 41 2.50 62,000 4.8 76,000 4.9 7.5 1.0 560 18.2BOD5 <1, O&G <5AX-20-T STE 09/17/0223.0 17.00 7.90 17.00 12.00 29.00 9.70 135 44 2.50 900,000 6.0 940,000 6.0 6.6 1.0 606 16.3O&G<5, pH is est.AX-20-T STE 10/14/0222.0 40.00 5.70 13.30 11.00 24.30 9.28 118 42 2.50 180,000 5.3 140,000 5.1 7.3 3.9 467 14.7Chloride is est., O&G <5AX-20-T STE 11/05/0219.0 14.00 10.70 21.10 18.00 39.10 9.39 142 49 2.50 1.1E+08 8.0 9.2E+07 8.0 7.6 0.8 627 11.8O&G <5AX-20-T STE 12/11/0226.0 29.00 7.30 11.00 13.00 24.00 9.10 162 49 2.50 2.5E+07 7.4 2.3E+07 7.4 7.4 1.1 652 10.0O&G <5AX-20-T STE 02/11/0319.0 25.00 0.06 11.30 12.00 23.30 7.64 136 45 2.50 6,000 3.8 10,000 4.0 7.6 1.2 580 10.2O&G <5AX-20-T STE 04/14/0326.0 19.00 13.50 1.36 19.00 20.36 7.18 172 46 2.50 116,000 5.1 132,000 5.1 8.4 1.1 558 10.8O&G <5AX-20-T STE 06/16/0330.0 31.00 8.60 0.53 17.00 17.53 7.49 127 38 6.00 18,000 4.3 18,000 4.3 7.3 0.6 440 17.5AX-20-TSTE08/11/0336.0 41.00 16.00 0.98 26.00 26.98 8.91 120 39 2.50 26,000 4.4 30,000 4.5 7.0 1.3 463 18.7O&G <5AX-20-T STE 10/06/0321.0 13.00 8.90 2.72 11.00 13.72 9.62 108 39 2.50 50 1.750 1.7 7.1 0.8 452 16.5O&G<5AX-20-T STE 03/15/0444.0 46.00 15.00 1.98 21.00 22.98 8.32 119 37760,000 5.9 760,000 5.9 7.3 0.7 374 10.6AX-20-TSTE06/07/0457.0 25.00 13.40 0.02 19.00 19.02 8.45 130 409.6E+06 7.0 8.9E+06 6.9 7.2 0.7 477 14.7Biokreisel-GBKE01/03/0116.0 4.00 44.00 0.01 52.00 52.01 7.9219470 2.7 530 2.7 8.1 3.4 661 6.6Biokreisel-GBKE02/06/0115.0 5.00 39.00 0.00 51.00 51.00 8.57 2862 0.38 0.9 7.8 3.3 735 6.2Appendix B: Innovative System Field Test DataPage B-8
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesBiokreisel-GBKE03/05/0116.0 15.00 47.00 0.00 45.00 45.00 9.64 2712 0.32 0.3 7.9 4.2 703 7.5Biokreisel-GBKE04/02/0111.0 11.00 51.00 0.02 55.00 55.02 9.94 306540 2.7 420 2.6 7.5 2.0 798 9.9Biokreisel-GBKE04/30/0119.0 5.00 48.00 0.19 58.00 58.19 9.88 304200 2.3 200 2.3 7.9 1.6 842 13.7Biokreisel-GBKE06/04/012.8 3.00 0.50 8.17 2.70 10.87 9.84 143 2882 1.970 1.8 7.5 2.3 559 18.0Biokreisel-GBKE07/09/0111.0 13.00 0.46 13.20 3.80 17.00 11.00 154 325,000 3.7 1,000 3.0 7.3 2.8 646 22.5Biokreisel-GBKE08/06/019.6 4.00 0.24 9.71 2.90 12.61 9.30 154 323,200 3.5 2,600 3.4 7.4 2.5 588 21.6Biokreisel-GBKE09/04/0119.0 11.00 0.42 9.63 5.20 14.83 9.38 146 3215,000 4.2 15,000 4.2 7.5 3.3 574 20.0Biokreisel-GBKE10/01/012.6 4.00 0.26 9.00 2.40 11.40 8.32 150 27220 2.360 1.8 7.5 3.0 496 17.7Biokreisel-GBKE10/29/013.8 2.00 0.25 9.80 1.90 11.70 8.20 138 30820 2.9 720 2.9 7.4 2.6 530 12.9Biokreisel-GBKE11/26/013.6 2.00 0.30 14.70 2.10 16.80 10.40 127 30420 2.6 680 2.8 7.6 2.8 583 9.6Biokreisel-GBKE02/04/025.7 3.00 0.50 9.15 2.90 12.05 7.70 116 254,600 3.7 3,400 3.5 7.4 3.8 539 7.3Biokreisel-GBKE04/01/02110.0 160.00 0.40 8.00 6.40 14.40 8.60 132 274,800 3.7 4,000 3.6 7.3 2.9 570 13.0Biokreisel-GBKE06/03/028.4 10.00 0.50 7.47 3.60 11.07 5.89 112 2710 1.064 1.8 7.4 2.9 431 18.2Biokreisel-GBKE08/05/025.2 9.00 0.20 2.06 2.60 4.66 6.40 171 611,300 3.1 600 2.8 8.1 3.1 585 19.9Biokreisel-GBKE09/30/023.3 1.00 0.10 3.91 1.80 5.71 4.66 230 482 0.32 0.3 8.3 4.3 650 14.6Biokreisel-GBKE11/20/024.6 3.00 1.80 9.15 2.40 11.55 4.50 136 3390 2.070 1.8 7.9 5.4 579 9.6Biokreisel-GBKE02/04/034.4 4.00 0.16 12.70 2.30 15.00 10.10 81 25620 2.8 540 2.7 7.4 4.9 400 8.5Biokreisel-GBKE04/02/035.7 3.00 0.10 12.30 1.70 14.00 8.6074 1990 2.070 1.8 7.5 4.9 361 10.4QA DuplicateBiokreisel-G BKE 04/02/036.0 5.00 0.11 12.30 1.60 13.90 8.4775 19110 2.082 1.9 7.4 5.1 363 10.5Biokreisel-GBKE06/02/038.4 4.00 0.19 7.73 1.60 9.33 7.9686 2156 1.746 1.7 7.3 2.4 371 19.3Biokreisel-GBKE08/04/0319.0 11.00 7.00 0.01 12.00 12.01 7.36 171 2326,000 4.4 22,000 4.3 7.0 0.6 489 23.6Biokreisel-GBKE08/04/0329.0 10.00 6.80 0.01 12.00 12.01 7.45 171 2339,000 4.6 41,000 4.6 7.0 0.6 489 23.6QA DuplicateBiokreisel-G BKE 09/29/036.0 14.00 0.98 9.13 4.80 13.93 7.83 130 291,900 3.3 1,900 3.3 7.3 1.7 490 19.9Biokreisel-GGFE01/03/0112.0 4.00 45.00 0.01 49.00 49.01 7.8321210 2.3 280 2.4 8.2 3.5 698 5.5Biokreisel-GGFE02/06/0111.0 4.00 48.00 0.00 48.00 48.00 8.61 296 252 0.32 0.3 7.8 4.3 740 3.5Biokreisel-GGFE03/05/0114.0 9.00 44.00 0.02 44.00 44.02 9.37 272 222 0.32 0.3 8.0 6.0 700 7.7Biokreisel-GGFE04/02/0110.0 10.00 47.00 0.07 56.00 56.07 9.98 313 21126 2.1 124 2.1 7.6 2.9 840 9.4Biokreisel-GGFE04/30/0115.0 10.00 50.00 3.70 54.00 57.70 9.56 329 241,000 3.0 800 2.9 7.7 2.6 859 12.9Biokreisel-GGFE06/04/014.6 6.00 0.27 9.51 2.50 12.01 9.33 140 2836 1.644 1.6 7.3 2.0 602 15.9Biokreisel-GGFE07/09/014.0 6.00 0.18 12.80 2.40 15.20 10.50 148 31180 2.3 190 2.3 7.4 3.5 624 23.0Biokreisel-GGFE08/06/018.7 6.00 0.12 10.80 2.30 13.10 9.14 158 322,600 3.4 2,600 3.4 7.4 3.7 620 20.0QA DuplicateBiokreisel-G GFE 08/06/018.2 6.00 0.13 10.80 2.40 13.20 9.31 157 323,600 3.6 1,600 3.2 7.4 3.7 620 20.0Biokreisel-GGFE09/04/0111.0 5.00 0.34 9.98 4.00 13.98 7.84 152 31200 2.3 120 2.1 7.3 2.6 605 18.3QA DuplicateBiokreisel-G GFE 09/04/0111.0 9.00 0.32 9.97 3.80 13.77 7.98 152 31220 2.3 190 2.3 7.3 2.6 605 18.3Biokreisel-GGFE10/01/012.4 4.00 0.14 9.20 1.70 10.90 7.89 149 2882 1.970 1.8 7.4 3.5 566 17.8Biokreisel-GGFE10/29/012.3 4.00 0.10 11.10 1.60 12.70 8.54 143 31150 2.2 150 2.2 7.5 2.9 566 12.3Biokreisel-GGFE10/29/013.8 1.00 0.10 11.10 1.70 12.80 8.40 126 30160 2.2 160 2.2 7.5 2.9 566 12.3QA DuplicateBiokreisel-G GFE 11/26/014.8 8.00 0.11 13.90 1.60 15.50 10.00 132 30160 2.2 280 2.4 7.6 3.2 596 9.6Biokreisel-GGFE02/04/026.1 3.00 0.12 9.86 2.10 11.96 7.87 121 251,600 3.2 800 2.9 7.1 4.6 539 5.8Biokreisel-GGFE04/01/027.8 10.00 0.10 9.00 2.70 11.70 7.90 126 283,400 3.5 4,000 3.6 7.2 3.3 616 14.2Biokreisel-GGFE06/03/026.8 9.00 0.27 8.61 3.40 12.01 6.00 111 2170 1.860 1.8 7.2 3.4 434 16.6Biokreisel-GGFE06/03/028.0 12.00 0.27 8.72 2.60 11.32 5.93 111 2280 1.982 1.9 7.2 3.4 434 16.6QA duplicateBiokreisel-G GFE 08/05/0211.0 23.00 0.74 0.40 3.90 4.30 5.22 194 3232 1.522 1.3 8.3 2.3 538 17.0Biokreisel-GGFE09/30/0213.1 33.00 0.05 0.36 1.30 1.66 3.24 229 512 0.32 0.3 8.3 4.0 292 12.2Biokreisel-GGFE11/20/024.2 4.00 0.10 12.70 2.20 14.90 3.79 146 3480 1.970 1.8 7.8 7.1 611 8.0NH4, nitrate/nitrite is est.Biokreisel-G GFE 02/04/033.5 3.00 0.07 13.20 1.90 15.10 9.2578 25200 2.3 150 2.2 7.4 5.0 400 7.0QA DuplicateBiokreisel-G GFE 02/04/033.5 5.00 0.06 13.10 1.80 14.90 9.1378 25400 2.6 160 2.2 7.3 5.0 424 7.0Biokreisel-GGFE04/02/036.2 17.00 0.04 12.70 1.40 14.10 8.7076 2058 1.858 1.8 7.5 4.3 369 9.1Biokreisel-GGFE06/02/033.9 3.00 0.07 8.18 1.30 9.48 8.3586 2118 1.324 1.4 7.4 3.1 378 17.2QA DuplicateBiokreisel-G GFE 06/02/034.2 6.00 0.07 8.19 1.30 9.49 8.3986 2128 1.426 1.4 7.3 3.3 394 17.2Biokreisel-GGFE08/04/037.4 6.00 2.00 1.71 4.80 6.51 6.16 154 232 0.32 0.3 7.0 0.9 471 23.7Biokreisel-GGFE09/29/035.8 9.00 0.40 9.88 2.50 12.38 7.76 130 28820 2.9 780 2.9 7.3 1.8 503 18.2QA DuplicateBiokreisel-G GFE 09/29/033.8 9.00 0.39 9.85 2.80 12.65 7.46 130 28920 3.0 720 2.9 7.2 1.8 563 18.1Biokreisel-GMW Drain 2006 01/03/010.0 9.00 0.07 2.12 0.10 2.22 0.1052 0.32 0.3 7.3 5.4 164 7.0 7.17TKN <0.2Biokreisel-G MW Drain 2006 02/06/010.0 2.00 0.00 1.26 0.20 1.46 0.1072 82 0.32 0.3 6.8 4.3 193 4.9 7.15Biokreisel-GMW Drain 2006 03/06/010.0 2.00 0.00 1.57 0.30 1.87 0.2375 92 0.32 0.3 7.6 7.4 205 6.4 7.00Biokreisel-GMW Drain 2006 04/03/010.0 1.00 0.00 0.60 0.10 0.70 0.1082 62 0.32 0.3 7.1 5.4 199 5.4 6.34TKN <0.2Biokreisel-G MW Drain 2006 04/03/010.0 1.00 0.00 0.60 0.10 0.70 0.1082 62 0.32 0.3 7.1 5.4 199 5.4QA duplicate; TKN <0.2Biokreisel-G MW Drain 2006 05/01/010.0 2.00 0.00 0.78 0.10 0.88 0.0984 72 0.32 0.3 6.9 7.2 202 6.0 6.20TKN <0.2Biokreisel-G MW Drain 2006 06/05/010.0 2.00 0.00 1.92 0.10 2.02 0.0980 72 0.32 0.3 7.1 8.3 207 7.1 6.85TKN <0.2Biokreisel-G MW Drain 2006 07/10/010.0 1.00 0.02 2.02 0.10 2.12 0.0977 81 0.01 0.0 7.0 8.9 201 9.1 7.21TKN <0.2Biokreisel-G MW Drain 2006 07/10/010.0 0.00 0.00 2.02 0.20 2.22 0.1079 81 0.01 0.0 7.0 8.9 201 9.1QA duplicate;Biokreisel-G MW Drain 2006 08/07/010.0 4.00 0.00 2.19 0.10 2.29 0.1076 81 0.01 0.0 7.0 9.1 198 9.3 7.47TKN <0.2Biokreisel-G MW Drain 2006 08/07/010.0 2.00 0.00 2.18 0.10 2.28 0.1078 81 0.01 0.0 7.0 9.1 198 9.3 7.47QA Duplicate; TKN <0.2Appendix B: Innovative System Field Test DataPage B-9
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesBiokreisel-GMW Drain 2006 09/05/010.0 0.00 0.00 5.18 0.10 5.28 0.1077 81 0.01 0.0 7.2 7.6 228 10.4 7.65TKN <0.2Biokreisel-G MW Drain 2006 09/05/010.0 2.00 0.00 5.30 0.20 5.50 0.1177 81 0.01 0.0 7.2 7.6 228 10.4 7.65QA DuplicateBiokreisel-G MW Drain 2006 10/02/011.2 1.00 0.00 31.70 0.40 32.10 0.0988 171 0.01 0.0 7.0 8.7 493 11.2 7.79BOD5 is estimateBiokreisel-G MW Drain 2006 10/30/010.0 2.00 0.00 36.600.0882 221 0.01 0.0 7.1 8.1 514 10.1 7.84TKN cancelled, samples were dumpedBiokreisel-G MW Drain 2006 11/28/010.0 0.00 0.00 23.00 0.40 23.40 0.1080 251 0.01 0.0 7.2 8.8 460 8.1 7.83BOD5 is estimate.Biokreisel-G MW Drain 2006 02/05/020.5 2.00 0.00 12.40 0.60 13.00 0.1078 281 0.01 0.0 6.8 6.2 433 7.1 7.14BOD5 <1Biokreisel-G MW Drain 2006 04/01/020.5 3.00 0.00 10.40 0.20 10.60 0.1071 181 0.01 0.0 6.8 7.0 344 6.3 5.60BOD5 <1.0Biokreisel-G MW Drain 2006 06/03/021.0 4.00 0.01 9.40 0.60 10.0073 181 0.01 0.0 6.9 4.0 319 7.3 6.08NH4 <0.02; BOD is est.Biokreisel-G MW Drain 2006 08/05/021.0 2.00 0.02 6.74 0.30 7.0473 121 0.01 0.0 7.1 7.7 242 9.8 7.30BOD5 is est.Biokreisel-G MW Drain 2006 09/04/020.5 1.00 0.02 6.10 0.10 6.2065 111 0.01 0.0 7.0 8.4 223 10.3 7.56BOD5<1.0, TKN<0.2Biokreisel-G MW Drain 2006 09/04/020.5 0.50 0.01 6.11 0.10 6.2165 111 0.01 0.0 7.0 8.4 223 10.3QA - BOD5<1.0, TSS<1, NH4 <0.02, TKN<0.2Biokreisel-G MW Drain 2006 10/01/020.5 2.00 0.01 6.28 0.20 6.4871 121 0.01 0.0 7.1 7.7 220 8.8 7.63Biokreisel-GMW Drain 2006 11/18/020.5 0.50 0.01 8.78 0.10 8.8864 141 0.01 0.0 7.0 8.0 264 8.6 7.78BOD5 <1.0, TSS<1; NH4 <0.02, TKN <0.2Biokreisel-G MW Drain 2006 02/04/030.5 8.00 0.01 12.80 0.10 12.9064 171 0.01 0.0 7.0 8.0 300 6.9 6.95BOD5<1.0, NH4<0.02, TKN<0.2Biokreisel-G MW Drain 2006 03/04/030.5 3.00 0.01 11.20 0.20 11.4068 181 0.01 0.0 7.0 8.6 288 6.6 6.76BOD5<1.0, NH4AsN <0.02Biokreisel-G MW Drain 2006 03/31/030.5 2.00 0.01 8.04 0.10 8.1471 171 0.01 0.0 7.0 6.9 271 6.7 6.37BOD5<1.0, NH4 <0.02, TKN <0.2Biokreisel-G MW Drain 2006 06/02/030.5 0.50 0.03 3.79 0.10 3.8971 201 0.01 0.0 7.0 8.8 241 7.0 6.40BOD5<1.0, TSS<1, TKN<0.2Biokreisel-G MW Drain 2006 06/02/030.5 0.50 0.01 3.87 0.10 3.9771 201 0.01 0.0QA Dupl; BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2Biokreisel-G MW Drain 2006 08/05/030.5 0.50 0.01 6.53 0.30 6.8365 161 0.01 0.0 7.0 8.1 243 10.5 7.36BOD5<1.0, TSS<1 NH4<0.02Biokreisel-G MW Drain 2006 09/16/030.5 0.50 0.01 8.20 0.30 8.5076 197.1 6.8 303 10.9 7.68BOD5<1.0, TSS<1, NH4AsN<0.02Biokreisel-G MW Drain 2006 09/16/030.5 0.50 0.01 8.21 0.40 8.6176 19QA Duplicate; BOD5<1.0, TSS<1, NH4AsN<0.02Biokreisel-G MW Drain 2006 09/17/032 0.32 0.3 7.1 7.8 309 10.7Bacteria Re-sampleBiokreisel-G MW Drain 2006 09/30/030.5 0.50 0.03 7.86 0.30 8.1680 212 0.32 0.3 7.3 7.6 322 10.8 7.78TSS<1, BOD5<1Biokreisel-G STE 01/03/0166.0 18.00 40.00 0.00 53.00 53.00 7.4217 16.00 40,000 4.6 3.6E+06 6.6 8.1 0.7 591 6.6Biokreisel-GSTE02/06/01150.0 36.00 42.00 0.00 49.00 49.00 8.21 2562,000 3.3 2,000 3.3 7.6 1.8 686 6.6Biokreisel-GSTE03/05/0146.0 29.00 45.00 0.00 47.00 47.00 9.93 27014.008 0.92 0.3 7.9 2.0 692 8.3Biokreisel-GSTE04/02/0161.0 43.00 50.00 0.01 61.00 61.01 10.20 31212.00 14,000 4.1 15,000 4.2 7.6 0.5 819 9.8Biokreisel-GSTE04/30/0198.0 82.00 52.00 0.01 63.00 63.01 9.62 33410.00 59,000 4.8 22,000 4.3 8.1 0.9 790 14.1Biokreisel-GSTE06/04/0174.0 72.00 11.90 0.01 17.00 17.01 10.40 234 33 6.00 30,000 4.5 26,000 4.4 7.7 0.5 600 17.9Biokreisel-GSTE07/09/0170.0 99.00 14.50 0.01 22.00 22.01 12.50 262 35 17.00 78,000 4.9 34,000 4.5 7.8 0.8 717 22.4Biokreisel-GSTE08/06/01100.0 90.00 8.30 0.01 19.00 19.01 9.74 236 37 14.00 80,000 4.9 50,000 4.7 7.4 1.1 650 20.9Biokreisel-GSTE09/04/0157.0 59.00 12.00 0.01 19.00 19.01 10.50 240 32 8.00 74,000 4.9 64,000 4.8 7.5 1.1 623 19.4Biokreisel-GSTE10/01/0132.0 45.00 6.30 0.01 24.00 24.01 9.08 211 28 2.50 26,000 4.4 38,000 4.6 7.7 1.0 523 17.9O&G <5Biokreisel-G STE 10/29/0154.0 26.00 9.50 0.00 16.00 16.00 8.40 210 29 2.50 64,000 4.8 66,000 4.8 7.7 0.6 570 12.8oil & grease <5Biokreisel-G STE 11/26/0139.0 19.00 19.00 0.02 26.00 26.02 10.50 241 30 2.50 14,000 4.1 4,200 3.6 8.6 0.6 642 10.1oil & grease < 5Biokreisel-G STE 02/04/02100.0 96.00 10.30 0.00 19.00 19.00 8.60 203 25 7.00 300,000 5.5 110,000 5.0 8.3 0.6 515 7.4Biokreisel-GSTE04/01/02100.0 89.00 9.30 0.00 19.00 19.00 8.30 211 27 10.00 1.0E+06 6.0 1.1E+06 6.0 7.8 0.6 632 13.6Biokreisel-GSTE06/03/0284.0 200.00 8.30 0.01 13.00 13.01 6.99 180 22 11.00 48,000 4.7 40,000 4.6 7.8 0.8 528 17.5Biokreisel-GSTE08/05/0233.0 280.00 1.80 0.06 11.00 11.06 8.47 192 61 7.00 9,400 4.0 7,400 3.9 7.7 0.7 592 19.8TSS is est.Biokreisel-G STE 09/30/0236.0 100.00 0.83 2.96 7.70 10.66 7.27 234 49 2.50 20 1.3 200 2.3 7.9 1.0 661 14.2O&G <5Biokreisel-G STE 11/20/0229.0 42.00 1.80 9.19 11.00 20.19 6.42 162 35 2.50 800 2.9 100 2.0 7.6 1.6 596 10.4O&G <5Biokreisel-G STE 02/04/0320.0 28.00 6.00 6.03 12.00 18.03 11.20 120 25 2.50 2,400 3.4 2,200 3.3 7.4 2.0 428 10.5O&G<5Biokreisel-G STE 04/02/0378.0 260.00 4.50 4.38 19.00 23.38 9.71 125 20 32.00 4,600 3.7 4,000 3.6 7.5 1.2 390 10.5Biokreisel-GSTE06/02/0367.0 100.00 8.10 0.01 25.00 25.01 12.10 182 21 15.00 18,000 4.3 18,000 4.3 7.3 0.6 411 19.2Biokreisel-GSTE08/04/0337.0 14.00 11.00 0.01 20.00 20.01 7.42 190 24 5.00 730,000 5.9 360,000 5.6 7.4 0.9 508 23.8Biokreisel-GSTE09/29/03190.0 735.00 9.90 0.01 20.00 20.01 17.40 240 32 88.00 6.5E+06 6.8 5.3E+06 6.7 7.1 0.3 542 19.7O&G est.Biokreisel-G STM 01/03/0167.0 15.00 36.00 0.03 43.00 43.03 6.8916 10.00 18,000 4.3 8,000 3.9 8.3 1.3 557 6.6Biokreisel-GSTM02/06/01150.0 16.00 37.00 0.03 48.00 48.03 7.37 2184,000 3.6 2,000 3.3 7.5 1.4 629 8.9Biokreisel-GSTM03/05/0169.0 24.00 41.00 0.01 41.00 41.01 8.55 23420.00 4,000 3.6 2,000 3.3 7.8 0.3 599 9.4Biokreisel-GSTM04/02/01110.0 42.00 44.00 0.03 54.00 54.03 11.20 31411,000 4.0 15,000 4.2 8.1 0.7 762 12.5Biokreisel-GSTM04/30/01100.0 46.00 49.00 0.01 59.00 59.01 8.98 32212.00 44,000 4.6 44,000 4.6 7.9 0.7 778 15.0Biokreisel-GSTM06/04/01200.0 230.00 11.50 0.44 20.00 20.44 11.50 225 30 11.00 22,000 4.3 12,000 4.1 7.5 0.6 597 18.0Biokreisel-GSTM07/09/0160.0 29.00 6.50 0.30 13.00 13.30 10.90 210 29 5.00 180,000 5.3 34,000 4.5 7.8 0.5 586 24.1BOD5 is estimateBiokreisel-G STM 08/06/01110.0 71.00 7.70 0.05 14.00 14.05 8.56 234 32 19.00 130,000 5.1 120,000 5.1 7.9 0.4 630 22.0Biokreisel-GSTM09/04/0154.0 46.00 7.30 0.12 17.00 17.12 10.20 212 31 6.00 110,000 5.0 76,000 4.9 7.7 0.9 585 20.4Biokreisel-GSTM10/01/01200.0 240.00 5.40 0.72 13.00 13.72 6.88 237 24 237.00 30,000 4.5 34,000 4.5 9.0 1.1 523 19.8Biokreisel-GSTM10/29/0189.0 45.00 10.90 0.00 17.00 17.00 9.00 209 31 2.50 54,000 4.7 42,000 4.6 7.8 0.4 578 13.2oil & grease <5Biokreisel-H BKE 01/03/0122.0 15.00 69.00 0.02 75.00 75.02 15.3031770 2.9 410 2.6 8.1 3.6 1154 6.8Biokreisel-HBKE01/03/0131.0 17.00 66.00 0.02 82.00 82.02 15.70301,400 3.1 11,000 4.0 8.3 2.2 1094 8.4Biokreisel-HBKE02/06/0133.0 9.00 35.00 0.57 41.00 41.57 10.40 2863,400 3.5 3,200 3.5 7.8 1.5 761 9.5Biokreisel-HBKE03/05/0165.0 28.00 23.00 0.80 32.00 32.80 12.80 62343,000 4.6 17,000 4.2 7.6 0.5 680 13.1Biokreisel-HBKE04/02/0136.0 17.00 5.90 5.01 12.00 17.01 10.90 1627,000 3.8 8,400 3.9 7.0 0.7 512 13.8Biokreisel-HBKE04/30/0129.0 9.00 4.50 1.91 10.00 11.91 11.90 186840 2.9 840 2.9 7.3 0.8 518 16.8Biokreisel-HBKE06/04/0119.0 11.00 3.40 8.09 7.40 15.49 10.60 140 2296 2.0 172 2.2 7.1 1.3 509 17.7Appendix B: Innovative System Field Test DataPage B-10
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesBiokreisel-HBKE07/09/018.6 4.00 2.40 14.40 5.60 20.00 16.60 160 331,900 3.3 1,200 3.1 7.5 2.6 657 21.1Biokreisel-HBKE08/06/013.6 4.00 0.32 11.80 2.20 14.00 12.60 147 2618 1.330 1.5 7.6 2.4 573 20.7Biokreisel-HBKE09/04/017.1 6.00 2.90 3.41 5.40 8.81 10.80 185 22230 2.4 250 2.4 7.5 2.0 560 20.4Biokreisel-HBKE10/01/010.0 1.00 0.16 11.40 1.50 12.90 11.00 128 23440 2.6 340 2.5 7.5 2.5 467 19.0Biokreisel-HBKE10/29/012.0 2.00 0.14 12.90 1.40 14.30 14.20 150 32430 2.6 380 2.6 7.6 2.7 609 14.6BOD5 is estimateBiokreisel-H BKE 11/26/013.3 3.00 0.40 18.10 2.00 20.10 17.30 152 351,400 3.1 1,200 3.1 7.7 2.8 689 10.9Biokreisel-HBKE02/04/025.4 5.00 1.60 13.60 4.90 18.50 17.30 140 362,600 3.4 3,200 3.5 7.5 4.2 706 7.7Biokreisel-HBKE04/01/0219.0 7.00 2.10 11.70 4.90 16.60 19.30 170 321,500 3.2 1,300 3.1 7.5 2.1 738 13.1Biokreisel-HBKE06/03/0212.0 5.00 1.23 9.14 3.80 12.94 17.00 150 26540 2.7 420 2.6 7.6 2.8 605 18.1Biokreisel-HBKE08/05/023.9 1.00 0.27 13.80 0.80 14.60 18.60 148 33130 2.1 150 2.2 7.7 2.4 611 18.5Biokreisel-HBKE09/30/0215.6 4.00 0.22 13.00 2.10 15.10 15.40 144 341,000 3.0 180 2.3 7.5 3.3 597 15.6BOD5 is est.Biokreisel-H BKE 11/20/027.8 5.00 4.60 7.96 7.20 15.16 19.00 202 51900 3.020 1.3 7.6 3.1 836 12.3Biokreisel-HBKE02/03/036.9 4.00 0.81 6.16 3.20 9.36 19.90 206 441,600 3.2 1,500 3.2 7.7 2.8 756 10.2Biokreisel-HBKE04/02/034.8 2.00 1.60 4.20 4.20 8.40 19.80 211 40140 2.12 0.3 7.6 2.7 752 9.8Biokreisel-HBKE06/04/0317.0 7.00 3.20 1.43 6.00 7.43 18.30 216 32124 2.168 1.8 7.6 1.9 690 19.2Biokreisel-HBKE06/04/0315.0 6.00 3.60 1.44 6.20 7.64 18.40 217 32136 2.182 1.9 7.6 1.9 689 18.9QA DuplicateBiokreisel-H BKE 10/20/0317.0 15.00 49.00 0.04 56.00 56.04 14.70 142 334,600 3.7 800 2.9 8.2 3.2 910 14.0Biokreisel-HGFE02/06/0124.0 19.00 39.00 0.53 43.00 43.53 10.60 310 231,420 3.2 1,720 3.2 7.4 3.9 785 7.3 QA Duplicate;Biokreisel-H GFE 02/06/0126.0 18.00 39.00 0.53 44.00 44.53 10.50 306 232,000 3.3 2,800 3.4 7.4 3.9 785 7.3Biokreisel-HGFE03/05/0148.0 21.00 20.00 1.70 24.00 25.70 13.90 608 2717,000 4.2 17,000 4.2 7.5 1.8 687 11.9Biokreisel-HGFE04/02/0123.0 24.00 3.00 6.98 9.60 16.58 10.90 143 204,400 3.6 5,800 3.8 7.7 1.5 581 12.2 QA Duplicate;Biokreisel-H GFE 04/02/0129.0 16.00 3.00 7.40 8.90 16.30 10.50 144 207,600 3.9 5,800 3.8 7.7 1.5 581 12.2Biokreisel-HGFE04/30/0120.0 10.00 1.50 4.52 6.10 10.62 11.80 164 21560 2.7 560 2.7 7.2 1.6 558 15.8Biokreisel-HGFE06/04/0125.0 17.00 2.30 13.10 6.80 19.90 10.90 127 2394 2.0 130 2.1 7.1 1.6 550 16.1 QA Duplicate;Biokreisel-H GFE 06/04/0125.0 16.00 2.50 12.90 7.40 20.30 11.40 126 24128 2.1 150 2.2 7.1 1.6 550 16.1Biokreisel-HGFE06/11/01257.2 1.9 541 16.9 Re-sample for NO2.Biokreisel-H GFE 07/09/015.9 4.00 0.52 16.10 3.50 19.60 15.90 148 32460 2.7 560 2.7 7.2 3.0 678 20.5Biokreisel-HGFE07/09/015.9 4.00 0.51 16.10 3.10 19.20 16.10 150 32580 2.8 480 2.7 7.2 3.0 678 20.5 QA duplicate;Biokreisel-H GFE 08/06/011.6 2.00 0.13 13.80 1.80 15.60 12.60 143 2620 1.310 1.0 7.2 2.9 610 20.5Biokreisel-HGFE09/04/016.3 6.00 0.66 4.06 3.10 7.16 10.30 176 22120 2.1 110 2.0 7.4 2.8 552 18.9Biokreisel-HGFE10/01/013.9 13.00 0.11 11.10 1.60 12.70 11.10 135 2764 1.860 1.8 7.3 2.8 494 17.2 QA DuplicateBiokreisel-H GFE 10/01/012.6 8.00 0.10 11.20 1.50 12.70 11.60 132 2880,000 4.9 66,000 4.8 7.3 2.8 494 17.2Biokreisel-HGFE10/29/012.8 1.00 0.06 13.90 1.20 15.10 14.30 154 332 0.32 0.3 7.6 3.2 617 12.8 BOD5 is estimateBiokreisel-H GFE 11/26/0110.8 44.00 0.10 18.50 2.30 20.80 16.50 147 35380 2.6 440 2.6 7.7 2.8 720 9.8 QA DuplicateBiokreisel-H GFE 11/26/017.1 27.00 0.11 18.50 2.30 20.80 17.20 151 34460 2.7 540 2.7 7.7 2.8 720 9.8Biokreisel-HGFE02/04/025.7 8.00 0.30 14.80 3.00 17.80 16.80 139 37460 2.7 560 2.7 7.3 4.8 673 6.7Biokreisel-HGFE04/01/026.2 4.00 0.40 14.10 3.00 17.10 18.70 151 32480 2.7 540 2.7 7.3 4.2 716 13.3 QA duplicateBiokreisel-H GFE 04/01/027.1 5.00 0.40 14.00 2.90 16.90 18.90 153 324,400 3.6 3,000 3.5 7.3 4.2 716 13.3Biokreisel-HGFE06/03/023.6 6.00 0.34 8.90 3.10 12.00 16.10 146 2242 1.642 1.6 7.4 4.2 601 15.8Biokreisel-HGFE08/05/022.4 2.00 0.08 12.10 1.40 13.50 17.90 156 3230 1.534 1.5 7.4 4.2 618 17.4QA DuplicateBiokreisel-H GFE 08/05/021.8 2.00 0.08 12.20 1.40 13.60 18.00 156 3234 1.534 1.5 7.4 4.2 618 17.4Biokreisel-HGFE09/30/022.1 3.00 0.08 13.90 1.60 15.50 14.90 148 3270 1.868 1.8 7.5 4.4 638 14.2BOD5 is est.Biokreisel-H GFE 11/20/025.0 10.00 0.82 9.44 3.00 12.44 17.80 192 50100 2.01 0.0 7.4 2.9 813 11.0Biokreisel-HGFE11/20/027.0 14.00 0.91 9.51 3.00 12.51 17.70 192 51100 2.020 1.3 7.5 2.9 814 11.1QA DuplicateBiokreisel-H GFE 02/03/031.8 5.00 0.09 7.33 2.00 9.33 19.40 202 4386 1.950 1.7 7.6 4.1 763 8.7BOD5 is est.Biokreisel-H GFE 04/02/033.9 3.00 0.09 4.74 2.20 6.94 18.70 200 4064 1.82 0.3 7.4 3.8 734 8.3BOD5 is est.Biokreisel-H GFE 06/04/0318.0 13.00 0.29 2.45 2.40 4.85 18.10 204 33154 2.276 1.9 7.3 2.3 673 17.7BOD5 is est.Biokreisel-H GFE 10/20/0316.0 4.00 35.00 7.47 43.00 50.47 14.30 292 32160 2.216 1.2 7.1 1.6 864 13.5Biokreisel-HMW Drain 2018 03/08/012.0 2.00 0.02 0.69 0.30 0.99 0.2354 62 0.32 0.3 7.5 7.9 129 5.7 6.22Biokreisel-HMW Drain 2018 03/08/013.3 1.00 0.03 0.71 0.30 1.01 0.2356 32 0.32 0.3 7.5 7.9 129 5.7 6.22QA DuplicateBiokreisel-H MW Drain 2018 04/04/011.8 2.00 0.02 3.74 0.40 4.14 0.17 112 112 0.32 0.3 7.0 7.2 323 6.6 5.40Biokreisel-HMW Drain 2018 05/02/010.0 1.00 0.00 7.70 0.50 8.20 0.17 118 142 0.32 0.3 7.1 6.9 367 9.1 5.64Biokreisel-HMW Drain 2018 06/07/011.0 0.00 0.00 13.90 0.50 14.40 0.16 101 172 0.32 0.3 7.0 8.8 422 12.7 6.22Biokreisel-HMW Drain 2018 02/06/020.5 0.50 0.00 18.50 0.40 18.90 0.2068 171 0.01 0.0 7.0 8.6 407 6.2 5.88BOD5 <1Biokreisel-H MW Drain 2018 02/06/020.5 3.00 0.00 18.40 0.40 18.80 0.2070 171 0.01 0.0 7.0 8.6 407 6.2QA Duplicate; BOD <1Biokreisel-H MW Drain 2018 04/01/020.5 2.00 0.00 18.10 0.30 18.40 0.2070 171 0.01 0.0 7.0 8.7 388 10.1 5.81 BOD5 <1.0Biokreisel-H MW Drain 2018 06/04/021.1 8.00 0.03 20.60 1.10 21.7076 221 0.01 0.0 7.0 8.6 437 10.8 5.60BOD5 is est.Biokreisel-H MW Drain 2018 08/06/020.01 17.20 0.40 17.60191 0.01 0.0 7.4 6.1 375 22.0 6.81 NH4 <0.02Biokreisel-H MW Drain 2018 09/04/020.02 15.90 0.30 16.20197.1 7.8 427 11.1 6.82Biokreisel-HMW Drain 2018 09/11/022 0.32 0.3 7.5 2.4 340 28.9Bacteria Re-sampleBiokreisel-H MW Drain 2018 09/30/020.03 13.90 0.50 14.40242 0.32 0.3 7.5 5.2 401 15.5 6.79Biokreisel-HMW Drain 2018 11/18/027.08No samples, unable to establish flowBiokreisel-H MW Drain 2018 02/04/030.5 6.00 0.02 12.60 0.40 13.0081 272 0.32 0.3 7.1 7.5 437 7.6 6.06BOD5<1.0Biokreisel-H MW Drain 2018 03/04/030.5 1.00 0.01 15.30 0.40 15.7076 282 0.32 0.3 7.1 9.1 436 7.4 5.87BOD5<1.0, NH4AsN <0.02Appendix B: Innovative System Field Test DataPage B-11
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesBiokreisel-HMW Drain 2018 03/04/032 0.32 0.3QA Duplicate; bacteria re-sampleBiokreisel-H MW Drain 2018 04/01/031.0 3.00 0.01 13.50 0.10 13.6078 291 0.01 0.0 7.3 9.2 438 7.1 5.73BOD5 is est., NH4 <0.02, TKN <0.2Biokreisel-H MW Drain 2018 06/04/030.5 0.50 0.03 11.70 2.20 13.9084 301 0.01 0.0 7.2 7.3 434 11.1 5.88BOD5<1.0, TSS <1Biokreisel-H MW Drain 2018 09/10/030.03 2.92 0.40 3.32221 0.01 0.0 7.4 4.1 364 19.6 6.88Biokreisel-HMW Drain 2018 10/20/037.17No flow; All tests cancelled.Biokreisel-H STE 01/03/01150.0 18.00 61.00 0.00 78.00 78.00 14.1027 14.00 12,000 4.1 8,000 3.9 8.0 0.8 1015 10.1Biokreisel-HSTE02/06/01230.0 20.00 40.00 0.00 51.00 51.00 11.40 30645.00 64,000 4.8 70,000 4.8 7.1 0.9 770 11.9Biokreisel-HSTE03/05/01300.0 53.00 30.00 0.01 38.00 38.01 11.40 26621.00 600,000 5.8 720,000 5.9 7.4 0.5 550 15.8Biokreisel-HSTE04/02/01210.0 56.00 30.00 0.04 39.00 39.04 11.00 28228.00 15,000 4.2 15,000 4.2 7.2 0.7 611 14.7Biokreisel-HSTE04/30/01230.0 19.00 20.00 0.02 34.00 34.02 12.40 30720.00 180,000 5.3 200,000 5.3 7.2 0.5 693 17.7Biokreisel-HSTE06/04/01160.0 40.00 21.00 0.01 26.00 26.01 10.30 237 25 14.00 10,000 4.0 800 2.9 7.6 0.5 605 18.3Biokreisel-HSTE07/09/01130.0 12.00 19.00 0.01 28.00 28.01 16.10 319 39 8.00 56,000 4.7 52,000 4.7 7.7 0.7 748 21.3Biokreisel-HSTE08/06/0170.0 13.00 13.40 0.02 20.00 20.02 14.30 272 28 9.00 9,000 4.0 7,200 3.9 8.0 1.0 684 20.7Biokreisel-HSTE09/04/01130.0 73.00 19.00 0.01 27.00 27.01 11.70 270 26 13.00 84,000 4.9 68,000 4.8 7.4 0.9 670 21.1Biokreisel-HSTE10/01/0145.0 16.00 12.30 0.01 18.00 18.01 11.10 220 24 14.00 160,000 5.2 110,000 5.0 7.7 0.9 515 20.2Biokreisel-HSTE10/29/0142.0 24.00 10.40 0.00 14.30 14.30 14.50 236 33 2.50 98,000 5.0 84,000 4.9 8.0 0.8 670 15.4oil & grease <5Biokreisel-H STE 11/26/0131.0 10.00 13.80 2.20 18.00 20.20 17.60 248 33 2.50 120,000 5.1 94,000 5.0 8.2 0.8 750 12.3oil & grease <5Biokreisel-H STE 02/04/0241.0 37.00 11.20 2.70 40.00 42.70 16.70 226 32 7.00 280,000 5.4 240,000 5.4 8.2 0.9 532 9.4Biokreisel-HSTE04/01/02130.0 85.00 13.70 0.00 24.00 24.00 19.70 260 33 12.00 34,000 4.5 32,000 4.5 7.6 0.3 806 14.8Biokreisel-HSTE06/03/0291.0 78.00 13.50 0.01 24.00 24.01 17.30 240 27 11.00 17,000 4.2 13,000 4.1 7.8 0.7 667 19.0Biokreisel-HSTE08/05/0251.0 77.00 8.40 2.34 18.00 20.34 18.50 211 34 7.00 90,000 5.0 68,000 4.8 7.9 0.7 658 18.7Biokreisel-HSTE09/30/0259.0 62.00 8.70 0.12 15.00 15.12 16.20 222 36 7.00 190,000 5.3 50,000 4.7 7.6 0.9 628 16.1Biokreisel-HSTE11/20/0276.0 32.00 19.00 0.01 37.00 37.01 20.80 301 52 20.00 40,000 4.6 2,000 3.3 7.6 0.8 930 13.1Biokreisel-HSTE02/03/0392.0 74.00 10.80 0.01 19.00 19.01 20.60 283 49 7.00 88,000 4.9 84,000 4.9 7.5 0.6 812 11.4Biokreisel-HSTE04/02/03160.0 160.00 13.50 0.01 29.00 29.01 21.20 310 42 2.50 18,000 4.3 2,800 3.4 7.5 0.7 823 11.3O&G <5Biokreisel-H STE 06/04/03120.0 84.00 13.80 0.02 26.00 26.02 19.00 288 35 15.00 48,000 4.7 44,000 4.6 7.3 0.4 775 18.9Biokreisel-HSTE10/20/0345.0 29.00 51.00 0.00 63.00 63.00 14.80 356 35 7.00 130,000 5.1 56,000 4.7 8.0 0.9 924 14.2Nitrate <0.050Biokreisel-H STM 01/03/01120.0 41.00 64.00 0.00 82.00 82.00 15.5028 320.00 16,000 4.2 12,000 4.1 8.2 0.7 1059 10.2Biokreisel-HSTM02/06/01180.0 14.00 41.00 0.00 52.00 52.00 12.20 30911.00 800,000 5.9 660,000 5.8 7.2 1.0 742 13.2Biokreisel-HSTM03/05/01250.0 36.00 22.00 0.00 34.00 34.00 9.37 23722.00 68,000 4.8 62,000 4.8 7.5 1.5 675 15.4Biokreisel-HSTM04/02/01200.0 17.00 19.00 0.03 33.00 33.03 9.36 23915.00 10,000 4.0 76,000 4.9 7.3 0.9 536 15.7Biokreisel-HSTM04/30/01280.0 100.00 20.00 0.02 35.00 35.02 11.20 22473.00 130,000 5.1 130,000 5.1 7.3 0.5 548 18.8Biokreisel-HSTM06/04/01250.0 190.00 22.00 0.16 39.00 39.16 14.30 246 24 110.00 8,000 3.9 74,000 4.9 8.1 0.7 630 18.1Biokreisel-HSTM07/09/01250.0 180.00 18.00 0.02 31.00 31.02 16.10 666 31 76.00 120,000 5.1 120,000 5.1 7.9 0.4 668 21.4Biokreisel-HSTM08/06/01220.0 350.00 14.20 0.04 31.00 31.04 16.80 254 30 136.00 1,500 3.2 1,500 3.2 8.1 0.5 680 20.8Biokreisel-HSTM09/04/011300.0 1100.00 22.00 0.02 39.00 39.02 13.40 272 26 216.00 110,000 5.0 82,000 4.9 7.5 0.8 677 20.9Biokreisel-HSTM10/01/01170.0 320.00 12.30 0.37 20.00 20.37 11.50 219 26 37.00 360,000 5.6 140,000 5.1 7.9 0.8 528 19.9Biokreisel-MBKE03/19/0123.0 16.00 64.00 0.01 71.00 71.01 9.77 3746,600 3.8 4,300 3.6 8.2 1.4 1025 12.1Biokreisel-MBKE04/16/0121.0 33.00 54.00 0.30 61.00 61.30 9.17 35554,000 4.7 400 2.6 8.0 1.7 946 12.0Biokreisel-MBKE05/14/0113.0 9.00 67.00 1.28 73.00 74.28 9.51 3752,400 3.4 1,800 3.3 8.1 1.9 1015 14.6Biokreisel-MBKE06/18/0130.0 36.00 1.50 6.71 8.60 15.31 9.18 156 581,200 3.1 120 2.1 7.2 0.9 600 17.2Biokreisel-MBKE07/23/0113.0 14.00 0.52 2.43 4.60 7.03 5.02 206 4510 1.014 1.1 7.7 2.9 612 18.4Biokreisel-MBKE08/20/019.9 8.00 1.43 18.10 4.40 22.50 8.2192 551,800 3.3 1,000 3.0 7.3 2.3 605 20.4Biokreisel-MBKE09/17/01102.0 64.00 0.56 12.60 6.30 18.90 8.66 115 56110,000 5.0 3,000 3.5 7.4 3.3 606 19.5BOD5 estimate (possible toxic interference)Biokreisel-M BKE 10/15/0113.0 7.00 0.86 8.12 2.90 11.02 7.41 135 5380 1.9 140 2.1 7.4 1.7 561 14.6Biokreisel-MBKE11/13/0111.0 5.00 0.68 14.60 3.20 17.80 10.20 92 6121,000 4.3 20,000 4.3 7.2 2.3 523 13.8Biokreisel-MBKE12/10/0117.0 10.00 1.50 13.00 5.10 18.10 11.10 77 5215,000 4.2 14,000 4.1 7.1 1.8 546 10.7TKN is est.Biokreisel-M BKE 01/22/0221.0 7.00 1.20 11.10 3.70 14.80 8.1070 5950,000 4.7 30,000 4.5 7.3 2.4 460 8.5Biokreisel-MBKE02/19/0220.0 6.00 2.10 12.50 3.00 15.50 6.7075 49160,000 5.2 150,000 5.2 7.2 5.0 458 7.9Biokreisel-MBKE04/15/024.2 4.00 1.08 13.40 5.20 18.60 8.4359 4420 1.340 1.6 7.2 3.6 482 13.0Biokreisel-MBKE05/13/0212.0 3.00 0.44 5.85 3.60 9.45 8.8580 4816,000 4.2 12,000 4.1 7.3 4.5 504 14.7Biokreisel-MBKE06/17/027.9 6.00 0.45 11.50 3.20 14.70 7.6277 4642 1.640 1.6 7.2 2.8 460 17.9Biokreisel-MBKE08/19/0231.0 17.00 1.00 9.84 4.90 14.74 8.8882 527,200 3.9 5,600 3.7 7.1 1.1 490 19.5Biokreisel-MBKE10/16/0214.0 8.00 0.91 4.81 5.90 10.71 9.27 205 59160 2.246 1.7 7.5 3.8 489 14.3Biokreisel-MBKE12/09/0213.0 4.00 1.10 9.34 4.80 14.14 9.7368 56110 2.086 1.9 7.2 3.0 506 9.7Biokreisel-MBKE02/19/036.2 4.00 0.14 3.69 2.60 6.29 11.20 118 4930 1.532 1.5 7.7 5.3 518 7.9Biokreisel-MBKE04/14/0323.0 8.00 0.37 10.80 4.20 15.00 8.6859 441,820 3.3 1,180 3.1 7.0 2.2 420 13.9Biokreisel-MBKE06/18/035.4 7.00 0.40 11.00 3.10 14.10 8.3275 5516,000 4.2 2,800 3.4 7.1 2.9 494 20.2Biokreisel-MBKE08/25/0321.0 5.00 0.49 14.60 3.20 17.80 8.3566 44900 3.060 1.8 7.0 2.4 471 21.5Biokreisel-MBKE10/13/031.6 0.50 0.14 3.15 1.60 4.75 8.17 110 61600 2.8 220 2.3 7.5 2.4 497 16.0TSS<1Biokreisel-M GFE 03/19/0128.0 35.00 61.00 0.00 71.00 71.00 9.74 357 50140,000 5.1 12,000 4.1 8.5 3.4 1042 10.9Biokreisel-MGFE03/19/0122.0 21.00 61.00 0.00 76.00 76.00 9.95 368 50140,000 5.1 130,000 5.1 8.5 3.4 1042 10.9QA duplicate;Biokreisel-M GFE 04/16/0118.0 11.00 52.00 0.25 64.00 64.25 9.21 357 536,600 3.8 560 2.7 7.8 2.9 970 10.5QA duplicateBiokreisel-M GFE 04/16/0119.0 10.00 51.00 0.25 61.00 61.25 9.27 354 5311,000 4.060 1.8 7.8 2.9 970 10.5Appendix B: Innovative System Field Test DataPage B-12
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesBiokreisel-MGFE05/14/0112.0 8.00 67.00 1.88 73.00 74.88 9.53 398 526,800 3.8 2,200 3.3 7.8 1.1 1097 11.5Biokreisel-MGFE06/18/0123.0 38.00 0.45 8.22 7.00 15.22 8.80 144 57750 2.9 500 2.7 7.0 2.6 635 16.6QA duplicateBiokreisel-M GFE 06/18/0117.0 30.00 0.44 8.34 6.70 15.04 8.78 138 587,200 3.9 2,500 3.4 7.0 2.6 635 16.6Biokreisel-MGFE07/23/0115.0 13.00 2.00 3.42 5.80 9.22 4.81 238 46680 2.8 740 2.9 7.4 1.0 685 16.0QA duplicate;Biokreisel-M GFE 07/23/0117.0 11.00 2.00 3.38 5.80 9.18 5.26 243 46840 2.9 820 2.9 7.4 1.0 685 16.0Biokreisel-MGFE08/20/014.1 4.00 0.40 16.50 2.40 18.90 7.27 105 521,100 3.0 620 2.8 7.0 2.4 622 18.9Biokreisel-MGFE08/20/014.8 4.00 0.38 16.60 2.40 19.00 7.62 101 531,200 3.1 880 2.9 7.0 2.4 622 18.9QA DuplicateBiokreisel-M GFE 09/17/0111.0 15.00 0.35 11.90 3.00 14.90 7.89 116 578,600 3.9 7,200 3.9 7.3 2.8 631 19.1QA DuplicateBiokreisel-M GFE 09/17/0114.0 27.00 0.38 12.00 2.80 14.80 7.80 117 5513,000 4.1 3,000 3.5 7.3 2.8 631 19.1Biokreisel-MGFE10/15/019.6 5.00 0.88 9.10 2.70 11.80 7.54 140 5460 1.8 140 2.1 7.4 1.8 568 12.6Biokreisel-MGFE10/15/017.6 4.00 0.91 9.15 2.80 11.95 7.65 141 55140 2.12 0.3 7.4 1.8 568 12.6QA DuplicateBiokreisel-M GFE 11/13/018.4 5.00 0.28 15.40 2.50 17.90 10.10 90 5810,000 4.0 8,600 3.9 7.0 3.3 570 12.0Biokreisel-MGFE11/13/0110.0 6.00 0.28 15.40 2.60 18.00 9.9688 6016,000 4.2 11,000 4.0 7.0 3.3 570 12.0QA DuplicateBiokreisel-M GFE 12/10/0115.0 12.00 0.60 14.00 3.70 17.70 10.80 74 547,600 3.9 7,400 3.9 7.0 3.5 539 8.2TKN is est.Biokreisel-M GFE 01/22/029.6 5.00 0.40 12.50 2.30 14.80 8.0064 577,400 3.9 8,000 3.9 7.2 4.6 491 7.2Biokreisel-MGFE01/22/029.9 6.00 0.40 12.40 2.80 15.20 8.3066 5811,000 4.0 5,800 3.8 7.2 4.6 491 7.2QA DuplicateBiokreisel-M GFE 02/19/0218.0 6.00 0.70 13.80 3.20 17.00 7.0077 4988,000 4.9 74,000 4.9 6.9 4.7 236 6.1Biokreisel-MGFE04/15/024.4 5.00 0.44 13.50 2.80 16.30 8.0362 44460 2.7 340 2.5 7.1 3.3 492 10.2Biokreisel-MGFE04/15/026.2 7.00 0.44 13.10 2.80 15.90 8.0762 48640 2.8 540 2.7 7.1 3.3 492 10.2QA DuplicateBiokreisel-M GFE 05/13/027.2 5.00 0.30 6.62 3.20 9.82 9.4086 46760 2.9 780 2.9 7.1 2.9 536 12.6QA duplicateBiokreisel-M GFE 05/13/028.4 6.00 0.33 6.73 2.50 9.23 9.5485 461,900 3.3 280 2.4 7.1 2.9 536 12.6Biokreisel-MGFE06/17/026.1 4.00 0.22 11.00 2.20 13.20 7.7482 4736 1.624 1.4 7.1 2.7 466 15.6Biokreisel-MGFE08/19/0218.0 11.00 0.33 11.60 3.80 15.40 8.7582 525,200 3.7 4,000 3.6 6.9 1.3 498 19.0Biokreisel-MGFE08/19/0219.0 13.00 0.33 11.60 4.40 16.00 8.9382 526,600 3.8 6,000 3.8 6.9 1.3 498 19.0QA DuplicateBiokreisel-M GFE 10/16/0214.0 13.00 0.56 3.70 3.30 7.00 8.75 126 5454 1.750 1.7 7.0 3.8 508 12.3TKN is est.Biokreisel-M GFE 10/16/025.7 4.00 0.54 3.72 2.70 6.42 8.66 126 5572 1.960 1.8 7.1 3.9 501 12.9TKN is est.Biokreisel-M GFE 12/09/0214.0 10.00 0.32 11.20 3.00 14.20 9.7767 57340 2.5 260 2.4 6.9 3.2 518 8.5QA DuplicateBiokreisel-M GFE 12/09/0212.0 17.00 0.32 11.40 2.50 13.90 9.8967 57440 2.6 420 2.6 7.0 3.2 521 8.1Biokreisel-MGFE02/19/0318.0 9.00 0.13 6.48 2.20 8.68 8.13 120 48190 2.3 180 2.3 7.5 3.8 534 6.5BOD5 is est.Biokreisel-M GFE 04/14/0336.0 26.00 0.12 11.80 3.40 15.20 8.8357 431,140 3.1 420 2.6 7.1 2.9 431 10.9Biokreisel-MGFE04/14/0321.0 8.00 0.13 11.70 3.60 15.30 8.9157 441,200 3.1 1,200 3.1 6.9 2.8 430 11.0QA DuplicateBiokreisel-M GFE 06/18/037.2 13.00 0.19 11.20 2.60 13.80 8.3476 545,400 3.7 1,400 3.1 6.9 4.3 478 18.8Biokreisel-MGFE06/18/0314.0 16.00 0.16 11.20 2.80 14.00 8.3176 546,400 3.8 800 2.9 6.9 4.0 500 18.2QA DuplicateBiokreisel-M GFE 08/25/037.0 8.00 0.25 14.40 2.00 16.40 7.5568 45540 2.7 260 2.4 6.9 2.5 475 18.0QA DuplicateBiokreisel-M GFE 08/25/037.8 26.00 0.25 14.60 2.20 16.80 7.6768 451,300 3.1 400 2.6 7.0 2.8 501 19.3Biokreisel-MGFE10/13/033.7 3.00 0.11 3.60 1.50 5.10 8.19 109 60340 2.5 120 2.1 7.1 3.4 513 14.1Biokreisel-MGFE10/13/034.9 4.00 0.10 3.57 1.50 5.07 8.17 109 60360 2.6 160 2.2 7.2 3.4 496 14.2QA DuplicateBiokreisel-M MW Drain 2058 03/20/010.0 2.00 0.05 0.12 0.10 0.22 0.2066 52 0.32 0.3 6.6 1.2 188 7.6 10.55TKN <0.2Biokreisel-M MW Drain 2058 04/17/010.0 0.00 0.04 0.52 0.10 0.62 0.1372 72 0.32 0.3 6.7 0.3 202 7.3 8.43TKN <0.2Biokreisel-M MW Drain 2058 04/17/010.0 0.00 0.04 0.52 0.10 0.62 0.1373 72 0.32 0.3 6.7 0.3 202 7.3QA duplicate; TKN <0.2Biokreisel-M MW Drain 2058 05/15/010.0 0.00 0.03 2.38 0.20 2.58 0.1279 102 0.32 0.3 6.6 0.5 256 7.0 8.62Biokreisel-MMW Drain 2058 05/15/010.0 0.00 0.04 2.35 0.10 2.45 0.1379 102 0.32 0.3 6.6 0.5 256 7.0QA duplicate; TKN <0.2Biokreisel-M MW Drain 2058 06/19/010.0 0.00 0.02 1.13 0.10 1.23 0.1375 82 0.32 0.3 6.9 0.4 209 7.6 10.38BOD5 <1; TKN <0.2Biokreisel-M MW Drain 2058 07/24/010.0 0.00 0.00 0.79 0.10 0.89 0.1476 81 0.01 0.0 6.8 0.5 215 8.1 9.46TKN <0.2Biokreisel-M MW Drain 2058 08/21/010.0 2.00 0.00 0.82 0.10 0.92 0.1377 71 0.01 0.0 6.9 0.5 218 8.0 9.80TKN <0.2Biokreisel-M MW Drain 2058 08/21/010.0 2.00 0.00 0.77 0.10 0.87 0.1377 76.9 0.5 218 8.0QA Duplicate; TKN <0.2Biokreisel-M MW Drain 2058 08/28/012 0.32 0.3 6.7 0.5 214 8.5 9.80Bacteria Re-SampleBiokreisel-M MW Drain 2058 09/18/010.0 1.00 0.00 0.66 0.20 0.86 0.1475 62 0.32 0.3 6.8 0.2 204 8.4 10.64Biokreisel-MMW Drain 2058 10/16/010.0 0.00 0.00 0.35 0.10 0.45 0.1575 52 0.32 0.3 6.7 0.2 178 8.5 10.25TKN <0.2Biokreisel-M MW Drain 2058 11/14/010.0 0.00 0.00 0.25 0.10 0.35 0.1572 42 0.32 0.3 6.8 0.3 173 8.6 10.16TKN <0.2Biokreisel-M MW Drain 2058 12/11/010.0 2.00 0.02 0.16 0.10 0.26 0.1571 51 0.01 0.0 6.9 0.3 188 8.2 10.74BOD5 <1.0, TKN <0.2 est.Biokreisel-M MW Drain 2058 01/22/020.5 0.50 0.01 0.90 0.10 1.00 0.1070 72 0.32 0.3 6.9 0.7 206 7.9 9.18NH4 <.02, BOD5 <1.0, TKN <0.2, TSS <1Biokreisel-M MW Drain 2058 02/20/020.5 0.50 0.00 4.10 0.10 4.20 0.1070 91 0.01 0.0 6.9 0.2 240 7.7 10.71BOD5 <1, TKN <0.2; TSS <1Biokreisel-M MW Drain 2058 02/20/020.5 0.50 0.00 4.10 0.10 4.20 0.1070 91 0.01 0.0 6.9 0.2 240 7.7QA Duplicate; BOD <1; TKN <0.2; TSS <1Biokreisel-M MW Drain 2058 04/16/020.5 0.50 0.01 4.68 0.10 4.78 0.1367 141 0.01 0.0 6.8 0.4 286 7.4 8.40TSS <1; NH4<0.02; BOD<1; TKN<0.2Biokreisel-M MW Drain 2058 05/13/020.5 0.50 0.01 2.43 0.10 2.5368 121 0.01 0.0 6.8 0.3 257 7.3 8.37TKN <0.2, TSS <1, BOD5<1.0, NH4 <0.02Biokreisel-M MW Drain 2058 06/17/021.00 0.01 4.65 0.20 4.8571 176.7 0.6 289 7.4 9.08NH4 <0.02Biokreisel-M MW Drain 2058 06/19/022 0.32 0.3 6.9 0.3 216 7.7bacteria re-sampleBiokreisel-M MW Drain 2058 08/20/020.5 0.50 0.01 5.92 0.30 6.2284 212 0.32 0.3 6.8 1.2 295 8.2 10.26TSS <1, BOD5 <1, NH4 <0.02Biokreisel-M MW Drain 2058 09/17/020.5 0.50 0.05 2.73 0.10 2.8375 142 0.32 0.3 6.1 0.4 243 8.7 10.19BOD5<1.0, TKN<0.2, pH is est.Biokreisel-M MW Drain 2058 10/14/020.5 1.00 0.01 1.40 0.10 1.5088 142 0.32 0.3 6.8 0.6 263 9.2 10.40BOD5<1.0, NH4 <0.02, TKN <0.2, Chloride is est.Biokreisel-M MW Drain 2058 12/09/020.5 0.50 0.01 0.39 0.10 0.4970 52 0.32 0.3 6.8 0.5 190 8.8 10.86NH4 <0.02, BOD5 <1.0, TKN <0.2, TSS <1Biokreisel-M MW Drain 2058 02/18/030.5 0.50 0.05 1.40 0.10 1.5072 91 0.01 0.0 6.8 0.4 218 8.3 8.99BOD5<1.0, TSS<1, TKN <0.2Biokreisel-M MW Drain 2058 03/17/031.2 0.50 0.01 1.94 0.20 2.1478 121 0.01 0.0 6.9 0.4 241 8.2 10.66BOD5 is est., TSS <1, NH4 <0.02Appendix B: Innovative System Field Test DataPage B-13
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesBiokreisel-MMW Drain 2058 03/17/030.5 0.50 0.01 1.97 0.10 2.0778 121 0.01 0.0QA Dupl.; BOD5 <1.0, TSS <1, NH4 <0.02, TKN <0.2Biokreisel-M MW Drain 2058 04/14/030.5 0.50 0.01 1.76 0.10 1.8683 131 0.01 0.0 6.9 0.5 260 7.6 8.64BOD5<1.0, TSS <1, NH4 <0.02, TKN <0.2Biokreisel-M MW Drain 2058 04/14/030.5 0.50 0.01 1.77 0.10 1.8784 131 0.01 0.0QA Dupl; BOD5<1.0, TSS <1, NH4 <0.02, TKN <0.2Biokreisel-M MW Drain 2058 06/16/030.5 0.50 0.02 1.74 0.10 1.8482 111 0.01 0.0 6.9 0.5 234 8.4 10.79BOD5<1.0, TSS<1, TKN<0.2Biokreisel-M MW Drain 2058 08/27/030.5 0.50 0.03 0.40 0.10 0.5073 61 0.01 0.0 6.9 0.3 182 8.7 10.81BOD5<1.0, TSS<1, TKN<0.2Biokreisel-M MW Drain 2058 08/27/030.5 0.50 0.02 0.39 0.10 0.4974 61 0.01 0.0QA Duplicate; BOD5<1.0, TSS<1, TKN<0.2Biokreisel-M MW Drain 2058 09/15/030.5 0.50 0.01 0.18 0.10 0.2872 51 0.01 0.0 6.9 0.2 176 8.5 10.81TKN<0.2, NH4AsN<0.02, TSS<1, BOD5<1Biokreisel-M MW Drain 2058 09/15/030.5 0.50 0.02 0.18 0.10 0.2872 51 0.01 0.0QA Duplicate; TKN<0.2, TSS<1, BOD5<1Biokreisel-M MW Drain 2058 10/13/030.1 0.50 0.01 0.82 0.10 0.9290 111 0.01 0.0 6.8 1.3 249 8.7 10.75BOD5 <0.1, TSS<1, NH4AsN<0.02, TKN<0.2Biokreisel-M MW Drain 2058 10/13/030.1 0.50 0.01 0.80 0.10 0.9089 121 0.01 0.0QA Dupl.; BOD5 <0.1, TSS<1, NH4<0.02, TKN<0.2Biokreisel-M STE 03/19/0172.0 60.00 67.00 0.00 88.00 88.00 10.90 36416.00 2.0E+06 6.3 1.8E+06 6.3 8.6 1.9 1030 13.3Biokreisel-MSTE04/16/01130.0 100.00 43.00 0.44 62.00 62.44 9.76 31814.00 7.8E+06 6.9 200 2.3 8.4 1.3 853 12.6Biokreisel-MSTE05/14/0154.0 53.00 67.00 0.01 77.00 77.01 9.89 3942.50 180,000 5.3 3,000 3.5 8.2 1.0 1016 14.1Oil & Grease <5Biokreisel-M STE 06/18/01130.0 60.00 14.00 0.00 24.00 24.00 8.96 224 61 7.00 600,000 5.8 22,000 4.3 7.2 0.6 681 17.6Biokreisel-MSTE07/23/0189.0 150.00 2.90 0.01 11.00 11.01 6.25 233 47 2.50 1,800 3.3 2,800 3.4 7.5 1.1 624 18.5Oil & Grease <5Biokreisel-M STE 08/20/0114.0 50.00 18.00 0.01 24.00 24.01 8.92 230 57 2.50 200,000 5.3 140,000 5.1 8.1 1.0 689 20.4BOD5 - Est; Oil & grease <5Biokreisel-M STE 09/17/01130.0 81.00 21.00 0.01 26.00 26.01 7.00 266 61 6.00 140,000 5.1 4,000 3.6 8.7 0.6 731 19.4Biokreisel-MSTE10/15/0175.0 45.00 10.30 0.84 16.00 16.84 8.33 194 56 6.00 34,000 4.5 58,000 4.8 7.5 0.8 631 15.0Biokreisel-MSTE11/13/0175.0 12.00 21.00 0.01 23.00 23.01 11.40 202 58 2.50 2.0E+06 6.3 1.1E+06 6.0 7.6 1.0 597 14.4oil & grease <5Biokreisel-M STE 12/10/0167.0 68.00 11.80 0.02 22.00 22.02 11.50 160 56 6.00 1.6E+06 6.2 1.3E+06 6.1 7.5 0.7 582 12.1TKN is est.Biokreisel-M STE 02/19/0257.0 28.00 9.20 4.50 13.00 17.50 6.70 125 50 2.50 5.0E+06 6.7 4.5E+06 6.7 7.6 1.5 503 8.3Oil & Grease <5Biokreisel-M STE 02/20/02140.0 106.00 9.50 0.00 18.00 18.00 8.10 144 57 6.00 5.2E+06 6.7 4.6E+06 6.7 7.2 1.2 507 10.1Biokreisel-MSTE04/15/02100.0 44.00 20.00 0.02 30.00 30.02 9.28 235 51 2.50 820,000 5.9 640,000 5.8 7.7 1.0 517 12.4O&G <5Biokreisel-M STE 05/13/0277.0 33.00 10.90 0.00 18.00 18.00 9.41 250 45 2.50 1.5E+06 6.2 1.4E+06 6.1 7.5 0.7 806 14.2Nitrate/nitrite <0.005, O&G <5Biokreisel-M STE 06/17/0286.0 42.00 23.00 0.01 27.00 27.01 7.80 256 47 2.50 17,000 4.2 9,400 4.0 7.7 0.8 675 16.8O&G <5Biokreisel-M STE 08/19/0294.0 37.00 12.60 0.01 20.00 20.01 9.34 162 49 9.00 8.8E+06 6.9 5.6E+06 6.7 7.2 0.6 534 20.4Biokreisel-MSTE10/16/0263.0 93.00 2.60 2.15 6.20 8.35 9.33 124 60 2.50 13,000 4.1 13,000 4.1 7.3 1.6 499 15.0O&G <5Biokreisel-M STE 12/09/0244.0 47.00 6.60 4.16 14.00 18.16 10.20 114 57 10.00 460,000 5.7 500,000 5.7 7.1 0.7 542 10.5Biokreisel-MSTE02/19/0395.0 150.00 1.09 2.01 15.00 17.01 13.70 130 50 8.00 14,000 4.1 17,000 4.2 7.5 1.9 500 8.0Biokreisel-MSTE04/14/03430.0 720.00 11.10 0.01 20.00 20.01 10.10 342 46 34.00 138,000 5.1 52,000 4.7 7.3 0.7 830 12.6Biokreisel-MSTE06/18/0361.0 57.00 11.10 0.01 21.00 21.01 9.23 177 60 9.00 3.4E+06 6.5 240,000 5.4 7.3 1.1 587 18.9Biokreisel-MSTE08/25/0385.0 120.00 12.20 0.06 17.00 17.06 9.77 169 47 2.50 740,000 5.9 900,000 6.0 7.3 0.9 541 21.3O&G is <5 est.Biokreisel-M STM 03/19/01110.0 54.00 55.00 0.52 72.00 72.52 8.89 32220.00 1,000 3.0 1,000 3.0 8.7 1.3 901 14.5Biokreisel-MSTM04/16/01120.0 46.00 40.00 2.94 61.00 63.94 10.20 31619.00 2.5E+07 7.4 60,000 4.8 8.2 0.8 829 14.3Biokreisel-MSTM05/14/0133.0 21.00 70.00 0.01 77.00 77.01 10.20 3902.50 140,000 5.1 2,600 3.4 8.2 1.0 1009 14.3Oil & Grease <5Biokreisel-M STM 06/18/01110.0 55.00 9.10 0.05 21.00 21.05 9.24 226 57 11.00 320,000 5.5 16,000 4.2 7.8 0.7 641 19.1Biokreisel-MSTM07/23/0172.0 200.00 1.10 0.01 8.50 8.51 6.81 217 45 57.00 800 2.9 600 2.8 7.5 0.8 609 18.4Biokreisel-MSTM08/20/01100.0 86.00 16.00 1.39 25.00 26.39 8.52 212 56 43.00 210,000 5.3 98,000 5.0 7.9 0.5 619 21.1Biokreisel-MSTM09/17/0194.0 65.00 23.00 0.12 29.00 29.12 9.79 268 59 5.00 1.1E+06 6.0 560,000 5.7 8.1 0.8 788 19.7Biokreisel-MSTM10/15/0190.0 130.00 1.60 4.27 8.60 12.87 8.97 155 54 54.00 38,000 4.6 28,000 4.4 7.3 0.5 535 15.2Bottomless Sand Filter A MW Drain 2030 01/17/010.0 2.007 2 0.3 2 0.3 6.8 5.0 177 6.2 15.31Nutrient bottle broken in transport.Bottomless Sand Filter A MW Drain 2030 02/14/011.0 1.00 0.05 5.85 0.20 6.05 0.1148 82 0.32 0.3 7.8 4.9 105 6.9 15.35BOD5 is estimate.Bottomless Sand Filter A MW Drain 2030 03/20/010.0 0.00 0.03 2.58 0.10 2.68 0.1470 162 0.32 0.3 6.5 7.5 281 7.6 11.38TKN <0.2Bottomless Sand Filter A MW Drain 2030 04/18/011.7 0.00 0.00 1.89 0.10 1.99 0.1178 222 0.32 0.3 6.6 6.5 296 7.3 15.17TKN <0.2Bottomless Sand Filter A MW Drain 2030 05/16/011.1 0.00 0.00 2.16 0.10 2.26 0.1187 212 0.32 0.3 6.7 6.3 287 7.7 15.11BOD5 -Estimate; TKN <0.2Bottomless Sand Filter A MW Drain 2030 07/24/010.0 0.00 0.00 3.78 0.10 3.88 0.1184 221 0.01 0.0 6.5 7.4 283 10.2 15.66TKN <0.2Bottomless Sand Filter A MW Drain 2030 08/21/010.0 0.00 0.00 5.59 0.20 5.79 0.1081 316.6 7.4 371 11.3 15.80Bottomless Sand Filter A MW Drain 2030 08/28/012 0.32 0.3 6.6 7.8 404 12.1 15.67Bacteria Re-sampleBottomless Sand Filter A MW Drain 2030 09/18/010.0 5.00 0.00 38.30 0.30 38.60 0.0975 362 0.32 0.3 6.5 9.0 624 12.7 16.08Bottomless Sand Filter A MW Drain 2030 10/16/010.0 3.00 0.00 39.40 0.40 39.80 0.0976 352 0.32 0.3 6.5 6.5 583 12.2 16.44Bottomless Sand Filter A MW Drain 2030 11/14/010.0 3.00 0.00 57.90 0.30 58.20 0.1073 412 0.32 0.3 6.5 6.8 710 10.1 16.46Bottomless Sand Filter A MW Drain 2030 12/10/010.5 0.50 0.00 59.40 0.40 59.80 0.1068 456.5 8.3 812 7.7 16.30TKN is est.; BOD is <1Bottomless Sand Filter A MW Drain 2030 12/18/012 0.32 0.3 6.6 7.9 832 6.7 16.07Bacteria Re-sampleBottomless Sand Filter A MW Drain 2030 12/18/012 0.32 0.3 6.6 7.9 832 6.7QA Duplicate; Bacteria re-sampleBottomless Sand Filter A MW Drain 2030 02/20/020.5 3.00 0.00 67.50 0.40 67.90 0.1051 461 0.01 0.0 6.6 7.3 884 9.1 16.15BOD5 <1Bottomless Sand Filter A MW Drain 2030 04/15/020.5 0.50 0.01 58.90 0.10 59.00 0.0744 502 0.32 0.3 6.8 6.8 812 9.8 14.92TSS <1; NH4 <0.02; BOD <1; TKN <0.2Bottomless Sand Filter A MW Drain 2030 06/18/023.00 0.02 63.20 0.10 63.3041 462 0.32 0.3 6.4 6.2 755 10.3 15.45TKN <0.2, BOD5 voidBottomless Sand Filter A MW Drain 2030 08/20/020.5 0.50 0.01 71.80 0.10 71.9045 472 0.32 0.3 6.5 6.8 798 13.2 16.02TKN <0.2, TSS <1, BOD5 <1, NH4 <0.02Bottomless Sand Filter A MW Drain 2030 09/18/020.5 2.00 0.01 73.00 0.10 73.1050 461 0.01 0.0 6.3 9.0 814 13.5 16.02BOD5<1.0, NH4 <0.02, TKN<0.2Bottomless Sand Filter A MW Drain 2030 10/14/020.5 0.50 0.01 75.60 0.10 75.7050 501 0.01 0.0 6.5 6.5 826 14.2 16.45BOD5, TSS <1.0, NH4 <0.02, TKN <0.2, Chloride est.Bottomless Sand Filter A MW Drain 2030 12/10/021.0 20.00 0.01 75.00 0.10 75.1051 491 0.01 0.0 7.1 8.7 945 7.2 16.66NH4 <0.02, BOD5 is est., TKN <0.2Bottomless Sand Filter A MW Drain 2030 02/19/030.5 2.00 0.01 87.70 0.10 87.8030 521 0.01 0.0 6.6 8.4 969 7.9 15.62BOD5<1.0, NH4AsN <0.02, TKN <0.2Bottomless Sand Filter A MW Drain 2030 03/18/030.5 2.00 0.01 83.40 0.10 83.5032 501 0.01 0.0 6.7 8.0 936 9.4 15.69BOD5<1.0, NH4AsN <0.02, TKN <0.2Bottomless Sand Filter A MW Drain 2030 04/14/030.5 0.50 0.02 71.70 0.10 71.8032 481 0.01 0.0 6.7 6.8 839 9.0 15.26BOD5<1.0, TSS <1, TKN <0.2Appendix B: Innovative System Field Test DataPage B-14
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesBottomless Sand Filter A MW Drain 2030 06/17/030.5 1.00 0.02 62.10 0.30 62.4035 601 0.01 0.0 6.5 8.5 791 12.3 15.87BOD5<1.0Bottomless Sand Filter A MW Drain 2030 08/19/030.5 0.50 0.02 61.10 0.30 61.4037 611 0.01 0.0 6.5 7.1 823 14.9 16.22BOD5<1.0, TSS<1Bottomless Sand Filter A MW Drain 2030 09/16/030.5 0.50 0.01 61.60 0.40 62.0040 631 0.01 0.0 6.4 7.3 825 11.3 16.16BOD5<1.0, TSS<1, NH4AsN<0.02Bottomless Sand Filter A MW Drain 2030 10/13/030.5 0.50 0.01 61.70 0.10 61.8040 601 0.01 0.0 6.6 6.5 808 11.4 16.81BOD5 <1.0, TSS<1, NH4AsN<0.02, TKN<0.2Bottomless Sand Filter A SFE 01/17/018.0 2.00 0.25 0.01 2.30 2.31 3.57512 0.32 0.3 7.9 7.3 660 0.8Bottomless Sand Filter A SFE02/13/019.0 3.00 1.22 0.04 2.70 2.74 5.42 280 522 0.32 0.3 8.2 7.2 392 0.4Bottomless Sand Filter A SFE03/19/014.0 0.00 2.00 0.13 3.30 3.43 7.42 231 496 0.84 0.6 6.7 8.1 685 5.9Bottomless Sand Filter A SFE04/16/011.9 2.00 3.70 2.97 5.30 8.27 6.51 178 492 0.32 0.3 7.7 5.6 576 6.1BOD-5 & Nitrate are estimates.Bottomless Sand Filter A SFE 05/14/010.13 71.70 2.70 74.40 4.32522 0.32 0.3 7.3 6.0 908 11.0SFE sample collected over 5-day period.Bottomless Sand Filter A SFE 08/20/014.8 4.00 1.70 75.50 3.90 79.40 3.483 4222 1.314 1.1 6.0 5.5 835 15.6Sample collected over 5 day period.Bottomless Sand Filter A SFE 09/17/012.0 3.00 0.07 45.80 1.60 47.40 3.9298 551.9E+06 6.3 1.6E+06 6.2 7.4 4.7 764 14.3BOD5 is estimate; depletion requirement not met.Bottomless Sand Filter A SFE 10/15/011.5 0.00 0.09 78.10 1.70 79.80 3.924 552 0.32 0.3 6.6 4.2 797 9.4BOD5 est.; depletion requirement not met. Sample collected over 3 day period.Bottomless Sand Filter A SFE 11/13/013.2 3.00 0.92 48.80 2.60 51.40 7.10 101 5114 1.16 0.8 7.1 5.1 718 8.5Bottomless Sand Filter A SFE12/10/010.12 82.80 3.30 86.10 5.80432 0.32 0.3 6.7 9.1 518 2.3TKN is est.Bottomless Sand Filter A SFE 02/19/020.5 2.00 0.00 50.50 3.80 54.30 4.0014 4710 1.014 1.1 6.7 8.9 395 1.8BOD5 <1Bottomless Sand Filter A SFE 04/15/020.5 3.00 0.03 68.60 1.40 70.00 3.996 554 0.66 0.8 6.8 6.7 802 7.5BOD <1Bottomless Sand Filter A SFE 06/17/022.7 12.00 0.31 86.00 1.60 87.60 3.501 452 0.32 0.3 6.0 5.1 815 15.4Bottomless Sand Filter A SFE08/20/021.7 47.00 0.39 120.00 1.40 121.40 2.121 482 0.32 0.3 4.9 3.9 1031 17.0TKN, BOD5 is est., alk. <1Bottomless Sand Filter A SFE 10/14/020.5 4.00 0.09 110.00 0.60 110.60 1.501 5030 1.522 1.3 6.1 6.1 961 8.8BOD5<1.0, alk. <1, Chloride is est.Bottomless Sand Filter A SFE 12/09/022.0 2.00 0.06 42.90 2.20 45.10 2.9414 52170 2.2 160 2.2 7.1 6.7 658 3.3BOD5 is est.Bottomless Sand Filter A SFE 02/18/031.7 4.00 0.14 47.70 1.40 49.10 3.162 6112 1.12 0.3 6.5 6.7 658 3.7Bottomless Sand Filter A SFE04/14/032.4 0.50 1.42 71.50 2.20 73.70 3.504 9814 1.112 1.1 6.7 5.6 953 5.9BOD5, TKN is est., TSS <1Bottomless Sand Filter A SFE 06/18/031.0 6.00 0.05 83.90 1.70 85.60 3.406 482 0.32 0.3 6.6 6.1 927 16.6BOD5 is est.Bottomless Sand Filter A SFE 08/20/0314.00.05 113.00 0.10 113.10 1.742 511 0.01 0.0 6.6 7.0 1124 18.1TSS void; BOD5 is est., TKN<0.2Bottomless Sand Filter A SFE 10/13/030.5 0.50 0.01 150.00 0.60 150.60 0.932 602 0.32 0.3 6.5 6.2 1413 9.2BOD5 <1.0 est, TSS<1, NH4AsN<0.02Bottomless Sand Filter A STE 01/17/01390.0 87.00 65.00 0.01 80.00 80.01 10.4056.00 54,000 4.7 50,000 4.7 7.9 1.1 876 7.5Bottomless Sand Filter A STE02/14/01380.0 22.00 57.00 0.01 78.00 78.01 10.40 30839.00 10,000 4.0 12,000 4.1 7.9 1.2 842 8.4Bottomless Sand Filter A STE03/19/01270.0 33.00 47.00 0.00 67.00 67.00 9.80 25242.00 3,000 3.5 1,000 3.0 7.1 0.7 756 11.6Bottomless Sand Filter A STE04/16/01300.0 280.00 49.00 0.01 62.00 62.01 8.85 28421.00 360 2.6 460 2.7 7.4 0.8 805 8.6Bottomless Sand Filter A STE05/14/01240.0 20.00 41.00 0.03 64.00 64.03 8.81 30619.002 0.32 0.3 7.6 0.6 866 11.4Bottomless Sand Filter A STE06/18/01130.0 10.00 50.00 0.00 60.00 60.00 8.61 329 55 15.002 0.32 0.3 7.4 1.7 877 13.8Bottomless Sand Filter A STE07/23/01280.0 61.00 54.00 0.01 64.00 64.01 7.39 316 45 37.00 28,000 4.4 27,000 4.4 7.3 0.5 835 19.3Bottomless Sand Filter A STE08/20/01280.0 54.00 52.00 0.02 62.00 62.02 10.80 291 46 47.00 58,000 4.8 42,000 4.6 7.3 1.0 806 19.5Bottomless Sand Filter A STE09/17/01280.0 58.00 81.00 0.01 86.00 86.01 13.50 375 56 38.00 740,000 5.9 640,000 5.8 7.4 0.7 180 18.4Bottomless Sand Filter A STE10/15/0136.0 48.00 79.00 0.02 98.00 98.02 16.90 415 55 29.00 20,000 4.3 14,000 4.1 7.3 0.6 1015 15.7Bottomless Sand Filter A STE11/13/01300.0 82.00 55.00 0.01 64.00 64.01 9.97 279 33 38.00 110,000 5.0 74,000 4.9 7.0 0.8 693 14.9Bottomless Sand Filter A STE12/10/01470.0 85.00 66.00 0.06 100.00 100.06 17.60 470 48 30.00 36,000 4.6 24,000 4.4 6.8 0.9 1202 7.5TKN is est.Bottomless Sand Filter A STE 02/19/02480.0 74.00 76.00 0.00 87.00 87.00 14.40 375 40 27.00 64,000 4.8 50,000 4.7 6.4 1.6 937 6.8Bottomless Sand Filter A STE04/15/02350.0 37.00 67.00 0.02 75.00 75.02 14.30 340 51 30.00 1,000 3.0 1,000 3.0 6.8 1.0 1018 9.3Bottomless Sand Filter A STE06/17/02480.0 67.00 68.00 0.02 81.00 81.02 12.70 300 43 56.00 14,000 4.1 13,000 4.1 6.7 0.8 879 17.4Bottomless Sand Filter A STE08/20/02280.0 84.00 68.00 0.05 87.00 87.05 11.80 344 40 35.00 1,600 3.2 1,600 3.2 6.6 0.7 924 19.8TKN is est.Bottomless Sand Filter A STE 10/14/02480.0 61.00 73.00 0.05 90.00 90.05 14.70 401 58 34.00 54,000 4.7 54,000 4.7 6.4 1.0 1031 12.6Chloride is est.Bottomless Sand Filter A STE 12/09/02460.0 10.00 71.00 0.02 86.00 86.02 13.50 365 53 39.00 86,000 4.9 72,000 4.9 6.7 1.0 1106 7.9Nitrate/nitrite is est.Bottomless Sand Filter A STE 02/18/03710.0 720.00 61.00 0.01 79.00 79.01 12.40 364 93 63.00 5,200 3.7 4,800 3.7 6.9 1.0 1066 8.3Bottomless Sand Filter A STE04/14/03400.0 100.00 61.00 0.05 76.00 76.05 12.60 346 100 26.00 20,000 4.3 26,000 4.4 7.1 1.1 1112 10.3Bottomless Sand Filter A STE06/18/03420.0 100.00 55.00 0.03 69.00 69.03 11.90 326 42 79.00 2,200 3.3 2,800 3.4 6.8 0.9 885 19.3Bottomless Sand Filter A STE08/20/03690.0 160.00 58.00 0.03 85.00 85.03 15.30 385 54 42.00 1,000 3.0 800 2.9 6.4 0.4 1053 18.6O&G is est.Bottomless Sand Filter A STE 10/13/03510.0 44.00 84.00 0.06 100.00 100.06 17.20 460 60 54.00 16,000 4.2 8,800 3.9 6.5 1.2 1285 12.0Bottomless Sand Filter B MW Drain 2084 11/13/002.0 8.00 0.06 0.03 0.10 0.13 0.6470 12 0.32 0.3 7.1 3.9 150 10.8 11.02TKN <0.2Bottomless Sand Filter B MW Drain 2084 12/13/001.0 1.00 0.07 0.05 0.20 0.25 0.5274 22 0.32 0.3 6.9 4.0 161 10.1 10.95Bottomless Sand Filter B MW Drain 2084 01/17/010.0 3.00 0.00 0.02 0.10 0.12 0.37102 0.32 0.3 6.8 3.8 182 9.6QA Duplicate; TKN <0.2Bottomless Sand Filter B MW Drain 2084 01/17/010.0 6.00 0.04 0.02 0.10 0.12 0.37132 0.32 0.3 6.8 3.8 182 9.6 10.79TKN <0.2Bottomless Sand Filter B MW Drain 2084 02/14/011.0 1.00 0.06 0.02 0.30 0.32 0.2876 242 0.32 0.3 6.7 3.4 233 8.4 10.54BOD5 is estimateBottomless Sand Filter B MW Drain 2084 03/14/010.0 4.00 0.03 0.59 0.10 0.69 0.2088 452 0.32 0.3 7.0 4.4 345 8.2 8.86TKN <0.2Bottomless Sand Filter B MW Drain 2084 04/10/010.0 2.00 0.03 1.72 0.20 1.92 0.1985 252 0.32 0.3 6.8 2.1 263 7.5 9.73Bottomless Sand Filter B MW Drain 2084 05/09/010.0 8.00 0.00 6.75 0.10 6.85 0.1488 422 0.32 0.3 6.8 3.0 356 8.8 9.90TKN <0.2Bottomless Sand Filter B MW Drain 2084 05/09/010.0 9.00 0.00 6.78 0.20 6.98 0.1488 412 0.32 0.3 6.8 3.0 356 8.8QA DuplicateBottomless Sand Filter B MW Drain 2084 06/13/010.0 2.00 0.03 7.07 0.20 7.27 0.2477 342 0.32 0.3 6.8 2.7 346 9.2 10.65Bottomless Sand Filter B MW Drain 2084 07/17/010.0 0.00 0.04 6.54 0.10 6.64 0.2974 161 0.01 0.0 6.7 5.8 274 11.3 11.09TKN <0.2Bottomless Sand Filter B MW Drain 2084 08/14/010.0 0.00 0.03 6.39 0.10 6.49 0.2875 131 0.01 0.0 6.7 5.1 295 12.9 11.22TKN <0.2Bottomless Sand Filter B MW Drain 2084 09/11/010.0 0.00 0.06 4.75 0.10 4.85 0.3372 71 0.01 0.0 6.5 7.6 243 15.6 11.46TKN <0.2Bottomless Sand Filter B MW Drain 2084 10/09/010.0 0.00 0.00 9.76 0.10 9.86 0.3379 141 0.01 0.0 6.8 4.9 301 14.2 11.50TKN <0.2Bottomless Sand Filter B MW Drain 2084 10/09/010.0 0.00 0.00 9.76 0.10 9.86 0.3379 141 0.01 0.0 6.8 4.9 301 14.2 11.50TKN <0.2Bottomless Sand Filter B MW Drain 2084 10/17/012 0.32 0.3 6.6 6.6 386 13.2 11.13bacteria re-sampleAppendix B: Innovative System Field Test DataPage B-15
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesBottomless Sand Filter B MW Drain 2084 10/17/012 0.32 0.3 6.6 6.6 386 13.2 11.13bacteria re-sample; QA DuplicateBottomless Sand Filter B MW Drain 2084 12/05/010.5 1.00 0.02 27.60 0.10 27.70 0.2789 261 0.01 0.0 6.9 7.1 566 11.9 11.19BOD <1.0; TKN < 0.2Bottomless Sand Filter B MW Drain 2084 02/11/020.5 0.50 0.00 6.20 0.10 6.30 0.2071 122 0.32 0.3 6.5 3.6 235 9.2 10.00BOD <1.0; TKN < 0.2; TSS <1Bottomless Sand Filter B MW Drain 2084 04/08/020.5 2.00 0.00 4.20 0.10 4.30 0.2062 51 0.01 0.0 6.7 2.2 184 8.1 10.04BOD5 <1.0, TKN <0.2Bottomless Sand Filter B MW Drain 2084 06/11/020.5 3.00 0.01 13.20 0.10 13.3059 111 0.01 0.0 6.7 1.0 277 10.2 10.29TKN <0.2, BOD5<1.0, NH4 <0.02Bottomless Sand Filter B MW Drain 2084 08/14/020.5 1.00 0.06 7.43 0.30 7.7367 101 0.01 0.0 6.6 6.8 229 14.8 11.43TKN is est., BOD5 <1Bottomless Sand Filter B MW Drain 2084 09/09/020.5 0.50 0.01 11.50 0.30 11.8070 131 0.01 0.0 6.6 4.9 259 17.5 11.60BOD5<1.0, TSS<1, NH4 <0.02Bottomless Sand Filter B MW Drain 2084 10/07/020.5 0.50 0.02 37.60 0.10 37.7082 271 0.01 0.0 6.7 6.1 527 17.3 11.99BOD5 <1; TKN < 0.2; TSS <1Bottomless Sand Filter B MW Drain 2084 12/02/020.5 1.00 0.01 28.50 0.60 29.1068 211 0.01 0.0 6.8 6.0 472 13.4 11.60BOD5 <1.0 NH4 <0.02Bottomless Sand Filter B MW Drain 2084 02/10/030.5 3.00 0.03 14.00 0.30 14.3068 181 0.01 0.0 6.8 7.9 325 9.6 9.97BOD5<1.0Bottomless Sand Filter B MW Drain 2084 03/10/030.5 0.50 0.01 4.42 0.20 4.6280 71 0.01 0.0 6.8 4.7 217 9.6 10.07BOD5<1.0, TSS<1, NH4AsN <0.02Bottomless Sand Filter B MW Drain 2084 04/07/030.5 1.00 0.03 7.19 0.10 7.2983 91 0.01 0.0 6.7 3.8 249 8.5 9.49BOD5<1.0, TKN <0.2Bottomless Sand Filter B MW Drain 2084 06/03/030.5 0.50 0.01 4.27 0.20 4.4770 41 0.01 0.0 6.8 3.4 186 9.9 10.47BOD5<1.0, TSS <1, NH4<0.02Bottomless Sand Filter B MW Drain 2084 08/11/030.5 1.00 0.01 2.53 0.20 2.7370 31 0.01 0.0 6.6 6.7 164 14.8 11.57BOD5<1.0, NH4AsN<0.02Bottomless Sand Filter B MW Drain 2084 09/17/030.5 1.00 0.02 23.30 0.10 23.4076 181 0.01 0.0 6.7 6.9 410 13.2 11.52BOD5<1.0, TKN<0.2Bottomless Sand Filter B SFE 01/17/012.0 1.00 0.07 5.92 1.30 7.22 5.381602 0.32 0.3 7.91142Bottomless Sand Filter B SFE01/23/0150.0 1.00 0.02 8.77 1.20 9.97345 170310 2.5 360 2.6Bottomless Sand Filter B SFE02/13/011698.1 7.8 178 1.8Nitrite <0.20Bottomless Sand Filter B SFE 03/12/012.3 0.00 0.32 24.60 1.20 25.80 6.22 177 16016 1.220 1.3 7.1 6.1 1114 3.2Bottomless Sand Filter B SFE04/09/010.06 44.90 1.40 46.30 5.748.0 5.7 1157 5.4Bottomless Sand Filter B SFE04/10/0198 2.0 102 2.0Bottomless Sand Filter B SFE05/07/013.0 0.00 0.16 42.80 1.10 43.90 5.3756 170320 2.560 1.8 7.2 5.7 1006 10.2SFE sample collected over 4-day period.Bottomless Sand Filter B SFE 06/11/011.0 1.00 0.06 49.90 1.00 50.90 4.8630 852 0.34 0.6 7.5 4.3 774 14.0Sample collected over 72-hr period.Bottomless Sand Filter B SFE 07/16/011.2 2.00 0.07 63.90 1.20 65.10 3.2425 5810 1.012 1.1 7.4 5.5 791 17.9BOD5 is estimate.Bottomless Sand Filter B SFE 08/13/016.2 4.00 0.59 43.00 2.40 45.40 4.5820 5764 1.864 1.8 6.7 3.0 643 19.0SFE samples collected over 5 day period.Bottomless Sand Filter B SFE 09/10/010.0 1.00 0.05 66.80 1.00 67.80 1.9717 6612 1.14 0.6 7.0 4.0 804 16.5SFE samples collected over 5 day period.Bottomless Sand Filter B SFE 10/08/012.0 3.00 0.03 61.00 1.30 62.30 1.809 454 0.62 0.3 7.1 6.2 614 10.4BOD5 is est.; Samples collected over 5 days.Bottomless Sand Filter B SFE 12/03/011.2 1.00 0.03 38.00 0.60 38.60 2.199 40130,000 5.1 90,000 5.0 7.3 4.1 552 5.0BOD5 & TKN are estimates.Bottomless Sand Filter B SFE 02/11/020.5 1.00 0.04 37.30 0.70 38.00 3.0432 414 0.612 1.1 7.4 6.7 338 3.5BOD <1.0Bottomless Sand Filter B SFE 04/08/021.1 1.00 0.10 49.90 0.80 50.70 3.4022 41140 2.1 190 2.3 7.3 6.1 620 10.4BOD5 is estimate.Bottomless Sand Filter B SFE 06/11/021.3 3.00 0.01 55.60 0.60 56.20 3.6317 316 0.86 0.8 7.2 5.1 581 14.2NH4 <0.02Bottomless Sand Filter B SFE 08/12/020.5 2.00 0.03 45.10 0.60 45.70 2.8014 2988 1.974 1.9 7.2 7.5 455 19.1TKN is est., BOD5 <1Bottomless Sand Filter B SFE 10/07/020.5 0.50 0.03 35.70 0.70 36.40 2.3411 252 0.32 0.3 7.3 4.8 379 12.6BOD5 <1; chloride is est.; TSS <1Bottomless Sand Filter B SFE 12/02/020.5 0.50 0.01 21.60 0.40 22.00 2.3310 462 0.32 0.3 7.8 9.8 413 6.3BOD5 <1.0, TSS<1 NH4 <0.02Bottomless Sand Filter B SFE 02/11/031.0 2.00 0.01 32.60 0.60 33.20 2.8020 28140 2.1 140 2.1 7.6 8.0 455 4.1BOD5 is est., NH4AsN <0.02Bottomless Sand Filter B SFE 04/07/030.5 2.00 0.01 58.10 0.10 58.20 2.6010 322 0.34 0.6 7.3 7.1 625 5.9BOD5<1.0, NH4 <0.02, TKN <0.2Bottomless Sand Filter B SFE 06/02/032.2 9.00 1.11 47.40 6.40 53.80 3.8930 312 0.32 0.3 7.1 4.8 474 14.6Bottomless Sand Filter B SFE08/11/030.00 0.00 0.00No flow from sand filterBottomless Sand Filter B STE 11/13/00190.0 70.00 46.00 0.01 65.00 65.01 9.90 292 160 20.00 800,000 5.9 200,000 5.3 8.3 0.3 1176 10.5Bottomless Sand Filter B STE12/13/00250.0 59.00 57.00 0.01 63.00 63.01 11.70 301 160 28.00 80,000 4.9 76,000 4.9 7.9 0.7 1160 8.2Bottomless Sand Filter B STE01/17/01210.0 34.00 60.00 0.01 61.00 61.01 11.5039.00 34,000 4.5 54,000 4.7 7.9 0.6 1084 7.0Bottomless Sand Filter B STE02/14/01320.0 25.00 48.00 0.00 66.00 66.00 11.50 27821.00 94,000 5.0 120,000 5.1 7.1 1.1 1147 7.4Bottomless Sand Filter B STE03/12/01180.0 22.00 36.00 0.00 63.00 63.00 10.60 26519.00 22,000 4.3 10,000 4.0 8.4 0.7 1056 11.1Bottomless Sand Filter B STE04/09/01170.0 42.00 40.00 0.02 59.00 59.02 9.45 273 180 29.00 760,000 5.9 1.0E+06 6.0 8.0 0.6 1106 12.4nitrate (est.) equal to or less than 0.0219 mg/LBottomless Sand Filter B STE 05/07/01200.0 26.00 40.00 0.02 48.00 48.02 9.67 10027.00 4.6E+06 6.7 2.4E+06 6.4 7.4 1.0 995 16.8Bottomless Sand Filter B STE06/11/01170.0 16.00 24.00 0.03 41.00 41.03 7.38 210 49 23.00 52,000 4.7 30,000 4.5 7.1 0.4 599 19.6Bottomless Sand Filter B STE07/16/01290.0 51.00 46.00 0.02 63.00 63.02 9.50 301 79 24.00 210,000 5.3 290,000 5.5 6.9 0.8 935 21.6Bottomless Sand Filter B STE08/13/01210.0 90.00 35.00 0.02 43.00 43.02 7.36 262 47 21.00 3,200 3.5 4,600 3.7 7.1 0.4 687 23.4Bottomless Sand Filter B STE09/10/01660.0 100.00 57.00 0.02 76.00 76.02 10.80 393 57 20.00 110,000 5.0 94,000 5.0 6.3 0.5 1052 19.1Bottomless Sand Filter B STE10/08/01320.0 59.00 45.00 0.00 55.00 55.00 8.39 312 35 18.00 22,000 4.3 16,000 4.2 6.6 1.3 832 16.7Bottomless Sand Filter B STE12/03/01250.0 140.00 56.00 0.01 65.00 65.01 10.10 318 32 20.00 620 2.8 960 3.0 6.9 0.5 875 11.4TKN is est.Bottomless Sand Filter B STE 02/11/02290.0 83.00 51.00 0.00 66.00 66.00 10.30 256 41 21.00 84,000 4.9 92,000 5.0 6.9 1.0 823 8.0Bottomless Sand Filter B STE04/08/02180.0 51.00 44.00 0.00 62.00 62.00 9.10 252 45 29.00 1.6E+07 7.2 1.0E+07 7.0 7.1 0.8 765 13.3Bottomless Sand Filter B STE06/11/02290.0 92.00 36.00 0.01 45.00 45.01 15.20 220 29 23.00 3.3E+07 7.5 2.8E+07 7.4 6.6 0.8 586 18.1Bottomless Sand Filter B STE08/12/02170.0 40.00 31.00 0.01 46.00 46.01 6.43 192 25 27.00 50,000 4.7 42,000 4.6 6.4 0.8 512 21.5TKN is est.Bottomless Sand Filter B STE 10/07/02240.0 58.00 30.00 0.01 36.00 36.01 6.50 192 24 17.00 94,000 5.0 24,000 4.4 6.7 0.8 468 15.6chloride is est.Bottomless Sand Filter B STE 12/02/0271.0 22.00 16.00 0.01 21.00 21.01 4.17 144 42 8.00 22,000 4.3 16,000 4.2 6.9 1.4 482 11.0Bottomless Sand Filter B STE02/11/03130.0 48.00 36.00 0.01 47.00 47.01 7.93 250 28 17.00 270,000 5.4 200,000 5.3 7.0 1.1 663 12.2Bottomless Sand Filter B STE04/07/03130.0 35.00 44.00 0.02 56.00 56.02 9.03 287 37 22.00 320,000 5.5 176,000 5.2 7.0 1.1 749 11.9Bottomless Sand Filter B STE06/02/0379.0 42.00 53.00 0.01 56.00 56.01 9.79 344 39 17.00 4,000 3.6 2,000 3.3 6.8 0.3 856 15.4Bottomless Sand Filter B STE08/11/03440.0 1600.00 29.00 0.08 120.00 120.08 95.60 246 191,800 3.3 400 2.6 7.0 0.6 545 18.8O&G void, ST half fullBottomless Sand Filter H3 MW Drain 2034 11/15/002.0 3.00 0.03 1.24 0.60 1.84 0.0932 0.32 0.3 6.8 3.7 122 10.0 12.04Bottomless Sand Filter H3 MW Drain 2034 12/13/000.0 4.00 0.03 2.00 0.10 2.10 0.0948 42 0.32 0.3 6.5 4.6 128 8.0 12.10TKN <0.2Bottomless Sand Filter H3 MW Drain 2034 01/17/010.0 12.00 0.00 4.07 0.60 4.67 0.0962 0.32 0.3 6.6 3.4 164 8.4 12.14Appendix B: Innovative System Field Test DataPage B-16
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesBottomless Sand Filter H3 MW Drain 2034 02/14/010.0 1.00 0.03 2.82 0.10 2.92 0.0946 42 0.32 0.3 6.3 3.8 142 9.1 12.07TKN <0.2Bottomless Sand Filter H3 MW Drain 2034 02/14/010.0 2.00 0.04 2.84 0.20 3.04 0.0847 42 0.32 0.3 6.3 3.8 142 9.1QA duplicateBottomless Sand Filter H3 MW Drain 2034 03/13/010.0 7.00 0.03 2.16 0.10 2.26 0.0846 42 0.32 0.3 6.8 4.6 137 8.4 11.40TKN <0.2Bottomless Sand Filter H3 MW Drain 2034 04/10/010.0 2.00 0.00 3.42 0.10 3.52 0.0854 52 0.32 0.3 7.1 3.8 155 7.0 11.50TKN <0.2Bottomless Sand Filter H3 MW Drain 2034 05/08/010.0 0.00 0.02 3.17 0.10 3.27 0.0851 42 0.32 0.3 6.6 4.0 143 8.1 11.50TKN <0.2Bottomless Sand Filter H3 MW Drain 2034 05/08/010.0 0.00 0.02 3.16 0.10 3.26 0.0851 42 0.32 0.3 6.6 4.0 143 8.1QA duplicate; TKN <0.2Bottomless Sand Filter H3 MW Drain 2034 06/12/010.0 2.00 0.00 1.40 0.10 1.50 0.0946 32 0.32 0.3 6.7 4.0 118 8.4 12.07TKN <0.2Bottomless Sand Filter H3 MW Drain 2034 07/17/010.0 22.00 0.00 6.54 0.10 6.64 0.0850 61 0.01 0.0 6.5 5.7 188 9.7 12.17TKN <0.2Bottomless Sand Filter H3 MW Drain 2034 08/14/010.0 7.00 0.00 2.87 0.10 2.97 0.0950 41 0.01 0.0 6.5 4.6 142 10.6 12.33TKN <0.2Bottomless Sand Filter H3 MW Drain 2034 10/09/010.0 0.00 0.00 1.93 0.10 2.03 0.0952 41 0.01 0.0 6.3 4.6 118 10.4 12.65TKN <0.2Bottomless Sand Filter H3 MW Drain 2034 12/03/010.5 0.50 0.00 3.44 0.10 3.54 0.1047 41 0.01 0.0 6.6 7.4 128 9.9 12.60 TKN <0.2 est.Bottomless Sand Filter H3 MW Drain 2034 02/11/020.5 0.50 0.00 2.40 0.10 2.50 0.0944 31 0.01 0.0 6.8 5.6 113 8.1 12.08BOD5 <1, TKN <0.2; TSS <1Bottomless Sand Filter H3 MW Drain 2034 02/11/020.5 0.50 0.00 2.40 0.10 2.50 0.0944 31 0.01 0.0 6.8 5.6 113 8.1QA Duplicate; BOD <1.0; TKN <0.2; TSS <1Bottomless Sand Filter H3 MW Drain 2034 04/08/020.5 0.50 0.00 3.40 0.10 3.50 0.1046 41 0.01 0.0 6.3 6.6 141 8.0 10.96BOD5 <1.0, TKN <.2, TSS <1Bottomless Sand Filter H3 MW Drain 2034 06/11/020.5 1.00 0.01 4.41 1.20 5.6145 61 0.01 0.0 6.5 5.7 149 8.9 11.96BOD5<1.0, NH4 <0.02Bottomless Sand Filter H3 MW Drain 2034 08/14/020.5 1.00 0.01 2.67 0.10 2.7746 81 0.01 0.0 6.5 6.6 134 10.4 12.11TKN <0.2 est., BOD5 <1, NH4 <0.02Bottomless Sand Filter H3 MW Drain 2034 09/10/020.5 0.50 0.02 6.32 0.10 6.4246 121 0.01 0.0 6.5 6.2 180 12.9 12.34BOD5<1.0, TSS<1, TKN<0.2Bottomless Sand Filter H3 MW Drain 2034 10/07/020.5 0.50 0.01 3.14 0.10 3.2446 101 0.01 0.0QA; NH4 <0.02; BOD5/TSS <1; chlor. est; TKN < 0.2Bottomless Sand Filter H3 MW Drain 2034 10/07/020.5 0.50 0.01 3.15 0.10 3.2546 91 0.01 0.0 6.4 5.5 144 11.0 12.49NH4 <0.02; BOD5 <1; TKN < 0.2; TSS <1Bottomless Sand Filter H3 MW Drain 2034 12/02/020.5 0.50 0.01 2.79 0.10 2.8942 71 0.01 0.0 6.5 5.5 139 10.1 12.64BOD5 <1.0, TSS<1 NH4 <0.02, TKN <0.2Bottomless Sand Filter H3 MW Drain 2034 02/10/031.0 2.00 0.01 3.95 0.10 4.0540 71 0.01 0.0 6.5 9.2 148 8.9 11.96BOD5 is est., NH4AsN <0.02, TKN <0.2Bottomless Sand Filter H3 MW Drain 2034 03/11/030.5 5.00 0.02 2.85 0.10 2.9541 61 0.01 0.0 6.6 5.4 129 8.2 11.97BOD5<1.0, TKN <0.2Bottomless Sand Filter H3 MW Drain 2034 04/08/030.5 0.50 0.01 2.60 0.10 2.7040 51 0.01 0.0 6.7 6.0 124 8.1 11.78BOD5<1.0, TSS <1, NH4 <0.02, TKN <0.2Bottomless Sand Filter H3 MW Drain 2034 06/10/030.5 0.50 0.01 2.30 0.10 2.4042 61 0.01 0.0 6.7 7.4 124 8.3 11.71BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2Bottomless Sand Filter H3 MW Drain 2034 08/12/030.5 0.50 0.01 2.29 0.10 2.3944 61 0.01 0.0 6.6 7.1 131 10.2 12.39BOD5<1.0, TSS<1 NH4<0.02, TKN<0.2Bottomless Sand Filter H3 MW Drain 2034 09/17/030.5 0.50 0.01 2.04 0.10 2.1445 61 0.01 0.0 6.5 7.9 128 11.3 12.69BOD5<1.0, TSS<1, NH4AsN<0.02, TKN<0.2Bottomless Sand Filter H3 MW Drain 2034 09/17/030.5 2.00 0.01 2.04 0.10 2.1445 61 0.01 0.0QA Duplicate; BOD5 <1, NH4AsN<0.02, TKN<0.2Bottomless Sand Filter H3 MW Drain 2034 10/15/030.1 0.50 0.01 1.64 0.10 1.7444 61 0.01 0.0 6.4 5.6 121 10.8 12.81BOD5 <0.1, TSS<1, NH4AsN<0.02, TKN<0.2Bottomless Sand Filter H3 SFE 11/15/006.0 20.00 0.29 1.67 1.50 3.17 1.608.2 516Bottomless Sand Filter H3 SFE12/13/001.0 1.00 0.04 27.10 0.70 27.80 4.10 151 3126 1.418 1.3 7.5 5.6 610 3.8Bottomless Sand Filter H3 SFE01/17/011.0 1.00 0.03 24.90 0.70 25.60 4.12264 0.62 0.3 7.8 5.7 593 4.0 BOD5 is estimate.Bottomless Sand Filter H3 SFE 02/13/013.0 2.00 0.03 29.90 1.10 31.00 3.03 122 322 0.310 1.0 7.7 6.7 305 1.8Bottomless Sand Filter H3 SFE03/12/012.1 0.00 0.03 32.90 0.70 33.60 2.98 116 2920 1.324 1.4 7.4 5.7 655 4.3Bottomless Sand Filter H3 SFE04/09/010.0 1.00 0.03 45.20 1.00 46.20 3.2841 2828 1.410 1.0 8.3 5.3 575 6.2Bottomless Sand Filter H3 SFE05/07/011.2 0.00 0.03 52.00 0.80 52.80 2.9237 2744 1.64 0.6 6.9 5.2 616 9.9BOD-5 is estimate.SFE samples collected over 4 day period.Bottomless Sand Filter H3 SFE 06/11/012.4 2.00 0.06 48.60 1.40 50.00 2.0020 31100 2.0 100 2.0 6.9 4.3 590 13.6Sample collected over 72-hr. period.Bottomless Sand Filter H3 SFE 07/16/010.0 2.00 0.07 62.60 0.90 63.50 1.6714 272 0.32 0.3 6.7 5.2 676 16.9 BOD5 is <1; Samples collected over 3 day period.Bottomless Sand Filter H3 SFE 08/13/011.0 2.00 0.05 49.50 0.80 50.30 1.7511 36760 2.9 680 2.8 6.6 5.2 594 17.7BOD5 is est.; SFE samples collected over 4 days.Bottomless Sand Filter H3 SFE 09/10/010.0 1.00 0.02 38.40 0.60 39.00 2.3112 302 0.32 0.3 6.6 4.2 474 16.4Bottomless Sand Filter H3 SFE10/08/011.3 6.00 0.00 37.40 0.80 38.20 2.239 3012 1.114 1.1 7.1 5.5 459 14.4BOD5 estimate; depletion requirement not met.Bottomless Sand Filter H3 SFE 12/03/011.4 4.00 0.03 31.10 1.60 32.70 2.6916 2920 1.320 1.3 7.3 4.6 218 5.8BOD5 is est.Bottomless Sand Filter H3 SFE 02/12/024.1 37.00 0.00 41.10 0.80 41.90 3.0044 3424 1.410 1.0 7.7 7.4 551 3.3Bottomless Sand Filter H3 SFE04/08/021.3 3.00 0.00 45.90 0.90 46.80 2.9021 37240 2.4 300 2.5 7.2 7.0 581 8.0Bottomless Sand Filter H3 SFE06/11/023.00 0.03 47.50 0.60 48.10 2.796 2622 1.38 0.9 6.5 5.3 528 14.0Bottomless Sand Filter H3 SFE08/12/020.5 7.00 0.01 56.00 0.20 56.20 2.319 3110 1.08 0.9 6.3 7.1 545 17.4TKN is est., BOD5 <1, NH4 <0.02Bottomless Sand Filter H3 SFE 10/07/021.1 2.00 0.06 57.30 0.90 58.20 2.0613 3126 1.44 0.6 6.8 5.0 584 11.1BOD5 and chloride are estimates.Bottomless Sand Filter H3 SFE 12/02/024.3 12.00 0.14 49.20 4.30 53.50 2.4410 366 0.82 0.3 7.0 5.0 616 4.0Bottomless Sand Filter H3 SFE02/10/033.4 17.00 0.07 52.30 14.00 66.30 3.9522 36120 2.1 100 2.0 6.9 8.8 649 4.6Bottomless Sand Filter H3 SFE04/09/030.10 59.70 0.10 59.80 3.06362 0.32 0.3 7.1 5.7 755 7.6BOD5, TSS, alk. CANCELLED, TKN <0.2Bottomless Sand Filter H3 SFE 06/11/031.6 8.00 0.02 61.90 0.10 62.00 2.507 302 0.34 0.6 6.2 6.1 708 13.6TKN<0.2Bottomless Sand Filter H3 SFE 08/11/031.3 5.00 0.07 51.80 0.10 51.90 2.5410 481 0.01 0.0 6.2 4.1 727 17.1TKN<0.2Bottomless Sand Filter H3 SFE 10/15/032.8 11.00 0.07 61.60 0.10 61.70 8.194 4376 1.920 1.3 6.5 4.5 773 10.3TKN<0.2Bottomless Sand Filter H3 STE 11/15/00360.0 200.00 29.00 0.01 40.00 40.01 8.2042510,000 5.7 500,000 5.7 6.9 0.6 625 16.6Bottomless Sand Filter H3 STE12/13/00370.0 130.00 33.00 0.01 50.00 50.01 8.48 248 34 55.00 50,000 4.7 50,000 4.7 7.4 1.3 633 11.9BOD is an estimateBottomless Sand Filter H3 STE 01/17/01220.0 42.00 34.00 0.00 38.00 38.00 6.4543.00 20,000 4.3 22,000 4.3 7.6 0.5 515 13.5Bottomless Sand Filter H3 STE02/14/01270.0 44.00 35.00 0.01 8.60 8.61 6.619059.00 30,000 4.5 18,000 4.3 6.9 0.7 566 14.1Bottomless Sand Filter H3 STE03/12/01310.0 120.00 36.00 0.01 43.00 43.01 7.30 21640,000 4.6 58,000 4.8 7.6 1.0 596 13.5Bottomless Sand Filter H3 STE04/09/01220.0 46.00 27.00 0.00 34.00 34.00 6.18 21154.00 62,000 4.8 80,000 4.9 7.8 0.6 560 16.8Bottomless Sand Filter H3 STE05/07/01240.0 59.00 33.00 0.03 39.00 39.03 6.36 19443.00 100,000 5.0 74,000 4.9 7.0 0.5 506 19.8Bottomless Sand Filter H3 STE06/11/01530.0 170.00 57.00 0.02 79.00 79.02 12.20 346 32 14.00 48,000 4.7 22,000 4.3 6.5 0.5 899 22.0Bottomless Sand Filter H3 STE07/16/01280.0 78.00 27.00 0.01 37.00 37.01 7.16 214 24 43.00 200,000 5.3 1,500,000 6.2 6.5 1.0 493 24.0Bottomless Sand Filter H3 STE08/13/0122.0 62.00 29.00 0.04 35.00 35.04 6.57 234 30 65.00 40,000 4.6 56,000 4.7 6.8 0.6 640 25.3Bottomless Sand Filter H3 STE09/10/01230.0 64.00 35.00 0.01 42.00 42.01 7.04 229 25 28.00 4,200 3.6 2,600 3.4 6.7 1.0 602 22.0Bottomless Sand Filter H3 STE10/08/01270.0 120.00 25.00 0.01 39.00 39.01 8.37 220 22 44.00 22,000 4.3 15,000 4.2 6.7 0.9 576 19.9Appendix B: Innovative System Field Test DataPage B-17
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesBottomless Sand Filter H3 STE12/03/01300.0 260.00 31.00 0.01 44.00 44.01 9.80 240 20 58.00 380,000 5.6 260,000 5.4 7.0 0.6 657 15.0TKN is est.Bottomless Sand Filter H3 STE 02/12/02320.0 149.00 37.00 0.02 45.00 45.02 9.10 200 26 56.00 480,000 5.7 480,000 5.7 7.0 1.6 591 13.8Bottomless Sand Filter H3 STE04/08/02340.0 94.00 25.00 0.00 37.00 37.00 7.30 140 22 79.00 18,000 4.3 26,000 4.4 6.6 1.0 523 19.7Bottomless Sand Filter H3 STE06/11/02250.0 68.00 31.00 0.01 38.00 38.01 8.55 218 21 46.00 24,000 4.4 24,000 4.4 6.7 0.3 562 23.0ERRATA 2/21/03 changed NH4 from 0.31 to 31.0Bottomless Sand Filter H3 STE 08/12/02260.0 260.00 49.00 0.01 74.00 74.01 15.80 302 33 88.00 9.0E+06 7.0 1.0E+07 7.0 6.8 0.7 760 24.7TKN, TSS is est.Bottomless Sand Filter H3 STE 10/07/02230.0 220.00 40.00 0.01 53.00 53.01 10.60 302 31 48.00 23,000 4.4 17,000 4.2 6.5 0.9 703 18.4chloride & TSS are estimates.Bottomless Sand Filter H3 STE 12/02/02140.0 110.00 54.00 0.01 71.00 71.01 12.60 374 44 36.00 140,000 5.1 50,000 4.7 6.7 1.2 953 12.8Bottomless Sand Filter H3 STE02/10/03180.0 110.00 42.00 0.01 57.00 57.01 9.27 292 37 40.00 42,000 4.6 20,000 4.3 6.8 1.2 805 15.6Bottomless Sand Filter H3 STE04/09/03230.0 61.00 41.00 0.02 44.00 44.02 9.39 300 30 27.00 2,000 3.3 4,000 3.6 6.9 0.7 780 16.7Bottomless Sand Filter H3 STE06/11/03210.0 68.00 32.00 0.01 45.00 45.01 8.14 274 27 40.00 14,000 4.1 18,000 4.3 6.5 0.4 705 24.0Bottomless Sand Filter H3 STE08/11/03165.0 100.00 47.00 0.01 56.00 56.01 10.40 356 32 31.00 7,000 3.8 5,800 3.8 6.8 0.5 863 22.9Bottomless Sand Filter H3 STE10/15/03180.0 86.00 52.00 0.01 65.40 65.41 13.50 370 38 25.00 42,000 4.6 30,000 4.5 6.7 1.2 913 15.1Dyno2 System EMW Drain 2157 01/04/020.04 0.1256.8 8.3 109 7.2 12.92 Background/well dev'ment; No TKN result reported.Dyno2 System E MW Drain 2157 01/28/020.5 6.00 0.00 0.20 0.10 0.30 0.2541 61 0.01 0.0 7.1 5.5 122 6.8 13.03BOD <1.0; TKN <0.2Dyno2 System E MW Drain 2157 02/25/020.5 4.00 0.00 0.20 0.10 0.30 0.3040 51 0.01 0.0 6.7 7.0 123 6.9 12.93TKN <0.2, BOD5 <1Dyno2 System E MW Drain 2157 02/25/020.5 4.00 0.00 0.20 0.10 0.30 0.3041 51 0.01 0.0 6.7 7.0 123 6.9QA Duplicate; BOD <1; TKN <0.2Dyno2 System E MW Drain 2157 03/26/020.5 5.00 0.00 0.20 0.10 0.30 0.3041 51 0.01 0.0 7.0 7.0 121 7.3 12.89GW - TKN <0.2; BOD <1.0Dyno2 System E MW Drain 2157 04/22/020.5 83.00 0.01 0.16 0.10 0.2640 51 0.01 0.0 6.9 6.0 127 7.3 12.97NH4 <0.02; BOD <1; TKN <0.2Dyno2 System E MW Drain 2157 05/20/020.5 3.00 0.01 0.17 0.10 0.2735 51 0.01 0.0 7.0 7.3 128 7.0 13.01TKN <0.2, BOD5<1.0 est., NH4 <0.02Dyno2 System E MW Drain 2157 06/25/020.5 4.00 0.01 0.16 0.50 0.6638 51 0.01 0.0 7.4 6.5 111 7.7 12.98 BOD5<1.0, NH4 <0.02Dyno2 System E MW Drain 2157 07/29/020.5 3.00 0.01 0.20 0.10 0.3039 51 0.01 0.0 7.0 8.0 107 8.9 12.92TKN <0.2, NH4 <0.02, bod5 <1.0Dyno2 System E MW Drain 2157 07/29/020.5 3.00 0.01 0.20 0.10 0.3038 51 0.01 0.0 7.0 8.0 107 8.8QA Duplicate; TKN <0.2, NH4 <0.02, bod5 <1.0Dyno2 System E MW Drain 2157 08/26/020.5 4.00 0.05 0.21 0.10 0.3138 51 0.01 0.0 7.1 7.4 115 7.9 13.01TKN <0.2, BOD5 <1Dyno2 System E MW Drain 2157 08/26/020.5 3.00 0.01 0.22 0.30 0.5238 51 0.01 0.0 7.1 7.4 115 7.9 13.01QA Duplicate; BOD5 <1, NH4 <0.02Dyno2 System E MW Drain 2157 09/25/020.5 1.00 0.03 0.24 0.10 0.3436 41 0.01 0.0 7.0 7.4 115 8.4 12.93BOD5 <1.0; TKN <0.2Dyno2 System E MW Drain 2157 10/23/020.5 5.00 0.01 0.27 0.10 0.3740 51 0.01 0.0 6.9 6.0 116 8.4 12.90BOD5 <1.0 NH4 <0.02, TKN <0.2Dyno2 System E MW Drain 2157 11/12/020.5 3.00 0.01 0.28 0.10 0.3840 41 0.01 0.0QA Duplicate; NH4 <0.02, BOD5 <1.0, TKN <0.2Dyno2 System E MW Drain 2157 11/12/020.5 3.00 0.01 0.27 0.10 0.3740 41 0.01 0.0 7.0 7.2 117 8.2 13.00NH4 <0.02, BOD5 <1.0, TKN <0.2Dyno2 System E MW Drain 2157 01/21/030.5 61.00 0.01 0.30 0.10 0.4040 51 0.01 0.0 6.8 6.2 126 7.7 12.94BOD5 <1.0, NH4 <0.02, TKN <0.2Dyno2 System E MW Drain 2157 02/24/030.5 2.00 0.04 0.35 0.10 0.4540 41 0.01 0.0 6.9 6.6 123 7.9 12.95BOD5<1.0, TKN <0.2Dyno2 System E MW Drain 2157 03/03/030.5 3.00 0.01 0.33 0.10 0.4340 41 0.01 0.0 6.9 5.7 122 7.6 12.93BOD5<1.0, NH4AsN <0.02, TKN <0.2Dyno2 System E MW Drain 2157 05/05/030.5 2.00 0.02 0.36 0.10 0.4640 41 0.01 0.0 7.0 6.8 125 7.1 12.95BOD5<1.0, TKN <0.2Dyno2 System E MW Drain 2157 07/21/0311.0 4.00 0.03 0.36 0.10 0.4639 41 0.01 0.0 6.9 8.3 124 7.8 12.94TKN<0.2Dyno2 System E MW Drain 2157 08/26/030.5 0.50 0.01 0.39 0.50 0.8940 41 0.01 0.0 6.9 7.0 124 10.0 12.96BOD5<1.0, TSS<1, NH4AsN<0.02Dyno2 System E MW Drain 2157 09/09/030.5 3.00 0.01 0.39 0.10 0.4940 41 0.01 0.0 6.9 7.9 124 7.9 13.03TKN<0.2, NH4AsN<0.02, BOD5<1Dyno2 System E MW Drain 2157 09/09/030.5 1.00 0.01 0.39 0.10 0.4940 41 0.01 0.0QA Duplicate; TKN<0.2, NH4AsN<0.02, BOD5<1Dyno2 System E MW Drain 2157 11/17/030.5 0.50 0.01 0.42 0.10 0.5242 41 0.01 0.0 6.8 7.3 121 8.1 12.96BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2Dyno2 System E MW Drain 2157 03/15/040.01 1.07 0.10 1.1761 0.01 0.0 6.7 6.8 135 8.2 12.86Bubbly flow. NH4<0.02, TKN<0.2Dyno2 System E MW Drain 2157 06/07/040.01 0.41 0.10 0.5141 0.01 0.0 6.7 6.6 110 7.4 12.94NH4<0.02, TKN<0.2Dyno2 System E MW Drain 2157 09/27/040.01 0.42 0.10 0.5241 0.01 0.0 6.8 7.0 106 9.7 12.88NH4 <0.02, TKN<0.2Dyno2 System E MW Drain 2157 12/07/040.01 0.43 0.10 0.5341 0.01 0.0 7.0 7.6 107 7.4 12.97TKN<0.2, NH4<0.02Dyno2 System E STE 01/28/02410.0 80.00 48.00 0.00 63.00 63.00 8.60 318 68 32.008.3 1.2 864 6.6DBACT past holding timeDyno2 System E STE 01/30/021.5E+07 7.2 7.1E+06 6.9 8.4 0.4 905 8.3re-sample due to shipment problem.Dyno2 System E STE 02/25/02220.0 34.00 44.00 0.00 55.00 55.00 9.00 302 73 19.00 6.0E+06 6.8 6.0E+06 6.8 8.1 0.3 827 8.6Dyno2 System ESTE03/25/02290.0 43.00 38.00 0.00 55.00 55.00 11.10 280 130 14.00 6.6E+06 6.8 4.2E+06 6.6 7.1 0.6 1070 10.1Dyno2 System ESTE04/22/02222.0 45.00 43.00 0.02 40.00 40.02 10.30 300 150 16.00 840,000 5.9 440,000 5.6 7.7 0.7 1131 12.4Dyno2 System ESTE05/20/02100.0 44.00 49.00 0.01 59.00 59.01 10.10 300 120 13.00 1.4E+08 8.1 4.6E+07 7.7 7.5 0.6 1116 12.9 BOD5 is est.Dyno2 System E STE 06/25/02360.0 43.00 44.00 0.01 54.00 54.00 10.00 256 40 30.00 4.3E+07 7.6 3.6E+07 7.6 6.8 0.4 693 17.5Dyno2 System ESTE07/29/02390.0 36.00 44.00 0.01 56.00 56.01 12.80 336 47 20.00 2.0E+08 8.3 8.2E+07 7.9 6.9 0.7 920 18.5Dyno2 System ESTE08/28/02270.0 93.00 34.00 0.01 44.00 44.01 10.40 277 58 27.00 7.2E+08 8.9 5.0E+08 8.7 6.9 0.6 738 17.6TSS est.Dyno2 System E STE 09/23/02300.0 87.00 45.00 0.01 53.00 53.01 15.40 312 120 16.00 1.5E+07 7.2 5,200,000 6.7 6.8 0.6 1006 15.9Dyno2 System ESTE10/23/02240.0 67.00 38.00 0.01 59.00 59.01 12.90 332 43 16.00 5.0E+08 8.7 6.6E+07 7.8 6.9 1.0 808 13.6Dyno2 System ESTE11/12/02180.0 42.00 39.00 0.02 49.00 49.02 12.40 358 53 30.00 1.8E+08 8.3 7.4E+07 7.9 6.9 1.2 887 11.4Dyno2 System ESTE01/21/03210.0 100.00 42.00 0.02 55.00 55.02 14.20 314 170 22.00 500,000 5.7 320,000 5.5 6.9 0.5 1252 10.4Dyno2 System ESTE03/05/03260.0 34.00 38.00 0.02 57.00 57.02 13.00 348 86 20.00 1.2E+07 7.1 1.2E+08 8.1 6.8 0.5 970 9.9Dyno2 System ESTE05/05/03290.0 52.00 45.00 0.01 52.00 52.01 11.70 351 67 20.00 500,000 5.7 420,000 5.6 7.0 1.1 947 11.4Dyno2 System ESTE07/21/03220.0 140.00 49.00 0.00 62.00 62.00 13.70 404 150 55.00 2.1E+06 6.3 1.6E+06 6.2 6.9 0.7 1352 17.7Nitrate<0.0050Dyno2 System E STE 09/10/03170.0 94.00 48.00 0.01 55.00 55.01 11.30 439 77 37.00 640,000 5.8 640,000 5.8 6.9 0.7 1130 16.5Dyno2 System ESTE11/17/0384.0 31.00 34.00 0.02 45.00 45.02 9.81 330 87 15.00 900,000 6.0 140,000 5.1 7.2 1.4 970 16.2Dyno2 System ESTE03/15/04190.0 58.00 39.00 0.03 52.00 52.03 11.80 316 140 46.00 130,000 5.1 104,000 5.0 7.3 1.1 1143 11.8Dyno2 System ESTE06/07/04140.0 93.00 34.00 0.01 54.00 54.01 14.20 310 140 21.00 1.2E+06 6.1 1.1E+06 6.0 7.2 1.0 1113 13.1Dyno2 System ESTE09/27/04120.0 36.00 32.00 0.01 45.00 45.01 10.70 320 46 26.00 1.0E+06 6.0 660,000 5.8 7.3 0.8 948 16.4Dyno2 System ESTE12/08/04120.0 35.00 25.00 0.01 30.00 30.01 8.30 270 47 19.00 1.1E+06 6.0 700,000 5.8 7.5 0.8 742 9.0Dyno2 System EWE01/28/02130.0 94.00 42.00 0.00 52.00 52.00 9.00 330 768.4 1.4 950 3.5BOD5 is estimate; DBACT past holding timeAppendix B: Innovative System Field Test DataPage B-18
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesDyno2 System EWE01/30/02600,000 5.8 600,000 5.8 8.3 0.4 910 5.2re-sample due to shipment problem.Dyno2 System E WE 01/30/02600,000 5.8 600,000 5.8 8.3 0.4 910 5.2QA duplicate; re-sample due to shipment problemDyno2 System E WE 02/25/02120.0 25.00 36.00 0.00 42.00 42.00 8.00 300 58600,000 5.8 600,000 5.8 8.1 0.7 796 5.0Dyno2 System EWE03/25/02130.0 30.00 34.00 0.00 43.00 43.00 9.50 283 1201.1E+06 6.0 860,000 5.9 7.7 0.9 1035 7.2Dyno2 System EWE04/22/0268.0 27.00 33.00 0.04 31.00 31.04 9.51 300 150120,000 5.1 58,000 4.8 7.8 0.4 1008 11.2Dyno2 System EWE05/20/0249.0 44.00 33.00 0.02 55.00 55.02 10.90 300 120170,000 5.2 100,000 5.0 7.8 0.6 1066 11.5 BOD5 is est.Dyno2 System E WE 06/25/02230.0 110.00 45.00 0.02 52.00 52.02 10.10 300 535.2E+07 7.7 2.4E+07 7.4 7.2 0.2 792 18.1Dyno2 System EWE07/29/02120.0 64.00 33.00 0.03 44.00 44.03 11.50 348 481.2E+06 6.1 500,000 5.7 7.5 0.4 870 18.0Dyno2 System EWE07/29/02120.0 46.000.02 46.00 46.02 11.40 345 486.6E+06 6.8 4.8E+06 6.7 7.5 0.4 870 18.0QA Duplicate; NH4 voidDyno2 System E WE 08/28/0297.0 72.00 28.00 0.02 40.00 40.02 10.90 303 459.2E+07 8.0 9.5E+07 8.0 7.6 0.7 823 16.8Dyno2 System EWE08/28/0296.0 35.00 28.00 0.02 49.00 49.02 11.70 306 441.0E+08 8.0 1.6E+07 7.2 7.6 0.7 823 16.8QA DuplicateDyno2 System E WE 09/23/02230.0 440.00 37.00 0.02 51.00 51.02 13.70 360 1207.6 0.2 1046 15.1E coli and fecal coliform VOID, TSS est.Dyno2 System E WE 09/23/02130.0 320.00 33.00 0.02 46.00 46.02 13.70 355 1207.6 0.2 1046 15.1E. coli and fecal coliform VOID, TSS est.Dyno2 System E WE 09/25/026.0E+06 6.8 4.4E+06 6.6 7.6 0.4 1031 15.9Bacteria re-sample from 9/23Dyno2 System E WE 09/25/029.0E+06 7.0 4.6E+06 6.7 7.6 0.4 1031 15.9QA DuplicateDyno2 System E WE 10/23/027.8 16.00 15.00 5.44 19.00 24.44 10.20 266 5213,000 4.1 7,000 3.8 7.4 1.7 758 13.4Dyno2 System EWE11/12/026.6 8.00 3.80 14.40 6.70 21.10 10.30 208 39400,000 5.6 130,000 5.1 7.0 2.7 678 11.0Dyno2 System EWE11/12/027.0 7.00 4.00 14.80 6.80 21.60 10.40 208 39500,000 5.7 170,000 5.2 7.0 2.8 660 11.4Dyno2 System EWE01/21/0315.0 25.00 4.40 9.99 8.90 18.89 10.60 176 140100,000 5.0 100,000 5.0 7.2 0.9 939 9.0Dyno2 System EWE03/05/0326.0 50.00 5.00 12.10 11.00 23.10 10.80 202 77580,000 5.8 5.8E+06 6.8 7.0 1.2 801 10.3Dyno2 System EWE03/05/0328.0 48.00 5.20 12.00 11.00 23.00 10.90 200 78680,000 5.8 6.0E+06 6.8 6.9 1.1 770 9.0QA DuplicateDyno2 System E WE 05/05/0340.0 33.00 8.40 7.25 14.00 21.25 9.30 216 381.2E+06 6.1 1.3E+06 6.1 7.3 1.3 671 10.5QA DuplicateDyno2 System E WE 05/05/0336.0 20.00 7.70 7.23 13.00 20.23 9.37 217 391.4E+06 6.1 1.2E+06 6.1 7.3 1.5 674 10.1Dyno2 System EWE07/21/0328.0 26.00 23.00 4.04 31.00 35.04 9.77 304 948,000 3.9 8,000 3.9 7.2 0.5 1028 20.0Dyno2 System EWE09/10/0310.0 6.00 1.50 25.10 3.60 28.70 8.50 176 13016,000 4.2 12,000 4.1 7.2 2.8 1046 19.7TKN is est.Dyno2 System E WE 09/10/039.8 4.00 1.50 25.50 3.60 29.10 8.55 176 13018,000 4.3 15,000 4.2 7.2 2.6 1038 20.1QA Duplicate; TKN is est.Dyno2 System E WE 11/17/032.6 3.00 0.73 37.80 1.70 39.50 8.80 100 7611,000 4.0 2,000 3.3 7.0 3.9 793 15.7Dyno2 System EWE03/15/046.5 6.00 0.37 34.50 2.60 37.10 10.20 98 1201,380 3.1 1,340 3.1 6.8 3.1 945 14.2Dyno2 System EWE06/07/043.2 2.00 0.47 31.10 2.60 33.70 11.00 94 1201,260 3.1 1,240 3.1 7.0 3.4 907 15.8Dyno2 System EWE09/27/0419.0 32.00 0.54 31.40 2.80 34.20 9.76 110 13010,000 4.0 8,600 3.9 6.9 3.5 949 17.7BOD5 is est.Dyno2 System E WE 09/27/0415.0 18.00 0.54 31.20 2.60 33.80 10.00 110 13010,600 4.0 10,400 4.0 7.1 3.4 950 17.7BOD5 is est.Dyno2 System E WE 12/08/041.5 2.00 0.30 29.70 2.30 32.00 9.47 110 532,500 3.4 2,100 3.3 7.2 5.0 745 11.3Dyno2-CMW Drain 2108 01/07/020.5 50.00 0.00 0.00 0.10 0.10 0.2536 56.8 6.5 84 8.7 9.45TKN <0.2, BOD5 <1Dyno2-C MW Drain 2108 01/14/022 0.32 0.3 6.9 5.7 88 8.4 9.48Dyno2-CMW Drain 2108 01/14/022 0.32 0.3 6.9 5.7 88 8.4QA DuplicateDyno2-C MW Drain 2108 02/04/020.5 7.00 0.00 0.10 0.10 0.20 0.2033 62 0.32 0.3 6.6 7.5 84 7.6 9.51BOD5 <1, TKN <0.2Dyno2-C MW Drain 2108 02/04/020.5 6.00 0.00 0.10 0.10 0.20 0.2034 72 0.32 0.3 6.6 7.5 84 7.6QA Duplicate; BOD5 <1.0, N <.02, TKN <.2Dyno2-C MW Drain 2108 03/04/020.5 9.00 0.00 0.50 0.10 0.60 0.2032 52 0.32 0.3 6.9 6.9 81 7.8 9.46GW - BOD5 <1.0, TKN <.2Dyno2-C MW Drain 2108 04/01/020.5 5.00 0.00 0.20 0.10 0.30 0.2029 42 0.32 0.3 6.5 7.8 82 7.5 9.55BOD5 <1.0, TKN <0.2Dyno2-C MW Drain 2108 04/01/020.5 5.00 0.00 0.20 0.10 0.30 0.2028 42 0.32 0.3 6.5 7.8 82 7.5QA duplicate, BOD5 <1, TKN <0.2Dyno2-C MW Drain 2108 05/14/020.5 11.00 0.01 0.46 0.10 0.5626 81 0.01 0.0 7.0 7.6 98 7.8QA Duplicate; NH4 <0.02; BOD <1; TKN <0.2Dyno2-C MW Drain 2108 05/14/020.5 7.00 0.01 0.46 0.10 0.5626 81 0.01 0.0 7.0 7.6 98 7.8 9.52TKN <0.2, BOD5<1.0, NH4 <0.02Dyno2-C MW Drain 2108 06/25/021.2 5.00 0.02 0.68 1.80 2.4827 231 0.01 0.0 6.6 7.6 139 9.3 9.52Dyno2-CMW Drain 2108 07/22/020.5 9.00 0.01 1.98 0.10 2.0820 246.6 7.1 146 10.0 9.48TKN <0.2, NH4<0.02, BOD5<1.0Dyno2-C MW Drain 2108 07/24/022 0.32 0.3 6.7 6.6 153 10.3 8.32Bacteria Re-sampleDyno2-C MW Drain 2108 08/21/020.5 2.00 0.03 0.81 0.10 0.9129 222 0.32 0.3 6.8 5.9 131 11.0 9.51TKN <0.2, BOD5 <1Dyno2-C MW Drain 2108 09/17/020.5 3.00 0.01 1.33 0.10 1.4333 192 0.32 0.3 5.9 5.7 135 11.3 9.47BOD5<1.0, NH4 <0.02, TKN<0.2, pH is est.Dyno2-C MW Drain 2108 10/01/020.5 3.00 0.01 0.87 0.10 0.9732 192 0.32 0.3 6.7 5.9 131 10.9 9.47NH4 <0.02; BOD5 <1; TKN < 0.2Dyno2-C MW Drain 2108 10/01/020.5 4.00 0.01 0.87 0.10 0.9733 192 0.32 0.3QA Duplicate; NH4 <0.02; BOD5 <1; TKN < 0.2Dyno2-C MW Drain 2108 10/29/020.5 68.00 0.01 0.34 0.10 0.4433 172 0.32 0.3 6.6 6.0 118 10.6 9.50BOD5<1.0, TSS is est., NH4 <0.02, TKN <0.2Dyno2-C MW Drain 2108 12/09/020.5 38.00 0.01 0.18 0.10 0.2833 122 0.32 0.3 6.5 6.1 114 9.5 9.66NH4 <0.02, BOD5 <1.0, TKN <0.2Dyno2-C MW Drain 2108 12/09/020.5 39.00 0.01 0.18 0.10 0.2833 122 0.32 0.3QA Duplicate; NH4 <0.02, BOD5 <1.0, TKN <0.2Dyno2-C MW Drain 2108 02/19/030.5 1.00 0.06 3.10 0.10 3.2030 111 0.01 0.0 6.3 6.8 129 7.8 9.52BOD5<1.0, TKN <0.2Dyno2-C MW Drain 2108 04/15/030.5 10.00 0.02 1.11 0.10 1.2128 101 0.01 0.0 6.7 6.2 105 7.4 9.55BOD5<1.0, TKN <0.2Dyno2-C MW Drain 2108 05/12/030.5 2.00 0.01 1.02 0.10 1.1227 121 0.01 0.0 6.4 7.4 110 8.0 9.53BOD5<1.0 NH4 <0.02, TKN <0.2Dyno2-C MW Drain 2108 06/16/030.5 0.50 0.03 0.70 0.10 0.8030 141 0.01 0.0 6.6 6.6 113 8.7 9.48BOD5<1.0, TSS<1, TKN<0.2Dyno2-C MW Drain 2108 06/16/030.5 3.00 0.02 0.70 0.10 0.8030 141 0.01 0.0QA Duplicate; BOD5<1.0, TKN<0.2Dyno2-C MW Drain 2108 08/19/030.5 0.50 0.02 0.89 0.10 0.9926 301 0.01 0.0 6.7 7.2 167 10.6 9.44BOD5<1.0, TSS<1, TKN<0.2Dyno2-C MW Drain 2108 10/20/030.5 0.50 0.01 0.84 0.10 0.9424 451 0.01 0.0 6.6 6.7 208 11.1 9.12BOD5<1.0, TSS<1, NH4AsN<0.02, TKN<0.2Dyno2-C MW Drain 2108 10/20/030.5 1.00 0.01 0.84 0.10 0.9424 451 0.01 0.0QA Duplicate; BOD5<1.0, NH4AsN<0.02, TKN<0.2Dyno2-C MW Drain 2108 11/12/030.5 0.50 0.01 0.83 0.10 0.9323 511 0.01 0.0 6.6 7.1 222 10.5 9.44BOD5<1, TSS<1, NH4<0.02, TKN<0.2Dyno2-C MW Drain 2108 11/12/030.5 0.50 0.01 0.82 0.10 0.9223 501 0.01 0.0QA Duplicate; BOD5<1, TSS<1, NH4<0.02, TKN<0.2Dyno2-C MW Drain 2108 03/15/040.01 12.70 0.10 12.80282 0.32 0.3 6.7 9.1 251 7.7 9.39NH4<0.02, TKN<0.2Dyno2-C MW Drain 2108 03/15/040.03 12.70 0.10 12.80292 0.32 0.3QA Duplicate; TKN<0.2Appendix B: Innovative System Field Test DataPage B-19
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesDyno2-CMW Drain 2108 06/07/040.01 2.04 0.10 2.14171 0.01 0.0 6.7 7.2 133 8.3 9.46NH4<0.02, TKN<0.2Dyno2-C MW Drain 2108 06/07/040.01 2.05 0.10 2.15181 0.01 0.0QA Duplicate; NH4<0.02, TKN<0.2Dyno2-C MW Drain 2108 10/04/040.01 1.53 0.10 1.63731 0.01 0.0 6.6 7.2 312 10.6 9.42NH4 <0.02, TKN<0.2Dyno2-C MW Drain 2108 12/08/040.01 1.48 0.10 1.58731 0.01 0.0 6.5 7.2 307 9.0 9.47TKN<0.2, NH4<0.02Dyno2-C STE 01/07/0247.0 18.00 15.00 0.10 42.00 42.10 2.30 198 30 2.502 0.32 0.3 9.7 0.6 463 5.7BOD >47; Oil & Grease <5Dyno2-C STE 02/04/0281.0 19.00 35.00 0.00 55.00 55.00 3.06 248 39 2.502 0.32 0.3 9.6 0.9 594 3.6Oil & Grease <5Dyno2-C STE 03/04/02120.0 31.00 40.00 0.00 66.00 66.00 4.30 225 40 13.00 1,000 3.0 1,000 3.0 9.3 1.2 684 5.1Dyno2-CSTE04/01/02140.0 18.00 33.00 0.00 80.00 80.00 4.30 258 39 11.00 4,400 3.6 5,000 3.7 9.1 0.4 686 7.0Dyno2-CSTE05/13/0292.0 22.00 56.00 0.01 65.00 65.01 4.59 316 39 16.00 5,200 3.7 4,600 3.7 8.9 0.6 776 10.9BOD5 is est.Dyno2-C STE 06/25/0292.0 30.00 72.00 0.01 79.00 79.01 6.89 345 56 8.00 20 1.320 1.3 8.8 0.4 792 15.1BOD5 >92Dyno2-C STE 07/22/02140.0 43.00 79.00 0.01 92.00 92.01 8.24 338 57 16.00 160,000 5.2 160,000 5.2 8.9 0.3 820 18.1Dyno2-CSTE08/19/02170.0 33.00 86.00 0.01 150.00 150.01 10.30 368 64 13.00 2,400 3.4 2,400 3.4 8.8 0.5 959 16.9Dyno2-CSTE09/17/0263.0 26.00 85.00 0.01 94.00 94.01 10.90 359 60 20.00 8,800 3.9 7,200 3.9 8.2 0.7 961 15.4BOD5, pH is est.Dyno2-C STE 10/02/02250.0 43.00 72.00 0.01 91.00 91.01 11.80 426 58 13.00 54,000 4.7 24,000 4.4 7.7 0.9 1015 14.9Dyno2-CSTE10/30/02170.0 38.00 64.00 0.02 72.00 72.02 7.84 384 51 11.00 16,000 4.2 8,600 3.9 8.1 0.9 910 11.0Dyno2-CSTE12/11/0267.0 39.00 24.00 0.01 32.00 32.01 4.43 146 23 15.002 0.32 0.3 7.9 1.0 437 10.3Dyno2-CSTE02/18/0392.0 55.00 51.00 0.02 63.00 63.02 7.28 331 52 17.00 120,000 5.1 120,000 5.1 8.4 1.5 799 6.0Dyno2-CSTE04/16/03140.0 31.00 96.00 0.02 98.00 98.02 10.80 424 66 12.00 216,000 5.3 182,000 5.3 8.6 1.1 1111 7.2Dyno2-CSTE06/16/0387.0 53.00 83.00 0.02 89.00 89.02 10.10 478 65 14.00 17,600 4.2 14,800 4.2 8.2 0.9 1207 12.5Dyno2-CSTE08/18/0375.0 46.00 103.00 0.01 120.00 120.01 9.94 550 76 10.00 880 2.9 320 2.5 8.4 0.4 1346 17.2O&G is est.Dyno2-C STE 10/20/0363.0 32.00 108.00 0.01 120.00 120.01 10.20 610 72 5.00 9,800 4.0 2,400 3.4 8.4 0.6 1462 12.5Dyno2-CSTE03/15/04180.0 68.00 89.00 0.05 110.00 110.05 11.00 451 77 10.00 13,200 4.1 16,200 4.2 6.6 0.8 1232 6.5Dyno2-CSTE06/07/04110.0 55.00 71.00 0.03 92.00 92.03 10.70 440 77 5.00 11,800 4.1 12,200 4.1 7.6 0.9 1150 10.6Dyno2-CSTE10/04/04200.0 67.00 43.00 0.03 59.00 59.03 7.58 360 52 21.00 290,000 5.5 270,000 5.4 7.0 1.0 903 13.0Dyno2-CSTE12/06/04210.0 36.00 49.00 0.03 70.00 70.03 6.84 310 65 28.00 40,000 4.6 23,000 4.4 7.4 1.2 895 6.3Dyno2-CWE01/07/023.7 9.00 2.30 1.80 8.50 10.30 0.30 131 172 0.32 0.3 9.7 4.8 385 6.3Dyno2-CWE01/07/023.5 27.00 2.20 1.80 8.50 10.30 0.30 131 172 0.32 0.3 9.7 4.8 385 6.3QA duplicateDyno2-C WE 02/04/0210.0 3.00 6.70 2.00 14.00 16.00 0.70 156 222 0.32 0.3 9.7 5.3 509 5.7Dyno2-CWE03/04/0218.0 10.00 16.00 2.70 26.00 28.70 1.20 197 26100 2.0 100 2.0 9.4 1.1 557 6.3Dyno2-CWE03/04/0219.0 22.00 16.00 2.70 27.00 29.70 1.30 204 26100 2.0 100 2.0 9.4 1.1 557 6.3QA DuplicateDyno2-C WE 04/01/0232.0 11.00 22.00 2.30 33.00 35.30 2.10 237 306 0.812 1.1 9.2 0.6 662 7.5Dyno2-CWE05/13/0221.0 13.00 29.00 2.39 33.00 35.39 2.12 215 1760 2.9 800 2.9 8.7 0.6 699 13.0Dyno2-CWE06/25/0220.0 12.00 19.00 0.04 41.00 41.04 3.46 301 4322 1.330 1.5 8.8 0.6 342 15.2Dyno2-CWE07/22/0242.0 16.00 53.00 0.51 60.00 60.51 6.17 319 607,600 3.9 7,400 3.9 8.8 0.9 820 17.8Dyno2-CWE07/22/0235.0 21.00 52.00 0.30 62.00 62.30 6.05 312 588,600 3.9 8,400 3.9 8.8 0.9 820 17.8QA Duplicate; NH4 is est.Dyno2-C WE 08/19/0249.0 9.00 56.00 0.02 77.00 77.02 9.89 330 561,300 3.1 1,700 3.2 8.8 0.3 861 15.8Dyno2-CWE09/17/0240.0 20.00 64.00 0.01 75.00 75.01 8.36 348 616,400 3.8 3,000 3.5 8.4 0.9 904 13.9pH is est.Dyno2-C WE 10/02/0262.0 22.00 55.00 0.02 65.00 65.02 8.84 396 581,800 3.3 2,100 3.3 8.3 0.4 947 13.7Dyno2-CWE10/30/0256.0 58.00 46.00 0.03 70.00 70.03 10.90 371 465,800 3.8 4,000 3.6 8.3 1.0 822 8.5TKN is est.Dyno2-C WE 12/11/0220.0 13.00 0.81 0.74 27.00 27.74 4.40 169 257,800 3.9 4,800 3.7 7.6 1.8 487 7.3Dyno2-CWE02/18/0318.0 11.00 31.00 0.01 31.00 31.01 5.38 256 347,000 3.8 7,600 3.9 8.0 1.3 661 5.8QA DuplicateDyno2-C WE 02/18/0320.0 7.00 32.00 0.01 34.00 34.01 5.37 256 349,800 4.0 7,800 3.9 8.0 1.3 682 6.0Dyno2-CWE04/16/0355.0 28.00 51.00 0.02 74.00 74.02 11.80 341 4828,600 4.5 32,000 4.5 8.3 1.0 877 6.5Dyno2-CWE04/16/0352.0 25.00 51.00 0.02 62.00 62.02 7.61 342 4832,400 4.5 46,000 4.7 8.4 1.0 874 6.3QA DuplicateDyno2-C WE 06/16/0332.0 18.00 63.00 0.01 71.00 71.01 8.43 405 56106 2.0 150 2.2 8.4 0.5 998 12.7Dyno2-CWE08/18/0338.0 30.00 65.00 0.04 68.00 68.04 7.67 446 61130 2.122 1.3 8.6 0.6 1110 16.3Dyno2-CWE10/20/038.1 20.00 0.82 71.506.3242 61150 2.254 1.7 7.1 6.5 934 12.7TKN void - High Nitrate interferenceDyno2-C WE 03/15/0429.0 52.00 0.50 69.60 3.60 73.20 6.1911 6038 1.662 1.8 6.7 5.1 908 6.8BOD5 is est.Dyno2-C WE 06/07/04100.0 150.00 1.06 61.80 3.10 64.90 6.3035 6820 1.314 1.1 6.8 2.5 874 12.9BOD5 is est.Dyno2-C WE 10/04/04150.0 740.00 2.00 19.60 12.00 31.60 8.44 200 5014 1.128 1.4 7.0 2.9 703 12.5BOD5 is est.Dyno2-C WE 10/04/04110.0 210.00 2.10 19.30 25.00 44.30 13.30 170 5122 1.318 1.3 7.1 2.9 692 12.7BOD5 is est.Dyno2-C WE 12/06/0499.0 380.00 7.40 11.00 37.00 48.00 10.90 190 59980 3.0 820 2.9 7.0 2.4 684 5.1Dyno2-NMW Drain 2095 01/03/020.02 1.9876.6 1.8 127 8.2 9.19Well development; No TKN reported; NO3 est.Dyno2-N MW Drain 2095 01/22/020.5 14.00 0.00 2.50 0.10 2.60 0.1045 91 0.01 0.0 6.8 1.5 146 7.8 7.10BOD5 <1.0, TKN <0.2Dyno2-N MW Drain 2095 02/19/020.5 5.00 0.00 1.80 0.10 1.90 0.1048 71 0.01 0.0 6.5 1.1 135 7.5 9.12TKN <0.2, BOD5 <1Dyno2-N MW Drain 2095 02/19/020.5 7.00 0.00 1.80 0.10 1.90 0.1048 71 0.01 0.0 6.5 1.1 135 7.5QA Duplicate; BOD <1; TKN <0.2Dyno2-N MW Drain 2095 03/18/020.5 9.00 0.00 3.80 0.10 3.90 0.1042 131 0.01 0.0 6.7 1.9 163 7.1 9.10BOD5 <1.0, TKN <0.2Dyno2-N MW Drain 2095 03/18/020.5 7.00 0.00 3.80 0.10 3.90 0.1043 131 0.01 0.0 6.7 1.9 163 7.1QA duplicate; BOD5 <1.0, TKN <0.2Dyno2-N MW Drain 2095 04/16/020.5 5.00 0.01 5.04 0.10 5.14 0.1040 141 0.01 0.0 6.5 1.5 185 6.9 9.16NH4 <0.02; BOD <1; TKN <0.2Dyno2-N MW Drain 2095 04/16/020.5 4.00 0.01 5.03 0.10 5.13 0.1042 141 0.01 0.0 6.5 1.5 185 6.9NH4 <0.02; BOD <1; TKN <0.2; QA duplicateDyno2-N MW Drain 2095 05/13/020.5 6.00 0.01 3.12 0.10 3.2240 91 0.01 0.0 6.7 1.4 158 7.7 9.11TKN <0.2, BOD5<1.0, NH4 <0.02Dyno2-N MW Drain 2095 06/17/025.00 0.01 2.52 0.10 2.6246 71 0.01 0.0 6.6 1.3 136 8.0 9.24TKN <0.2, NH4 <0.02Dyno2-N MW Drain 2095 07/22/020.5 15.00 0.01 1.59 0.10 1.6947 61 0.01 0.0 6.9 1.7 119 9.5 9.18TKN <0.2, NH4<0.02, BOD5<1.0Dyno2-N MW Drain 2095 08/19/021.3 3.00 0.01 1.93 0.10 2.0346 61 0.01 0.0 6.7 1.9 122 9.9 9.19TKN <0.2, BOD5 is est., NH4 <0.02Appendix B: Innovative System Field Test DataPage B-20
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesDyno2-NMW Drain 2095 09/16/020.5 1.00 0.01 1.50 0.10 1.6046 61 0.01 0.0 6.5 1.2 119 10.4 9.17BOD5<1.0, NH4 <0.02, TKN<0.2Dyno2-N MW Drain 2095 10/14/020.5 10.00 0.01 1.00 0.10 1.1051 61 0.01 0.0 6.9 1.1 121 10.8 9.20BOD5<1.0, NH4 <0.02, TKN <0.2, Chloride is est.Dyno2-N MW Drain 2095 11/04/022.6 4.00 0.01 1.58 0.10 1.6850 61 0.01 0.0 6.8 1.3 124 9.9 9.17BOD5 is est. NH4 <0.02, TKN <0.2Dyno2-N MW Drain 2095 01/14/030.5 4.00 0.02 2.05 0.10 2.1549 71 0.01 0.0 6.5 1.7 137 8.0 9.20BOD5<1.0, TKN<0.2, pH is est.Dyno2-N MW Drain 2095 02/18/030.5 5.00 0.03 3.67 0.10 3.7746 101 0.01 0.0 6.8 2.3 160 7.6 9.11BOD5<1.0, TKN <0.2Dyno2-N MW Drain 2095 03/18/030.5 1.00 0.02 2.80 0.10 2.9047 71 0.01 0.0 6.8 2.7 142 7.5 9.28BOD5<1.0, TKN <0.2Dyno2-N MW Drain 2095 05/14/030.5 2.00 0.01 2.05 0.10 2.1548 81 0.01 0.0 6.3 2.2 140 7.9 9.14BOD5<1.0 NH4 <0.02, TKN <0.2Dyno2-N MW Drain 2095 07/21/030.5 3.00 0.01 1.25 0.10 1.3548 71 0.01 0.0 6.7 2.2 131 9.2 9.18BOD5<1.0 NH4<0.02, TKN<0.2Dyno2-N MW Drain 2095 08/18/030.5 1.00 0.01 0.94 0.20 1.1446 61 0.01 0.0 6.7 3.5 125 9.8 9.39BOD5<1.0, NH4AsN<0.02Dyno2-N MW Drain 2095 08/18/030.5 2.00 0.01 0.93 0.10 1.0348 61 0.01 0.0QA Duplicate; BOD5<1.0, NH4AsN<0.02, TKN<0.2Dyno2-N MW Drain 2095 09/15/030.5 2.00 0.04 0.96 0.10 1.0650 61 0.01 0.0 6.7 1.8 127 10.0 9.17TKN<0.2, BOD5<1Dyno2-N MW Drain 2095 11/17/030.5 0.50 0.01 1.84 0.10 1.9448 81 0.01 0.0 6.6 3.5 139 9.6 9.17BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2Dyno2-N MW Drain 2095 11/17/030.5 0.50 0.01 1.95 0.10 2.0548 81 0.01 0.0QA Dupl.; BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2Dyno2-N MW Drain 2095 03/01/040.01 6.04 0.10 6.14241 0.01 0.0 6.8 4.3 218 7.4 9.27TKN<0.2, NH4AsN<0.02Dyno2-N MW Drain 2095 03/01/040.03 6.08 0.10 6.18251 0.01 0.0QA Duplicate; TKN<0.2Dyno2-N MW Drain 2095 06/21/040.01 1.84 0.10 1.9481 0.01 0.0 6.9 1.8 132 8.6 7.68NH4<0.02, TKN<0.2Dyno2-N MW Drain 2095 06/21/040.02 1.84 0.10 1.9481 0.01 0.0QA duplicate, TKN<0.2Dyno2-N MW Drain 2095 09/27/040.01 0.94 0.10 1.0451 0.01 0.0 6.5 3.7 116 10.3 9.17NH4 <0.02, TKN<0.2Dyno2-N MW Drain 2095 12/06/040.01 1.46 0.10 1.5671 0.01 0.0 6.7 3.4 125 8.8 9.25TKN<0.2, NH4<0.02Dyno2-N STE 01/22/02180.0 39.00 54.00 0.00 69.00 69.00 7.30 315 140 12.00 2.4E+06 6.4 1.4E+06 6.1 8.4 1.7 1018 6.5Dyno2-NSTE02/19/02270.0 69.00 67.00 0.00 77.00 77.00 9.00 378 180 14.00 7.6E+06 6.9 5.5E+06 6.7 8.7 1.1 1299 6.7Dyno2-NSTE03/18/02230.0 34.00 75.00 0.00 93.00 93.00 9.60 381 160 19.00 3.6E+07 7.6 2.1E+07 7.3 5.4 0.8 1365 6.9Dyno2-NSTE04/15/02240.0 67.00 74.00 0.02 110.00 110.02 11.70 412 180 16.00 5.2E+06 6.7 5.4E+06 6.7 8.6 1.0 1480 9.5Dyno2-NSTE05/13/02230.0 65.00 80.00 0.24 87.00 87.24 9.42 360 200 21.00 8.2E+07 7.9 7.4E+07 7.9 8.1 0.5 1613 11.7Dyno2-NSTE06/18/02250.0 32.00 77.00 0.01 90.00 90.01 10.50 429 21040,000 4.6 42,000 4.6 8.5 0.3 1476 13.8Dyno2-NSTE07/24/02300.0 97.00 94.00 0.02 93.00 93.02 11.60 462 230 29.00 1.4E+08 8.1 2.0E+06 6.3 8.0 0.5 1602 16.7Dyno2-NSTE08/21/02400.0 94.00 85.00 0.04 96.00 96.04 11.70 371 210 29.00 9.6E+06 7.0 9.0E+06 7.0 7.8 0.4 1607 17.5Dyno2-NSTE09/16/02300.0 64.00 82.00 0.02 83.00 83.02 11.80 469 200 20.00 900,000 6.0 220,000 5.3 7.5 1.1 1601 15.3Dyno2-NSTE10/16/02440.0 130.00 72.00 0.06 86.00 86.06 12.60 220 220 13.00 1.3E+07 7.1 9.2E+06 7.0 6.8 1.3 1626 12.1Dyno2-NSTE11/04/02380.0 42.00 76.00 0.01 91.00 91.01 11.00 524 210 8.00 1.4E+07 7.1 1.0E+07 7.0 6.9 0.9 1578 9.1Dyno2-NSTE01/15/03300.0 74.00 104.00 0.02 150.00 150.02 12.60 605 190 18.00 840,000 5.9 460,000 5.7 8.0 1.0 1879 7.0Dyno2-NSTE03/17/03340.0 47.00 90.00 0.03 120.00 120.03 11.30 571 230 15.00 560,000 5.7 460,000 5.7 8.0 0.7 1365 7.3cond. is est.Dyno2-N STE 05/14/03410.0 49.00 92.00 0.02 110.00 110.02 11.50 571 240 23.00 140,000 5.1 44,000 4.6 7.6 0.7 1976 10.0Dyno2-NSTE07/21/03380.0 130.00 91.00 0.02 100.00 100.02 15.60 572 300 37.00 6.4E+06 6.8 3.6E+06 6.6 7.3 0.8 2141 16.4Dyno2-NSTE09/15/03300.0 85.00 91.00 0.01 100.00 100.01 13.00 559 330 33.00 740,000 5.9 480,000 5.7 7.7 1.1 2249 15.4Dyno2-NSTE11/17/03280.0 78.00 109.00 0.03 120.00 120.03 15.00 586 340 16.00 86,000 4.9 70,000 4.8 7.9 1.6 1999 9.4Dyno2-NSTE03/01/04190.0 81.00 105.00 0.00 140.00 140.00 15.00 581 240 43.00 1.3E+06 6.1 1.1E+06 6.0 7.6 0.9 1990 6.8nitrate <0.005Dyno2-N STE 06/21/04290.0 170.00 93.00 0.03 233.00 233.03 15.80 590 260 62.00 210,000 5.3 130,000 5.1 7.1 0.5 2026 14.7Dyno2-NSTE09/27/04140.0 85.00 84.00 0.04 110.00 110.04 12.30 660 310 28.00 210,000 5.3 204,000 5.3 7.2 0.9 2203 14.5Dyno2-NSTE12/06/04190.0 58.00 106.00 0.02 130.00 130.02 15.00 610 280 27.00 800,000 5.9 700,000 5.8 5.9 0.8 2153 7.6Dyno2-NWE01/22/0211.0 5.00 5.80 45.10 7.90 53.00 5.0078 11058,000 4.8 29,000 4.5 7.1 5.0 870 6.4Dyno2-NWE02/19/0237.0 97.00 5.50 48.80 7.00 55.80 6.3085 150130,000 5.1 140,000 5.1 6.9 5.7 1060 7.1Dyno2-NWE03/18/0247.0 124.00 4.30 64.00 12.00 76.00 8.4038 15096,000 5.0 78,000 4.9 6.7 3.1 1220 8.7Dyno2-NWE04/15/0230.0 35.00 7.40 68.70 11.00 79.70 7.6740 160740,000 5.9 700,000 5.8 6.6 3.3 1219 11.2Dyno2-NWE05/13/0296.0 61.00 11.80 56.60 19.00 75.60 7.7560 190540,000 5.7 440,000 5.6 6.7 1.9 670 12.2Dyno2-NWE06/18/0247.0 28.00 0.08 72.70 2.70 75.40 8.5310 2001,400 3.1 600 2.8 6.5 4.9 1166 15.8Dyno2-NWE07/24/0215.0 25.00 2.80 67.40 4.80 72.20 8.9442 2108,200 3.9 800 2.9 6.9 3.2 1246 19.5Dyno2-NWE08/21/0228.0 150.00 4.50 57.40 11.00 68.4048 1808,000 3.9 3,800 3.6 6.8 3.0 1143 18.4Dyno2-NWE09/16/0227.0 110.00 5.60 56.10 13.00 69.10 11.10 95 1905,600 3.7 4,000 3.6 6.9 4.2 1259 17.0Dyno2-NWE10/16/0218.9 13.00 5.00 41.80 11.00 52.80 10.00 217 2101,800 3.3 2,000 3.3 7.1 2.3 1305 12.5Dyno2-NWE11/04/02350.0 870.00 9.70 7.97 26.00 33.97 11.70 319 20042,000 4.6 34,000 4.5 7.0 1.2 1187 9.6BOD5 is est.Dyno2-N WE 01/15/0354.0 35.00 35.00 8.94 45.00 53.94 11.70 355 190370,000 5.6 200,000 5.3 7.7 1.1 1441 5.9Dyno2-NWE01/15/0385.0 29.00 34.00 8.78 45.00 53.78 11.70 356 190760,000 5.9 420,000 5.6 7.8 1.2 1429 6.1QA DuplicateDyno2-N WE 03/17/0333.0 250.00 10.30 44.20 19.00 63.20 12.60 127 2003,200 3.5 3,600 3.6 7.1 1.5 1273 7.6QA DuplicateDyno2-N WE 03/17/0324.0 61.00 10.40 44.80 17.00 61.80 12.50 126 2004,200 3.6 2,600 3.4 7.0 1.3 1267 7.6Dyno2-NWE05/14/0384.0 27.00 31.00 7.93 40.00 47.93 13.60 335 21052,000 4.7 14,000 4.1 7.3 1.1 1471 10.8Dyno2-NWE07/21/039.6 11.00 9.10 34.60 14.00 48.60 13.00 186 2708,600 3.9 5,400 3.7 7.0 0.9 1574 18.1Dyno2-NWE07/21/0329.0 28.00 9.00 34.50 13.00 47.50 13.00 184 27011,000 4.0 7,000 3.8 7.1 1.0 1558 18.2QA DuplicateDyno2-N WE 09/15/0382.0 230.00 5.60 33.90 42.00 75.90 19.20 180 3202,200 3.3 200 2.3 7.3 2.6 1684 17.3Dyno2-NWE11/17/032.7 1.00 2.30 54.3011.00 61 310120 2.140 1.6 7.0 4.8 1574 10.1QA Duplicate; BOD5 is est., TKN voidDyno2-N WE 11/17/032.6 1.00 2.30 54.3010.90 61 310280 2.420 1.3 7.0 4.7 1574 9.6TKN voidDyno2-N WE 03/01/0454.0 240.00 10.40 60.00 31.00 91.00 15.70 74 23076,000 4.9 46,000 4.7 6.7 1.9 1454 7.4QA DuplicateDyno2-N WE 03/01/0447.0 120.00 10.20 58.80 46.00 104.80 19.40 76 23082,000 4.9 42,000 4.6 6.7 1.9 1481 7.9Dyno2-NWE06/21/046.8 6.00 4.90 70.30 7.80 78.10 11.80 55 270620 2.8 320 2.5 6.6 3.3 1597 15.0Appendix B: Innovative System Field Test DataPage B-21
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesDyno2-NWE09/27/0430.0 9.00 0.81 75.00 5.40 80.40 11.70 44 290560 2.7 340 2.5 6.8 3.6 1730 16.0BOD5 is est.Dyno2-N WE 12/06/04110.0 260.00 5.70 75.60 49.00 124.60 18.70 23 30013,000 4.1 13,000 4.1 5.6 4.2 1725 7.6QA Duplicate; BOD5 is est.Dyno2-N WE 12/06/04130.0 240.00 5.60 77.90 17.00 94.90 13.50 35 29016,000 4.2 12,000 4.1 5.6 4.0 1725 7.5BOD5 is est.EnviroServer-H ESE 07/30/0111.0 6.00 0.47 5.82 2.70 8.52 9.18 198 373,400 3.5 3,600 3.6 8.0 4.1 613 20.4EnviroServer-HESE08/27/0136.0 11.00 0.08 14.60 2.60 17.20 7.38 162 4714,000 4.1 6,400 3.8 8.0 4.2 641 22.6BOD5 toxic interferenceEnviroServer-H ESE 09/24/0119.0 12.00 0.08 22.50 2.10 24.60 7.99 137 292,400 3.4 2,400 3.4 7.9 3.6 555 20.3BOD5 is estimate (possible toxic interference).EnviroServer-H ESE 10/22/0118.0 8.00 0.20 20.70 3.10 23.80 10.50 142 232,400 3.4 2,800 3.4 7.7 3.3 566 16.3BOD5 is estimateEnviroServer-H ESE 11/05/0112.0 22.00 0.54 25.50 2.60 28.10 9.53 126 417,200 3.9 7,600 3.9 7.4 4.5 578 14.8EnviroServer-HESE12/17/0110.0 7.00 0.10 27.10 1.50 28.60 7.80 114 21820 2.9 1,000 3.0 7.9 4.9 538 13.0 BOD5 is est.EnviroServer-H ESE 12/17/0110.0 7.00 0.10 26.90 1.50 28.40 7.90 112 22900 3.0 820 2.9 7.9 4.9 538 13.0QA duplicate - BOD5 is est.EnviroServer-H ESE 01/28/0239.0 21.00 0.00 24.70 1.80 26.50 7.20 107 20680 2.8 520 2.7 7.8 3.6 478 12.7BOD5 is est. (poss. Toxic interference)EnviroServer-H ESE 02/26/0232.0 9.00 0.00 28.30 1.40 29.70 6.70 100 311,200 3.1 640 2.8 7.9 4.8 573 13.4BOD5: toxic effect, used weakest dilutionEnviroServer-H ESE 03/27/0231.0 41.00 0.00 30.10 5.00 35.10 8.50 100 506,400 3.8 6,800 3.8 7.6 6.5 700 13.5BOD5 is estimateEnviroServer-H ESE 03/27/0232.0 48.00 0.00 30.60 5.20 35.80 8.60 100 5211,000 4.0 8,300 3.9 7.6 6.5 700 13.5QA duplicate reading, BOD5 is estimate.EnviroServer-H ESE 04/23/029.4 14.00 0.06 30.70 1.80 32.50 7.6295 243,000 3.5 3,000 3.5 7.6 4.4 597 6.4EnviroServer-HESE04/23/0210.0 13.00 0.07 32.80 1.70 34.50 7.8795 243,400 3.5 3,000 3.5 7.6 4.4 597 6.4QA Duplicate; BOD5 is est.EnviroServer-H ESE 05/21/0210.0 21.00 0.07 27.50 2.30 29.80 8.2999 3712,000 4.1 10,000 4.0 7.7 4.7 634 17.1QA duplicateEnviroServer-H ESE 05/21/029.9 21.00 0.12 27.90 2.20 30.10 8.2098 3940,000 4.6 46,000 4.7 7.7 4.7 634 17.1EnviroServer-HESE06/25/0222.0 27.00 0.27 32.00 2.50 34.50 8.6994 362,900 3.5 2,600 3.4 7.6 3.7 556 19.4QA duplicate, BOD is estimateEnviroServer-H ESE 06/25/0218.0 34.00 0.25 31.90 3.20 35.10 8.6496 367,600 3.9 6,000 3.8 7.6 3.7 556 19.4BOD is estimateEnviroServer-H ESE 08/26/0236.0 48.00 0.06 21.00 4.20 25.20 8.23 122 328,400 3.9 8,800 3.9 7.5 3.7 582 20.3QA Duplicate; BOD5 is est.EnviroServer-H ESE 08/26/0245.0 58.00 0.07 20.30 3.90 24.20 8.08 122 329,200 4.0 11,000 4.0 7.5 3.7 582 20.3BOD5 is est.EnviroServer-H ESE 10/21/026.2 41.00 0.20 22.40 3.20 25.60 8.01 132 382,200 3.3 2,200 3.3 7.7 4.6 578 16.9EnviroServer-HESE12/18/028.2 22.00 0.14 12.40 2.10 14.50 7.60 164 508,800 3.9 7,000 3.8 7.5 7.5 654 15.2pH is est.EnviroServer-H ESE 12/18/027.2 19.00 0.15 12.60 2.30 14.90 7.84 164 5010,000 4.0 6,600 3.8 7.6 7.5 650 15.4QA Duplicate; pH is est.EnviroServer-H ESE 02/24/031.9 6.00 0.03 6.97 1.30 8.27 7.19 184 267,400 3.9 6,600 3.8 8.3 4.7 530 13.0EnviroServer-HESE04/23/0320.0 100.00 0.02 11.70 4.20 15.90 8.5268 595,400 3.7 4,800 3.7 7.9 4.4 668 16.7EnviroServer-HESE06/25/036.6 29.00 0.09 19.80 2.40 22.20 8.79 138 3822,000 4.3 20,000 4.3 7.7 4.6 625 18.9EnviroServer-HESE06/25/036.8 24.00 0.09 20.20 2.50 22.70 8.63 138 3825,000 4.4 19,000 4.3 8.0 5.2 607 18.9QA DuplicateEnviroServer-H ESE 08/25/0343.0 110.00 0.04 10.10 6.80 16.90 8.08 195 921,800 3.3 2,200 3.3 7.4 3.8 812 21.0BOD5 is est.EnviroServer-H ESE 10/13/0326.0 110.00 0.05 7.01 1.40 8.41 7.98 198 3211,000 4.0 8,600 3.9 7.9 4.3 597 21.0BOD5 is est.EnviroServer-H LE 10/22/010.06 22.60 0.80 23.40 0.30367.4 6.7 494 10.8EnviroServer-HLE11/05/010.0 2.00 0.05 22.40 1.20 23.60 0.2078 382 0.32 0.3 7.4 6.4 453 5.3EnviroServer-HLE12/17/010.5 4.00 0.03 29.00 0.60 29.60 0.2778 3110 1.010 1.0 7.4 8.1 527 2.7 BOD5 <1.0EnviroServer-H LE 01/28/020.5 6.00 0.00 28.00 0.80 28.80 0.3078 32260 2.4 220,000 5.3 7.3 2.8 350 0.5cond. test cancelled (ran out of sample); BOD <1EnviroServer-H LE 02/26/020.5 0.50 0.00 25.60 0.50 26.10 0.9078 3214 1.114 1.1 7.6 8.1 350 1.2 BOD5 <1; TSS <1EnviroServer-H LE 05/21/020.06 31.40 3.70 35.10 0.79397.3 5.7 680 10.1EnviroServer-HLE12/18/024.8 15.00 0.06 22.60 1.30 23.90 1.0686 4262 1.830 1.5 7.0 12.5 550 2.3pH is est.EnviroServer-H LE 02/24/031.5 2.00 0.10 25.60 1.20 26.80 0.9294 462 0.32 0.3 7.7 2.4 580 2.0EnviroServer-HLE04/23/030.5 9.00 0.05 13.90 0.80 14.70 1.16 134 374 0.66 0.8 8.0 5.4 551 7.0BOD5<1.0EnviroServer-H LE 06/25/03No samples due to no flow.EnviroServer-H LE 08/25/03All tests cancelled; No Flow; No samples collected.EnviroServer-H LE 10/13/03all tests cancelled; no flowEnviroServer-H MW Drain 2010 12/17/010.5 3.00 0.10 11.80 0.50 12.30 0.0864 151 0.01 0.0 7.6 8.2 281 7.2 6.61BOD5 <1.0EnviroServer-H MW Drain 2010 01/28/020.5 2.00 0.00 25.30 0.50 25.80 0.1051 241 0.01 0.0 7.2 6.8 401 6.9 5.91BOD5 <1.0EnviroServer-H MW Drain 2010 02/25/020.5 5.00 0.00 38.10 0.40 38.50 0.1046 261 0.01 0.0 6.8 8.9 550 6.4 5.18 BOD5 <1EnviroServer-H MW Drain 2010 03/27/021.1 10.00 0.00 44.80 0.10 44.90 0.3045 261 0.01 0.0 6.9 9.6 616 6.2 4.78BOD5 is estimate, TKN <0.2EnviroServer-H MW Drain 2010 04/23/020.5 5.00 0.01 31.00 0.42 31.4255 261 0.01 0.0 6.8 7.7 520 6.6 4.80 NH4 <0.02; BOD <1EnviroServer-H MW Drain 2010 05/21/020.5 2.00 0.23 23.80 0.30 24.1056 231 0.01 0.0 7.0 5.2 418 8.1 5.39 BOD5<1.0EnviroServer-H MW Drain 2010 06/25/020.5 3.00 0.01 7.04 0.40 7.4450 431 0.01 0.0 7.3 8.2 301 9.5 6.73BOD5<1.0, NH4 <0.02EnviroServer-H MW Drain 2010 08/28/020.5 3.00 0.01 2.52 0.10 2.6238 1301 0.01 0.0 7.0 7.5 500 14.0 6.86BOD5<1.0, NH4 <0.02, TKN<0.2EnviroServer-H MW Drain 2010 09/24/020.5 9.00 0.03 5.96 0.20 6.1638 1401 0.01 0.0 7.2 6.4 547 18.0 7.01BOD5 < 1.0; chloride est.EnviroServer-H MW Drain 2010 10/21/020.5 3.00 0.01 2.78 0.20 2.9837 1601 0.01 0.0 7.1 7.8 565 10.7 7.17BOD5<1.0, NH4 <0.02EnviroServer-H MW Drain 2010 10/30/022 0.32 0.3 7.1 4.6 571 7.9 7.44Bacteria Re-sampleEnviroServer-H MW Drain 2010 12/18/020.5 3.00 0.01 7.09 0.20 7.2941 892 0.32 0.3 7.1 9.3 468 6.7 7.04BOD5<1.0, NH4<0.02, pH is est.EnviroServer-H MW Drain 2010 02/25/031.0 8.00 0.02 13.20 0.30 13.5040 572 0.32 0.3 7.2 9.1 395 6.2 6.72BOD5 is est.EnviroServer-H MW Drain 2010 03/25/030.5 6.00 0.01 19.70 0.30 20.0042 592 0.32 0.3 6.8 9.6 480 6.8 5.79BOD5<1.0, NH4AsN <0.02EnviroServer-H MW Drain 2010 04/23/038.7 8.00 0.01 15.90 0.30 16.2047 612 0.32 0.3 6.7 7.6 456 6.9 5.46NH4 <0.02EnviroServer-H MW Drain 2010 06/24/030.5 7.00 0.01 4.95 0.10 5.0548 651 0.01 0.0 7.2 10.0 351 10.6 6.27BOD5<1.0, NH4<0.02EnviroServer-H MW Drain 2010 08/25/031.1 2.00 0.01 1.00 0.10 1.1043 741 0.01 0.0 7.4 7.4 466 14.5 6.96BOD5 is est., NH4AsN<0.02, TKN<0.2EnviroServer-H MW Drain 2010 09/02/030.5 0.50 0.01 0.75 0.10 0.8542 1201 0.01 0.0 7.5 6.1 500 20.6 7.01BOD5<1.0, TSS<1, NH4AsN<0.02, TKN<0.2EnviroServer-H MW Drain 2010 10/13/030.1 0.50 0.01 0.85 0.30 1.1538 1501 0.01 0.0 7.4 6.3 594 12.3 7.16BOD5 <0.1, TSS<1, NH4AsN<0.02EnviroServer-H STE 07/30/01110.0 150.00 0.96 6.69 13.00 19.69 12.70 197 38 2.50 86,000 4.9 94,000 5.0 7.8 2.6 510 21.4oil & grease <5EnviroServer-H STE 08/27/01690.0 500.00 0.10 14.60 33.00 47.60 17.30 176 43230,000 5.4 220,000 5.3 7.6 1.5 581 22.8 BOD5 toxic interference.Appendix B: Innovative System Field Test DataPage B-22
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesEnviroServer-HSTE09/24/01380.0 1000.00 0.19 23.70 66.00 89.70 31.60 190 28 2.50 40,000 4.6 18,000 4.3 7.8 2.2 575 20.1Oil and Grease is <5EnviroServer-H STE 10/22/01270.0 450.00 0.14 19.50 16.00 35.50 13.70 166 39 2.50 40,000 4.6 26,000 4.4 7.6 1.1 637 17.9oil & grease <5EnviroServer-H STE 11/05/01930.0 1400.00 0.25 27.90 89.00 116.90 34.70 173 38 6.00 96,000 5.0 68,000 4.8 7.5 1.4 580 11.2BOD5 is estimate.EnviroServer-H STE 12/17/01450.0 1500.00 0.20 28.30 110.00 138.30 31.80 188 21 2.50 13,000 4.1 12,000 4.1 7.7 1.6 591 13.9Oil & Grease is <5EnviroServer-H STE 01/28/02460.0 1996.00 0.40 21.10 150.00 171.10 38.90 175 19 6.00 38,000 4.6 20,000 4.3 7.5 1.4 467 14.1EnviroServer-HSTE02/26/02500.0 2120.00 0.24 26.60 190.00 216.60 42.40 195 29 6.00 110,000 5.0 94,000 5.0 7.7 1.7 606 13.8EnviroServer-HSTE03/27/02520.0 2684.00 0.20 25.60 400.00 425.60 33.20 210 45 6.00 120,000 5.1 130,000 5.1 7.1 1.9 699 15.5EnviroServer-HSTE04/23/02580.0 3300.00 0.24 29.40 220.00 249.40 45.90 185 23 2.50 62,000 4.8 44,000 4.6 7.3 1.3 588 17.3 O&G <5EnviroServer-H STE 05/21/02850.0 2656.00 1.80 25.20 180.00 205.20 45.50 170 36 5.00 620,000 5.8 460,000 5.7 7.3 0.5 646 17.6 BOD5 is est.EnviroServer-H STE 06/25/02480.0 2500.00 0.28 31.10 130.00 161.10 39.10 60 41 14.00 140,000 5.1 150,000 5.2 7.4 0.3 595 20.9EnviroServer-HSTE08/26/023000.0 2900.00 0.28 18.80 150.00 168.80 44.60 259 28 2.50 960,000 6.0 800,000 5.9 7.6 1.1 500 19.3TSS, BOD5 is est., O&G <5EnviroServer-H STE 10/21/02320.0 2600.00 0.44 19.20 140.00 159.20 36.70 254 31 2.50 6.8E+06 6.8 5.0E+06 6.7 7.6 1.1 543 17.4TSS is est., O&G <5EnviroServer-H STE 12/18/02400.0 2200.00 1.40 7.13 120.00 127.13 31.50 245 41 7.00 120,000 5.1 100,000 5.0 7.2 1.1 607 17.2pH is est.EnviroServer-H STE 02/24/03480.0 2300.00 0.25 7.65 110.00 117.65 39.70 270 27 5.00 380,000 5.6 320,000 5.5 8.0 0.8 543 12.4EnviroServer-HSTE04/23/03630.0 2900.00 8.70 7.82 170.00 177.82 45.70 295 47 2.50 520,000 5.7 300,000 5.5 7.5 0.4 570 18.1O&G <5EnviroServer-H STE 06/25/03330.0 2900.00 0.01 17.70 140.00 157.70 45.80 314 39 5.00 1.1E+06 6.0 660,000 5.8 7.6 0.2 603 19.7NH4<0.02EnviroServer-H STE 08/25/03390.0 2000.00 0.36 10.00 110.00 120.00 38.00 300 86 5.00 160,000 5.2 120,000 5.1 7.5 0.6 770 21.2O&G is est.EnviroServer-H STE 10/13/03970.0 5900.00 89.00 2.36 270.00 272.36 106.00 512 28820,000 5.9 520,000 5.7 7.9 0.5 572 20.0BOD5 is est., O&G voidEnviroServer-M ESE 07/30/01110.0 32.00 23.00 19.70 30.00 49.70 10.90 80 405,200 3.7 3,800 3.6 7.4 2.5 566 17.0QA DuplicateEnviroServer-M ESE 07/30/0193.0 32.00 21.00 20.00 30.00 50.00 11.50 78 405,600 3.7 6,400 3.8 7.4 2.5 566 17.0EnviroServer-MESE08/27/01170.0 56.00 12.30 25.90 24.00 49.90 10.10 23 433,800 3.6 2,600 3.4 6.5 1.1 498 20.3BOD5 toxic interferenceEnviroServer-M ESE 08/27/01140.0 58.00 12.40 25.50 24.00 49.50 10.60 20 435,200 3.7 3,600 3.6 6.5 1.1 498 20.3QA DuplicateEnviroServer-M ESE 09/24/0178.0 64.00 1.46 26.30 9.00 35.30 7.8958 364,200 3.6 3,000 3.5 7.0 2.2 482 17.4EnviroServer-MESE09/24/0190.0 60.00 1.47 28.10 10.00 38.10 7.9559 364,200 3.6 3,600 3.6 7.0 2.2 482 17.4BOD5 reading is estimate. QA Duplicate;EnviroServer-M ESE 10/22/01132.0 72.00 3.70 19.80 15.00 34.80 10.80 62 49100,000 5.0 64,000 4.8 6.9 0.7 580 23.7BOD is estimateEnviroServer-M ESE 10/22/01174.0 65.00 3.80 19.80 14.00 33.80 10.90 61 49100,000 5.0 69,000 4.8 6.9 0.7 580 23.7QA Duplicate; BOD is estimateEnviroServer-M ESE 11/19/0140.0 21.00 42.00 6.93 49.00 55.93 8.20 178 392,800 3.4 3,600 3.6 7.9 4.6 647 11.9EnviroServer-MESE11/19/0143.0 21.00 42.00 7.00 49.00 56.00 8.09 172 374,400 3.6 2,800 3.4 7.9 4.6 647 11.9QA duplicateEnviroServer-M ESE 12/17/0151.0 13.00 22.00 21.40 27.00 48.40 11.20 83 403,600 3.6 4,600 3.7 7.4 4.8 510 10.3EnviroServer-MESE01/29/0222.0 17.00 1.30 24.90 5.10 30.00 8.6012 354,200 3.6 5,200 3.7 6.7 4.1 433 9.5EnviroServer-MESE01/29/0222.0 20.00 1.50 24.70 5.00 29.70 8.5013 355,200 3.7 4,600 3.7 6.7 4.1 433 9.5QA DuplicateEnviroServer-M ESE 02/25/0237.0 31.00 5.50 28.30 12.00 40.30 10.205 345,400 3.7 6,800 3.8 6.1 6.5 430 11.3EnviroServer-MESE03/25/0224.0 28.00 3.80 21.00 10.00 31.00 9.8012 25600 2.8 800 2.9 6.5 5.6 375 11.4EnviroServer-MESE03/25/0223.0 25.00 3.80 21.40 9.80 31.20 9.7012 25800 2.9 400 2.6 6.5 5.6 375 11.4QA DuplicateEnviroServer-M ESE 04/22/0290.0 40.00 4.70 27.60 11.00 38.60 11.701 321,200 3.1 1,400 3.1 6.0 5.5 430 14.5TSS est.; alk. <1 est.; BOD est.; cond. est.; QA duplEnviroServer-M ESE 04/22/0281.0 44.00 4.80 27.30 11.00 38.30 11.501 341,800 3.3 2,200 3.3 6.0 5.5 430 14.5TSS is est.; alk. <1 est.; cond. is est.; BOD is est.EnviroServer-M ESE 05/20/0212.0 18.00 7.50 30.90 13.00 43.90 11.508 33300 2.5 220 2.3 6.3 3.8 464 14.7BOD is estEnviroServer-M ESE 05/20/029.1 16.00 8.50 30.90 13.00 43.90 11.408 32540 2.7 340 2.5 6.3 3.8 464 14.7QA Duplicate; BOD is est.EnviroServer-M ESE 06/24/022.4 32.00 19.00 29.50 26.00 55.50 9.7628 261,000 3.0 1,200 3.1 7.0 3.4 448 17.4EnviroServer-MESE08/26/0234.0 34.00 0.65 31.40 6.70 38.10 8.5521 359,600 4.0 9,400 4.0 6.7 3.8 436 17.4EnviroServer-MESE10/23/0222.0 20.00 5.40 31.40 8.30 39.70 10.108 37360 2.6 380 2.6 6.4 4.1 438 11.7EnviroServer-MESE10/23/0225.0 15.00 5.60 30.90 8.50 39.40 10.008 37540 2.7 520 2.7 6.5 4.0 438 13.0EnviroServer-MESE12/16/024.5 4.00 10.20 34.90 11.00 45.90 9.4118 37600 2.8 640 2.8 6.6 3.4 535 9.6QA DuplicateEnviroServer-M ESE 12/16/023.0 5.00 9.50 35.00 12.00 47.00 9.3518 36860 2.9 750 2.9 6.6 3.3 540 9.4EnviroServer-MESE02/25/038.7 14.00 0.35 32.10 4.20 36.30 8.8822 35900 3.0 800 2.9 6.8 5.3 473 9.8QA DuplicateEnviroServer-M ESE 02/25/038.6 14.00 0.35 31.70 3.90 35.60 8.6522 351,200 3.1 940 3.0 6.8 5.3 488 9.4EnviroServer-MESE04/23/038.1 11.00 1.16 28.70 4.80 33.50 10.30 28 45140 2.198 2.0 6.8 2.8 488 11.0EnviroServer-MESE04/23/0311.0 12.00 1.15 29.00 4.50 33.50 10.50 28 45150 2.2 114 2.1 6.8 2.7 490 11.2QA DuplicateEnviroServer-M ESE 06/23/039.4 23.00 10.60 33.90 16.00 49.90 13.10 10 5437,000 4.6 33,000 4.5 6.3 3.7 578 15.6QA DuplicateEnviroServer-M ESE 06/23/038.4 31.00 10.40 33.90 16.00 49.90 13.809 5338,000 4.6 37,000 4.6 6.5 3.6 594 15.4EnviroServer-MESE08/25/0312.0 20.00 0.96 31.40 5.40 36.80 9.0518 361,500 3.2 1,200 3.1 7.0 3.1 478 20.2EnviroServer-MESE10/13/0311.0 16.00 1.44 15.90 6.90 22.80 11.40 91 362,000 3.3 1,100 3.0 7.5 3.8 486 14.9EnviroServer-MMW Drain 2100 11/19/011.2 26.00 0.00 1.45 0.10 1.55 0.2069 81 0.01 0.0 6.8 8.5 164 8.3 10.38TKN <0.2EnviroServer-M MW Drain 2100 12/18/010.5 4.00 0.00 4.70 0.20 4.90 0.2062 81 0.01 0.0 7.1 3.3 176 7.2 11.96BOD5 <1.0, TKN est.EnviroServer-M MW Drain 2100 01/29/020.5 4.00 0.00 0.30 0.10 0.40 0.2066 41 0.01 0.0 7.1 3.3 136 7.6 12.00TKN <0.2; BOD <1.0EnviroServer-M MW Drain 2100 02/25/020.5 4.00 0.00 0.20 0.10 0.30 0.2066 31 0.01 0.0 7.0 1.2 140 7.5 12.01BOD5 <1, TKN <0.2EnviroServer-M MW Drain 2100 03/25/020.5 0.50 0.00 0.10 0.10 0.20 0.2062 31 0.01 0.0 7.0 0.7 138 7.1 11.96BOD5 <1.0, TKN <0.2, TSS <1EnviroServer-M MW Drain 2100 04/22/020.5 0.50 0.01 0.25 0.10 0.3563 31 0.01 0.0 7.0 1.2 149 6.8TSS <1; NH4 <0.02; BOD <1; TKN <0.2; QA duplicateEnviroServer-M MW Drain 2100 04/22/020.5 2.00 0.01 0.26 0.10 0.3660 31 0.01 0.0 7.0 1.2 149 6.8 12.02NH4 <0.02; BOD <1; TKN<0.2EnviroServer-M MW Drain 2100 05/21/020.5 2.00 0.01 8.19 0.20 8.3950 111 0.01 0.0 7.1 2.9 215 6.8 11.59BOD5<1.0, NH4 <0.02; BOD <1EnviroServer-M MW Drain 2100 06/24/020.5 0.50 0.01 3.39 0.30 3.6960 71 0.01 0.0 7.2 3.5 168 7.0 11.95TSS <1, NH4<0.02, BOD5<1.0EnviroServer-M MW Drain 2100 06/24/020.5 2.00 0.01 3.41 0.20 3.6160 61 0.01 0.0 7.2 3.5 168 7.0 QA duplicate, NH4<0.02, BOD5<1.0EnviroServer-M MW Drain 2100 08/27/020.5 1.00 0.01 1.68 0.10 1.7866 51 0.01 0.0 6.9 2.5 155 8.1 11.99BOD5 <1.0, NH4 <0.02, TKN <0.2EnviroServer-M MW Drain 2100 08/27/020.5 1.00 0.01 1.66 0.10 1.7666 51 0.01 0.0 6.9 2.5 155 8.1QA Duplicate, NH4 <0.02, BOD5 <1.0, TKN <0.2Appendix B: Innovative System Field Test DataPage B-23
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesEnviroServer-MMW Drain 2100 09/24/020.5 4.00 0.01 1.50 0.30 1.8066 41 0.01 0.0 7.0 3.3 152 7.9 12.08EnviroServer-MMW Drain 2100 09/24/020.5 5.00 0.05 1.49 0.10 1.5965 41 0.01 0.0 7.0 3.3 152 7.9QA Duplicate; NH4 < 0.02; BOD5 <1.0; TKN < 0.2EnviroServer-M MW Drain 2100 10/23/020.5 0.50 0.01 1.25 0.10 1.3566 41 0.01 0.0 7.0 3.1 144 8.2 11.13BOD5 <1.0, TSS<1 NH4 <0.02, TKN <0.2EnviroServer-M MW Drain 2100 10/23/020.5 0.50 0.01 1.28 0.30 1.5866 41 0.01 0.0QA Duplicate; BOD5 <1.0, TSS<1 NH4 <0.02EnviroServer-M MW Drain 2100 12/16/020.5 2.00 0.01 8.18 0.30 8.4854 101 0.01 0.0 7.2 3.1 222 8.1 11.97BOD5<1.0, NH4<0.02EnviroServer-M MW Drain 2100 02/24/030.5 2.00 0.03 1.15 0.10 1.2565 41 0.01 0.0 7.0 1.5 150 7.2 11.95BOD5<1.0, TKN <0.2EnviroServer-M MW Drain 2100 03/24/030.5 1.00 0.01 1.44 0.10 1.5466 41 0.01 0.0 7.1 2.0 155 6.9 12.01BOD5<1.0, NH4 <0.02, TKN <0.2EnviroServer-M MW Drain 2100 03/24/030.5 2.00 0.01 1.43 0.10 1.5366 41 0.01 0.0QA Duplicate; BOD5<1.0, NH4 <0.02, TKN <0.2EnviroServer-M MW Drain 2100 04/23/030.5 1.00 0.01 1.18 0.10 1.2866 41 0.01 0.0 7.0 1.8 152 6.7 12.05BOD5<1.0 NH4 <0.02, TKN <0.2EnviroServer-M MW Drain 2100 04/23/030.5 0.50 0.01 1.19 0.10 1.2966 41 0.01 0.0QA Dupl; BOD5<1.0, TSS <1, NH4 <0.02, TKN <0.2EnviroServer-M MW Drain 2100 06/23/030.5 1.00 0.01 1.68 0.10 1.7863 41 0.01 0.0 6.9 1.5 150 6.9 11.99BOD5<1.0 NH4<0.02, TKN<0.2EnviroServer-M MW Drain 2100 08/26/030.5 1.00 0.01 1.92 0.30 2.2269 51 0.01 0.0 7.1 3.1 167 8.4 11.97BOD5<1.0, NH4AsN<0.02EnviroServer-M MW Drain 2100 09/22/030.5 0.50 0.01 1.65 0.10 1.7568 51 0.01 0.0 7.0 2.8 156 8.4 11.99BOD5 <1.0, TSS<1, NH4AsN<0.02, TKN<0.2EnviroServer-M MW Drain 2100 09/22/030.5 0.50 0.01 1.66 0.10 1.7668 51 0.01 0.0QA Duplic; BOD5 <1.0, TSS<1, NH4<0.02, TKN<0.2EnviroServer-M MW Drain 2100 10/13/030.5 4.00 0.01 1.58 0.10 1.6868 51 0.01 0.0 7.0 6.0 160 8.0 12.03BOD5 <1.0 est, NH4AsN<0.02, TKN<0.2EnviroServer-M STE 07/30/01170.0 140.00 20.00 27.80 36.00 63.80 13.00 50 42 400.00 40,000 4.6 28,000 4.4 7.4 6.6 556 17.6EnviroServer-MSTE08/27/01310.0 190.00 12.50 28.60 33.00 61.60 11.90 22 26 2.50 42,000 4.6 42,000 4.6 6.4 3.8 477 19.7BOD5 toxic interference; Oil & Grease <5EnviroServer-M STE 09/24/01170.0 190.00 0.58 31.30 20.00 51.30 9.1462 35 2.50 26,000 4.4 24,000 4.4 7.3 3.4 500 17.0Oil & Grease <5EnviroServer-M STE 10/22/01230.0 190.00 2.50 34.40 19.00 53.40 11.60 19 49 2.50 110,000 5.0 110,000 5.0 6.5 2.1 516 16.5Oil & Grease <5EnviroServer-M STE 11/19/01260.0 370.00 43.00 6.30 76.00 82.30 13.40 196 4032,000 4.5 38,000 4.6 7.8 2.3 627 13.3EnviroServer-MSTE12/17/01500.0 460.00 20.00 21.40 68.00 89.40 19.40 105 39 8.00 240,000 5.4 240,000 5.4 7.2 2.3 548 10.7EnviroServer-MSTE01/29/02930.0 775.00 4.20 27.20 82.00 109.20 19.50 51 38 11.00 760,000 5.9 540,000 5.7 6.3 1.2 456 9.5BOD5 is estimateEnviroServer-M STE 02/25/02620.0 923.00 8.80 28.20 79.00 107.20 20.50 35 34 14.00 150,000 5.2 130,000 5.1 6.2 1.3 435 11.3EnviroServer-MSTE03/25/02220.0 392.00 5.00 20.70 43.00 63.70 14.40 26 24 2.50 98,000 5.0 100,000 5.0 6.5 2.1 376 13.6Oil & Grease <5EnviroServer-M STE 04/22/02590.0 1100.00 6.10 23.50 74.00 97.50 21.80 41 32 10.00 44,000 4.6 34,000 4.5 6.1 0.4 408 14.4EnviroServer-MSTE05/20/02700.0 1500.00 8.40 33.10 110.00 143.10 26.00 11 36 17.00 48,000 4.7 54,000 4.7 4.9 3.4 485 14.2BOD5 is est.EnviroServer-M STE 06/24/02200.0 1200.00 19.00 26.50 98.00 124.50 20.20 70 27 11.00 13,000 4.1 14,000 4.1 7.1 3.7 438 17.0EnviroServer-MSTE08/26/02330.0 260.00 0.68 31.80 24.00 55.80 11.40 22 34 2.50 46,000 4.7 36,000 4.6 6.8 3.8 415 17.2TSS, BOD5 is est., O&G <5EnviroServer-M STE 10/23/02300.0 350.00 5.60 34.20 29.00 63.20 13.708 38 5.00 420 2.6 2,200 3.3 5.8 3.6 438 13.0TSS is est.EnviroServer-M STE 12/16/02170.0 290.00 8.60 35.30 29.00 64.30 11.30 20 36 2.50 34,000 4.5 34,000 4.5 6.7 4.5 542 10.3O&G<5EnviroServer-M STE 02/25/03610.0 780.00 2.40 24.90 50.00 74.90 14.90 124 31 2.50 9,800 4.0 11,000 4.0 7.3 3.1 549 10.7O&G <5EnviroServer-M STE 04/23/03540.0 880.00 1.08 34.50 2.90 37.40 20.90 38 44 2.50 88,000 4.9 54,000 4.7 6.4 3.7 490 12.0BOD5 is est., O&G <5EnviroServer-M STE 06/23/03190.0 420.00 10.10 34.60 42.00 76.60 17.502 54 7.00 300,000 5.5 270,000 5.4 4.9 3.7 581 15.7EnviroServer-MSTE08/25/03400.0 1100.00 2.80 31.10 79.00 110.10 22.20 38 3556,000 4.7 24,000 4.4 6.8 1.1 458 20.6O&G cancelledEnviroServer-M STE 10/13/03560.0 1400.00 22.00 17.10 96.00 113.10 25.10 114 38 2.50 130,000 5.1 52,000 4.7 7.5 2.2 458 15.0O&G <5EnviroServer-V ESE 10/14/0215.0 22.00 3.40 0.88 4.90 5.78 0.60 124 4110 2.088 1.9 7.7 3.6 263 20.5Chloride is est.EnviroServer-V ESE 10/14/023.7 4.00 3.20 0.89 4.70 5.59 0.36 124 4120 2.178 1.9 8.0 3.6 240 21.7Chloride is est.EnviroServer-V MW Drain 2223 05/02/020.01 14.60 0.10 14.701807.2 8.7 813 10.9 8.51Well Development- TKN <0.2; NH4 <0.02EnviroServer-V MW Drain 2223 10/14/020.01 19.50 0.10 19.602801 0.01 0.0 7.2 6.7 999 12.3 9.81NH4 <0.02, TKN <0.2, Chloride is est.EnviroServer-V MW Drain 2223 10/29/020.01 19.70 0.10 19.802501 0.01 0.0 7.2 8.1 934 8.1 9.99BOD5, TSS, Alk cancelled, NH4 <0.02, TKN <0.2EnviroServer-V MW Drain 2223 12/09/020.01 19.30 0.10 19.401901 0.01 0.0 7.2 8.6 910 5.3 10.18alk., BOD5, TSS Cancelled; NH4 <0.02, TKN <0.2EnviroServer-V STE 10/14/023.5 5.00 5.20 0.96 7.50 8.46 0.60 155 5 2.50 600 2.8 460 2.7 8.3 5.1 283 15.4Chloride is est., O&G <5EnviroServer-V STE 12/11/021.7 3.00 0.02 22.20 1.40 23.60 0.94 160 10 2.50 140 2.1 110 2.0 8.4 7.0 521 7.2BOD5 is est., O&G <5FAST-J FEP 01/22/0219.0 4.00 77.00 0.10 80.00 80.10 9.90 418 397,400 3.9 9,600 4.0 8.7 5.5 1029 3.8FAST-JFEP02/25/0257.0 19.00 65.00 8.50 78.00 86.50 11.70 392 38840,000 5.9 640,000 5.8 8.5 9.2 1020 5.8FAST-JFEP03/27/0276.0 10.00 23.00 65.90 32.00 97.90 13.60 39 37400 2.6 400 2.6 6.6 1.1 913 6.6FAST-JFEP04/22/0240.0 36.00 32.00 44.30 42.00 86.30 12.80 132 442,800 3.4 3,000 3.5 7.7 5.3 897 9.9FAST-JFEP05/21/0222.0 20.00 9.80 65.70 16.00 81.70 12.10 20 388,600 3.9 8,400 3.9 6.7 3.4 886 10.8FAST-JFEP06/18/0233.0 19.00 3.10 51.50 13.00 64.50 12.60 15 355,000 3.7 5,400 3.7 6.5 3.2 650 14.5FAST-JFEP07/24/0242.0 32.00 68.00 0.03 82.00 82.03 13.90 386 47130,000 5.1 130,000 5.1 8.0 1.8 1021 18.6FAST-JFEP07/24/0242.0 34.00 68.00 0.03 81.00 81.03 13.70 390 45500,000 5.7 500,000 5.7 8.0 1.8 1021 18.6FAST-JFEP08/21/02110.0 43.00 85.00 0.04 100.00 100.04 14.90 462 531.3E+06 6.1 950,000 6.0 8.0 1.1 1150 17.5FAST-JFEP10/23/0210.0 9.00 0.48 48.60 6.60 55.20 10.40 116 5644,000 4.6 44,000 4.6 7.7 4.0 772 10.3FAST-JFEP11/11/0232.0 66.00 6.30 46.90 19.00 65.90 12.90 109 607,000 3.8 5,800 3.8 7.6 3.0 839 7.9FAST-JFEP12/16/0244.0 35.00 2.00 65.40 11.00 76.40 14.20 10 614,000 3.6 1,600 3.2 6.3 4.5 906 7.0FAST-JFEP01/27/0329.0 30.00 3.70 60.50 12.00 72.50 11.70 20 5616,000 4.2 14,000 4.1 6.7 4.4 800 7.2FAST-JFEP03/24/0347.0 24.00 11.20 45.50 20.00 65.50 14.60 26 5542,000 4.6 60,000 4.8 6.7 6.5 722 7.8FAST-JFEP05/21/0337.0 42.00 4.80 39.60 12.00 51.60 13.90 30 547,000 3.8 36,000 4.6 6.5 5.5 642 11.0FAST-JFEP05/21/0336.0 40.00 4.50 39.10 13.00 52.10 13.50 28 537,000 3.8 9,000 4.0 6.5 5.4 625 10.6QA DuplicateFAST-J FEP 07/28/0365.0 68.00 67.00 9.25 90.00 99.25 12.20 441 5216,000 4.2 12,000 4.1 8.1 3.1 1161 19.1FAST-JFEP09/22/0311.0 12.00 11.50 50.10 11.00 61.10 10.606 46350,000 5.5 360,000 5.6 6.3 3.1 658 15.4FAST-JFEP01/26/0411.0 17.00 1.21 20.40 4.60 25.00 3.7228 141,380 3.1 1,100 3.0 7.5 4.8 305 7.3FAST-JFEP01/26/049.7 16.00 1.35 20.20 4.10 24.30 3.7827 161,480 3.2 1,080 3.0 7.5 4.9 307 7.5FAST-JFEP04/12/0426.0 32.00 15.00 38.70 23.00 61.70 12.00 46 39840,000 5.9 860,000 5.9 7.1 4.8 640 13.9Appendix B: Innovative System Field Test DataPage B-24
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesFAST-JFEP04/12/0427.0 33.00 15.00 37.00 22.00 59.00 12.50 46 391.1E+06 6.0 180,000 5.3 7.2 5.0 637 13.7QA DuplicateFAST-J MW Drain 2045 01/22/021.0 11.00 0.00 9.08 0.10 9.18 0.1016 151 0.01 0.0 6.8 8.6 169 7.2 6.90BOD5 is estimate, TKN <0.2FAST-J MW Drain 2045 02/25/020.5 4.00 0.00 15.50 0.30 15.80 0.0614 301 0.01 0.0 6.5 9.1 305 7.1 6.58 BOD <1FAST-J MW Drain 2045 03/25/020.5 4.00 0.00 13.80 0.30 14.10 0.1022 211 0.01 0.0 6.6 8.9 277 5.8 6.22 BOD5 <1.0FAST-J MW Drain 2045 03/25/020.5 2.00 0.00 13.70 0.20 13.90 0.1022 211 0.01 0.0 6.6 8.9 277 5.8 QA duplicate, BOD5 <1.0FAST-J MW Drain 2045 04/22/020.5 3.00 0.01 24.40 0.50 24.9036 311 0.01 0.0 6.5 9.0 439 6.3 6.18 NH4 <0.02; BOD <1FAST-J MW Drain 2045 05/21/020.5 3.00 0.01 27.80 0.30 28.1035 231 0.01 0.0 6.6 6.3 413 6.9 5.54 BOD5<1.0, NH4 <0.02FAST-J MW Drain 2045 05/21/020.5 2.00 0.01 27.70 0.10 27.8035 221 0.01 0.0 6.6 6.3 413 6.9 QA duplicate - TKN <0.2, BOD5<1.0, NH4 <0.02FAST-J MW Drain 2045 06/17/022.00 0.01 28.10 0.30 28.4030 191 0.01 0.0 6.4 6.7 375 8.0 5.83 NH4 <0.02FAST-J MW Drain 2045 06/17/023.00 0.01 28.00 0.30 28.3030 181 0.01 0.0 6.4 6.7 375 8.0 QA Duplicate; NH4 <0.02FAST-J MW Drain 2045 07/24/020.5 2.00 0.01 33.10 0.50 33.6027 211 0.01 0.0 6.6 6.1 394 9.7 6.29 NH4<0.02; BOD <1FAST-J MW Drain 2045 07/24/020.5 3.00 0.01 32.80 0.40 33.2027 211 0.01 0.0 6.6 6.1 394 9.7QA Duplicate; N<0.02; BOD <1FAST-J MW Drain 2045 08/19/020.5 2.00 0.01 53.70 0.10 53.8020 261 0.01 0.0 6.5 3.8 512 10.5 6.73TKN <0.2, NH4 <0.02FAST-J MW Drain 2045 08/19/021.2 2.00 0.01 54.00 0.10 54.1020 261 0.01 0.0 6.5 3.8 512 10.5QA Duplicate; TKN <0.2, BOD5 is est., NH4 <0.02FAST-J MW Drain 2045 09/23/020.5 2.00 0.01 82.80 0.20 83.0019 301 0.01 0.0 6.4 3.4 757 11.9 7.11NH4 > 0.2, BOD5 >1.0FAST-J MW Drain 2045 09/23/020.5 2.00 0.00 82.40 0.10 82.5021 301 0.01 0.0 6.4 3.4 757 11.9QA Duplicate; NH4 >0.02, BOD5 >1, TKN >0.2FAST-J MW Drain 2045 10/23/020.5 2.00 0.01 67.20 0.10 67.3020 261 0.01 0.0 6.3 5.8 632 10.9 7.41BOD5 <1.0 NH4 <0.02, TKN <0.2FAST-J MW Drain 2045 11/13/020.5 1.00 0.03 72.40 0.10 72.5021 281 0.01 0.0 6.4 5.9 637 10.1 7.54BOD5 <1.0, TKN <0.2FAST-J MW Drain 2045 12/16/020.5 1.00 0.01 85.00 0.10 85.1018 401 0.01 0.0 6.4 6.2 869 8.9 7.58BOD5<1.0, NH4<0.02, TKN<0.2FAST-J MW Drain 2045 12/16/020.5 1.00 0.01 84.70 0.10 84.80 0.0418 411 0.01 0.0QA Duplicate; BOD5<1.0, NH4<0.02, TKN<0.2FAST-J MW Drain 2045 01/27/030.5 2.00 0.01 85.10 0.10 85.2011 531 0.01 0.0 6.6 6.6 882 7.4 7.35BOD5 <1.0, NH4 <0.02, TKN <0.2FAST-J MW Drain 2045 01/27/030.5 2.00 0.02 85.40 0.10 85.5011 531 0.01 0.0QA Duplicate; BOD5 <1.0, TKN <0.2FAST-J MW Drain 2045 03/24/030.5 1.00 0.01 79.00 0.30 79.3012 511 0.01 0.0 6.5 7.2 842 6.7 6.94BOD5<1.0, NH4 <0.02FAST-J MW Drain 2045 05/20/030.5 2.00 0.01 69.50 0.10 69.6012 531 0.01 0.0 6.6 6.8 784 7.0 6.63BOD5<1.0, NH4<0.02, TKN<0.2FAST-J MW Drain 2045 05/20/030.5 2.00 0.01 70.40 0.10 70.5012 521 0.01 0.0QA Duplicate; BOD5<1.0, NH4<0.02, TKN<0.2FAST-J MW Drain 2045 06/23/030.5 1.00 0.03 60.90 0.10 61.0012 521 0.01 0.0 6.4 6.7 730 7.9 7.00BOD5<1.0, TKN<0.2FAST-J MW Drain 2045 06/23/030.5 2.00 0.02 60.80 0.10 60.9012 521 0.01 0.0QA Duplicate, BOD5<1.0, TKN<0.2FAST-J MW Drain 2045 07/21/030.5 2.00 0.02 52.60 0.40 53.0014 451 0.01 0.0 6.6 7.8 658 9.5 7.17BOD5<1.0FAST-J MW Drain 2045 09/23/030.5 1.00 0.01 50.80 0.10 50.9016 411 0.01 0.0 6.6 8.0 605 10.8 7.78BOD5<1.0, NH4AsN<0.02, TKN<0.2FAST-J MW Drain 2045 09/23/030.5 1.00 0.01 50.80 0.10 50.9016 411 0.01 0.0 6.6 8.0 605 10.8 7.78TKN<0.2, NH4AsN<0.02, BOD5<1FAST-J MW Drain 2045 04/12/040.01 52.00 0.20 52.20341 0.01 0.0 6.6 8.8 589 6.6 6.47NH4<0.02FAST-J MW Drain 2045 04/12/040.01 51.90 0.10 52.00351 0.01 0.0QA Duplicate; NH4<0.02, TKN<0.2FAST-J STE 01/22/02300.0 75.00 66.00 0.00 85.00 85.00 11.20 350 35 88.00 880,000 5.9 860,000 5.9 9.1 0.8 899 4.8FAST-JSTE02/25/02240.0 98.00 49.00 0.02 68.00 68.02 10.10 388 28 60.00 150,000 5.2 100,000 5.0 9.3 0.7 773 5.8FAST-JSTE03/27/02480.0 115.00 83.00 0.00 98.00 98.00 13.70 338 39 70.00 4,000 3.6 2,000 3.3 8.7 0.6 1105 6.2FAST-JSTE04/22/02340.0 99.00 85.00 0.04 89.00 89.04 12.10 375 41 60.00 180,000 5.3 140,000 5.1 8.4 0.9 994 9.8FAST-JSTE05/21/02320.0 73.00 84.00 0.03 100.00 100.03 12.90 375 38 86.00 8.2E+06 6.9 7.2E+06 6.9 8.8 0.6 1094 12.1FAST-JSTE06/18/02890.0 127.00 82.00 0.06 130.00 130.06 16.10 378 43 107.00 6.8E+06 6.8 6.8E+06 6.8 7.0 0.6 982 15.0FAST-JSTE07/24/02340.0 97.00 95.00 0.01 110.00 110.01 14.80 455 58 69.00 5.4E+07 7.7 5.8E+07 7.8 8.0 0.6 1129 19.6FAST-JSTE08/21/02520.0 76.00 78.00 0.02 110.00 110.02 14.20 468 62 44.00 3.9E+07 7.6 2.7E+07 7.4 7.1 0.3 1238 18.1FAST-JSTE10/23/02740.0 130.00 74.00 0.03 100.00 100.03 16.90 529 59 26.00 5.0E+08 8.7 3.5E+08 8.5 6.6 1.0 1275 10.4BOD5, TSS is est.FAST-J STE 11/11/02530.0 240.00 104.00 0.01 140.00 140.01 17.60 535 75 92.00 7.2E+06 6.9 5.8E+06 6.8 7.8 1.4 1314 7.0FAST-JSTE12/16/02430.0 82.00 0.70 0.02 97.00 97.02 13.40 418 49 27.00 860,000 5.9 600,000 5.8 7.3 0.8 1205 6.1FAST-JSTE01/27/03400.0 89.00 39.00 0.01 120.00 120.01 13.80 479 58 48.00 600,000 5.8 400,000 5.6 8.1 0.9 1190 6.1FAST-JSTE03/24/03320.0 68.00 89.00 0.01 130.00 130.01 15.30 454 57 32.00 400,000 5.6 440,000 5.6 7.8 1.1 1157 15.7FAST-JSTE05/21/03620.0 91.00 86.00 0.01 140.00 140.01 19.00 418 49 58.00 1.9E+06 6.3 1.4E+06 6.1 6.5 0.8 1147 10.7FAST-JSTE07/28/03530.0 160.00 106.00 0.04 130.00 130.04 15.90 480 59 55.00 660,000 5.8 420,000 5.6 6.6 0.9 1325 20.1FAST-JSTE09/22/03280.0 160.00 51.00 0.01 66.00 66.01 8.26 244 33 162.00 1.2E+07 7.1 1.8E+07 7.3 6.7 0.7 672 16.4FAST-JSTE01/26/04140.0 75.00 27.00 0.01 36.00 36.01 5.0197 19 30.00 128,000 5.1 114,000 5.1 8.6 2.2 448 11.9FAST-JSTE04/12/04320.0 87.00 57.00 0.00 78.00 78.00 13.20 302 42 60.00 1.3E+07 7.1 1.6E+06 6.2 7.8 1.1 862 16.0nitrite<0.0050FAST-P FEC 02/07/0126.0 10.00 51.00 0.63 59.00 59.63 10.60 250 2850,000 4.7 42,000 4.6 8.1 5.1 774 10.0FAST-PFEC03/05/0114.0 11.00 21.00 27.80 24.00 51.80 10.90 106 2658 1.871 1.9 7.7 3.6 720 10.5QA duplicateFAST-P FEC 03/05/0113.0 8.00 21.00 28.10 24.00 52.10 11.20 105 27132 2.1 106 2.0 7.7 3.6 720 10.5FAST-PFEC04/02/0126.0 22.00 21.00 11.00 27.00 38.00 8.66 116 362,800 3.4 2,200 3.3 7.3 1.5 595 12.5FAST-PFEC04/30/0126.0 12.00 12.00 26.40 22.00 48.40 10.70 32 302,200 3.3 2,200 3.3 6.8 2.5 530 13.7QA duplicate; NO2 is estimateFAST-P FEC 04/30/0130.0 16.00 13.00 25.90 21.00 46.90 10.10 34 313,000 3.5 3,400 3.5 6.8 2.5 530 13.7NO3 is estimate.FAST-P FEC 06/04/0111.0 2.00 5.60 25.80 9.00 34.80 10.30 10 311,600 3.2 460 2.7 6.4 3.1 473 15.9FAST-PFEC08/06/016.9 6.00 9.30 4.16 12.00 16.16 10.80 91 2513,000 4.1 8,400 3.9 7.4 1.8 450 19.4FAST-PFEP02/07/0140.0 8.00 51.00 0.72 53.00 53.72 10.80 25268,000 4.8 70,000 4.8 8.2 6.9 818 10.2FAST-PFEP03/05/0113.0 9.00 21.00 27.70 24.00 51.70 11.30 10749 1.769 1.8 7.8 4.2 680 11.8FAST-PFEP04/02/0125.0 27.00 21.00 8.85 26.00 34.85 8.64 1194,800 3.7 6,200 3.8 7.5 2.0 571 12.9FAST-PFEP04/30/0134.0 16.00 13.00 23.90 22.00 45.90 10.10 4016,000 4.2 19,000 4.3 6.7 1.2 502 14.0FAST-PFEP06/04/0112.0 2.00 4.90 26.80 8.90 35.70 10.609 31240 2.4 100 2.0 6.4 3.5 497 15.9FAST-PFEP07/09/0130.0 12.00 5.40 18.70 12.00 30.70 14.40 52 2750,000 4.7 37,000 4.6 7.3 5.2 840 19.2Appendix B: Innovative System Field Test DataPage B-25
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesFAST-PFEP09/04/0120.0 13.00 4.70 18.60 10.00 28.60 10.60 28 2868,000 4.8 52,000 4.7 7.0 3.3 433 18.0FAST-PFEP10/01/0134.0 17.00 3.60 25.40 8.80 34.20 11.20 14 2770,000 4.8 72,000 4.9 6.6 3.0 460 15.7FAST-PFEP10/29/0134.0 27.00 24.00 0.92 30.00 30.92 11.00 168 2934,000 4.5 30,000 4.5 7.7 3.3 560 13.8FAST-PFEP11/26/0141.0 18.00 6.90 12.90 13.00 25.90 9.7064 266,200 3.8 4,600 3.7 7.5 2.8 499 9.1FAST-PFEP01/08/0228.0 6.00 21.00 5.20 28.00 33.20 10.30 128 288,400 3.9 4,000 3.6 7.5 4.8 498 11.6FAST-PFEP03/05/0217.0 8.00 5.40 10.90 6.40 17.30 12.70 66 311,500 3.2 1,600 3.2 7.3 4.2 455 11.9FAST-PFEP04/30/023.5 7.00 0.93 20.80 3.50 24.30 12.30 18 3080 1.9 120 2.1 7.9 5.3 458 15.7FAST-PFEP07/08/0229.0 20.00 11.30 0.67 17.00 17.67 10.00 100 305,800 3.8 7,200 3.9 7.3 2.5 397 18.1FAST-PFEP09/09/0243.0 12.00 6.50 13.30 14.00 27.30 11.40 44 31940 3.0 1,100 3.0 7.3 4.5 398 14.0FAST-PFEP10/28/02170.0 9.00 15.00 6.57 22.00 28.57 11.50 172 395,400 3.7 6,400 3.8 7.7 2.2 575 13.6FAST-PFEP01/06/0337.0 21.00 39.00 1.31 46.00 47.31 9.66 274 3313,000 4.1 12,000 4.1 8.0 4.7 766 10.4FAST-PFEP03/17/0329.0 32.00 23.00 3.76 34.00 37.76 11.00 175 39102,000 5.0 88,000 4.9 7.6 1.2 622 10.6FAST-PFEP05/05/0329.0 29.00 45.00 1.66 47.00 48.66 10.60 238 374,000 3.6 4,200 3.6 7.9 3.7 716 11.7FAST-PFEP07/14/0395.0 28.00 35.00 0.11 41.00 41.11 12.90 204 4215,000 4.2 14,000 4.1 7.7 3.1 649 20.0BOD5 is est.FAST-P FEP 09/10/0394.0 10.00 30.00 1.13 41.00 42.13 11.30 182 3574,000 4.9 62,000 4.8 7.5 1.5 601 17.5BOD5 is est.FAST-P FEP 11/05/0341.0 3.00 21.00 1.83 28.00 29.83 11.30 159 3552,000 4.7 48,000 4.7 7.7 3.6 538 11.1FAST-PMW Drain 2026 02/07/011.0 35.00 0.03 0.01 0.30 0.31 0.3076 72 0.32 0.3 7.3 7.1 212 6.9 5.40BOD5 is estimateFAST-P MW Drain 2026 02/07/011.0 6.00 0.02 0.01 0.20 0.21 0.3076 72 0.32 0.3 7.3 7.1 212 6.9duplicate QA;FAST-P MW Drain 2026 03/07/011.8 1.00 0.06 0.01 0.20 0.21 0.2976 72 0.32 0.3 7.7 4.3 238 8.2 2.95BOD5 est. Lab report actual bacteria values are zero.FAST-P MW Drain 2026 04/04/010.0 0.00 0.05 0.01 0.30 0.31 0.2882 72 0.32 0.3 7.4 6.8 231 6.3 3.60FAST-PMW Drain 2026 04/04/010.0 0.00 0.06 0.01 0.30 0.31 0.2882 82 0.32 0.3 7.4 6.8 231 6.3QA duplicateFAST-P MW Drain 2026 05/02/010.0 0.00 0.05 0.01 0.20 0.21 0.2980 72 0.32 0.3 7.4 5.7 225 7.1 2.88FAST-PMW Drain 2026 05/02/010.0 0.00 0.05 0.01 0.30 0.31 0.2880 72 0.32 0.3 7.4 5.7 225 7.1QA duplicateFAST-P MW Drain 2026 06/06/010.0 0.00 0.05 0.00 0.10 0.10 0.2983 82 0.32 0.3 7.5 7.0 236 8.9 3.96nitrate < 0.005; TKN <0.2FAST-P MW Drain 2026 07/10/011.0 4.00 0.06 0.01 0.40 0.41 0.2987 81 0.01 0.0 7.4 7.5 239 10.1 4.50BOD5 is estimateFAST-P MW Drain 2026 08/07/010.0 3.00 0.05 0.01 0.40 0.41 0.2889 91 0.01 0.0 7.6 3.5 244 11.3 4.79FAST-PMW Drain 2026 09/05/010.0 4.00 0.05 0.00 0.30 0.30 0.3092 91 0.01 0.0 7.6 8.5 252 11.9 5.00FAST-PMW Drain 2026 10/03/010.0 3.00 0.05 0.01 0.30 0.31 0.2995 101 0.01 0.0 7.3 0.9 235 12.2 4.92FAST-PMW Drain 2026 10/03/010.0 2.00 0.06 0.01 0.20 0.21 0.2994 101 0.01 0.0 7.3 0.9 235 12.2QA Duplicate;FAST-P MW Drain 2026 10/30/010.0 1.00 0.07 0.010.3096 91 0.01 0.0 7.4 0.6 240 10.7 4.86TKN cancelled, samples were dumpedFAST-P MW Drain 2026 11/27/011.1 0.00 0.06 0.00 0.30 0.30 0.3097 101 0.01 0.0 7.3 7.5 265 8.6 5.69BOD5 is estimate.FAST-P MW Drain 2026 11/27/010.0 0.00 0.06 0.00 0.50 0.50 0.3097 101 0.01 0.0QA DuplicateFAST-P MW Drain 2026 01/08/021.2 2.00 0.08 0.00 0.30 0.30 0.3095 112 0.32 0.3 7.5 8.5 272 8.4 3.61FAST-PMW Drain 2026 03/04/021.2 1.00 0.10 0.00 0.30 0.30 0.3095 112 0.32 0.3 7.5 6.2 283 6.8 5.65FAST-PMW Drain 2026 04/30/020.5 2.00 0.09 0.00 1.40 1.4081 131 0.01 0.0 7.2 2.0 303 7.1 5.62BOD <1FAST-P MW Drain 2026 06/04/020.5 1.00 0.07 0.00 0.30 0.3082 131 0.01 0.0 7.5 2.5 264 10.5 4.05Nitrate/nitrite <0.005, BOD5<1.0FAST-P MW Drain 2026 07/08/020.5 0.50 0.05 0.00 0.30 0.3090 142 0.32 0.3 7.5 6.2 248 9.5 5.57Nitrate/nitrite <0.005, TSS <1, BOD5<1.0FAST-P MW Drain 2026 09/11/020.5 1.00 0.08 0.01 0.10 0.1188 151 0.01 0.0 7.4 4.9 265 12.6 5.25BOD5<1.0, TKN<0.2FAST-P MW Drain 2026 10/29/020.5 1.00 0.06 0.02 0.40 0.4294 151 0.01 0.0 7.6 6.5 270 10.6 5.20BOD5<1.0FAST-P MW Drain 2026 11/18/020.5 0.50 0.07 0.01 0.30 0.3194 161 0.01 0.0 7.4 6.7 305 10.5 5.12BOD5 <1.0, TSS<1FAST-P MW Drain 2026 01/07/031.3 1.00 0.02 0.10 0.30 0.4065 157.3 5.5 216 8.6 4.67BOD5 is est., pH is est.FAST-P MW Drain 2026 03/18/030.5 0.50 0.04 0.00 0.20 0.2088 172 0.32 0.3 7.6 8.9 279 6.7 5.74BOD5<1.0, TSS<1, Nitrate-Nitrite <0.0050FAST-P MW Drain 2026 03/18/030.5 0.50 0.03 0.00 0.20 0.2088 172 0.32 0.3QA Duplicate; BOD5<1.0, TSS<1, NO3 <0.0050FAST-P MW Drain 2026 05/05/030.5 0.50 0.03 0.00 0.10 0.1090 1748,000 4.7 70,000 4.8 7.4 0.6 282 6.7 5.60BOD5<1.0, TSS <1, Nitrate <0.005, TKN <0.2FAST-P MW Drain 2026 06/02/030.5 0.50 0.04 0.00 0.30 0.3089 182 0.32 0.3 7.6 5.5 292 8.8 5.60BOD5<1.0, TSS<1, Nitrate<0.0050FAST-P MW Drain 2026 07/15/030.5 0.50 0.07 0.02 0.20 0.0288 172 0.32 0.3 7.6 8.4 280 9.9 5.58BOD5<1.0, TSS<1FAST-P MW Drain 2026 07/15/032 0.32 0.3QA Duplicate for bacteria only.FAST-P MW Drain 2026 09/10/032.0 0.50 0.04 1.31 0.30 1.6184 242 0.32 0.3 7.5 7.5 306 11.2 5.78TSS<1FAST-P MW Drain 2026 11/05/030.5 0.50 0.01 2.08 0.30 2.38180 232 0.32 0.3 7.3 5.7 314 10.4 5.71BOD5<1.0, TSS<1, NH4<0.02FAST-P STE 02/07/01270.0 34.00 24.00 0.04 58.00 58.04 10.20 15020.00 320,000 5.5 480,000 5.7 7.4 0.7 446 13.5FAST-PSTE03/05/01190.0 38.00 15.00 0.03 49.00 49.03 10.00 139195.00 800,000 5.9 820,000 5.9 8.4 0.8 438 14.9FAST-PSTE04/02/01240.0 23.00 13.00 0.09 42.00 42.09 6.348915.00 60,000 4.8 40,000 4.6 7.2 0.8 345 19.2FAST-PSTE04/30/01440.0 30.00 40.00 0.04 58.00 58.04 7.09 18223.00 96,000 5.0 100,000 5.0 7.4 0.9 537 16.8FAST-PSTE06/04/01390.0 32.00 43.00 0.14 53.00 53.14 8.13 197 29 20.00 300,000 5.5 140,000 5.1 8.0 1.1 575 19.0Vents drilled top of tank-odors/other process probsFAST-P STE 07/09/01400.0 37.00 36.00 0.03 53.00 53.03 12.30 206 24 17.00 1.0E+06 6.0 1.1E+06 6.0 7.6 0.9 548 21.3FAST-PSTE08/06/01400.0 50.00 36.00 0.02 46.00 46.02 8.39 186 23 23.00 78,000 4.9 92,000 5.0 7.4 1.3 513 20.4FAST-PSTE09/04/01360.0 160.00 42.00 0.01 57.00 57.01 8.44 179 26 37.00 1.3E+06 6.1 1.3E+06 6.1 7.9 0.6 553 20.3FAST-PSTE10/01/01200.0 23.00 33.00 0.03 44.00 44.03 6.27 152 18 23.00 1.1E+06 6.0 980,000 6.0 7.9 0.8 404 21.4FAST-PSTE10/29/01560.0 213.00 39.00 0.18 68.00 68.18 18.90 295 24 17.00 720,000 5.9 480,000 5.7 8.2 0.8 746 19.9FAST-PSTE11/26/01320.0 35.00 46.00 0.03 57.00 57.03 8.60 220 42 20.00 38,000 4.6 52,000 4.7 8.4 0.5 633 12.9FAST-PSTE01/08/02350.0 63.00 51.00 0.00 64.00 64.00 11.00 236 24 65.00 500,000 5.7 420,000 5.6 7.5 1.4 652 17.5FAST-PSTE03/05/02270.0 32.00 56.00 0.00 66.00 66.00 13.30 255 27 16.00 58,000 4.8 68,000 4.8 7.5 0.8 696 16.9FAST-PSTE04/30/02280.0 80.00 51.00 0.02 62.00 62.02 12.60 223 26 55.00 58,000 4.8 70,000 4.8 7.1 1.4 741 18.2FAST-PSTE07/08/021600.0 1400.00 22.00 0.05 47.00 47.05 7.96 180 28 110.00 190,000 5.3 220,000 5.3 6.8 0.7 464 22.3BOD5 is estimateAppendix B: Innovative System Field Test DataPage B-26
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesFAST-PSTE09/09/02440.0 340.00 63.00 0.03 84.00 84.03 13.10 278 36 63.00 120,000 5.1 140,000 5.1 7.6 0.5 787 19.0TSS, NH4 is est.FAST-P STE 10/28/02470.0 400.00 37.00 0.01 48.00 48.01 10.60 228 32 11.00 360,000 5.6 340,000 5.5 6.8 0.7 599 19.6TSS is est.FAST-P STE 01/06/03680.0 730.00 39.00 0.26 50.00 50.26 9.90 252 28 74.00 500,000 5.7 440,000 5.6 8.4 1.2 661 16.7FAST-PSTE03/17/033300.0 2400.00 39.00 0.03 80.00 80.03 15.00 556 43 310.00 800 2.9 800 2.9 6.8 0.5 1018 14.4BOD5, cond. is est.FAST-P STE 05/05/03660.0 700.00 26.00 0.12 54.00 54.12 6.87 185 23 126.00 110,000 5.0 66,000 4.8 7.2 1.3 529 18.3FAST-PSTE07/14/03770.0 1200.00 25.00 0.01 40.00 40.01 13.50 140 26 246.00 420,000 5.6 420,000 5.6 6.8 0.5 460 23.3FAST-PSTE09/10/03700.0 1300.00 39.00 0.03 47.00 47.03 8.86 194 24 175.00 680,000 5.8 680,000 5.8 6.8 0.9 559 22.5FAST-PSTE11/05/03450.0 2900.00 33.00 0.03 64.00 64.03 10.40 184 231.4E+06 6.1 920,000 6.0 6.7 1.1 416 15.1BOD5 is est., O&G voidFAST-R FEP 12/17/0112.0 7.00 3.60 39.80 6.10 45.90 5.9029 24720 2.9 740 2.9 7.1 4.7 520 12.1FAST-RFEP01/15/025.5 61.00 3.20 39.00 4.40 43.40 5.1518 2312,000 4.1 7,600 3.9 6.9 3.8 453 11.3FAST-RFEP02/12/021.8 1.00 5.20 51.20 6.20 57.40 5.2016 30140 2.1 100 2.0 6.8 4.8 565 9.8BOD5 is estimate.FAST-R FEP 03/12/023.2 2.00 1.30 45.50 3.70 49.20 6.9032 3140 1.632 1.5 6.9 4.7 597 11.6FAST-RFEP04/09/021.3 1.00 0.32 37.30 2.20 39.50 6.2546 2760 1.860 1.8 7.1 5.9 512 14.7BOD5 is est.FAST-R FEP 05/07/0229.0 5.00 1.11 52.60 2.40 55.00 3.408 2842 1.644 1.6 6.5 4.4 569 14.5FAST-RFEP06/11/0210.0 2.00 0.21 36.20 2.80 39.00 7.3430 25100 2.0 100 2.0 7.1 4.5 475 18.3FAST-RFEP07/16/0215.0 6.00 5.20 40.40 7.70 48.10 9.1752 34840 2.9 1,000 3.0 7.0 2.6 585 20.5FAST-RFEP08/14/0224.5 17.00 7.40 19.60 15.00 34.60 9.1358 3011,000 4.0 10,000 4.0 7.1 2.0 578 20.6TKN is est., BOD5 >49FAST-R FEP 09/10/0216.0 10.00 2.20 27.60 5.60 33.20 6.8570 2425,000 4.4 28,000 4.4 7.2 2.8 463 18.5FAST-RFEP10/07/0212.0 6.00 0.15 20.00 3.20 23.20 7.83 118 22360 2.6 210 2.3 7.5 2.7 459 16.9chloride is est.FAST-R FEP 12/18/025.1 3.00 0.20 35.30 4.70 40.00 6.9279 254,400 3.6 1,500 3.2 6.9 4.6 575 13.6pH is est.FAST-R FEP 02/24/036.9 5.00 1.60 32.00 3.30 35.30 7.3773 2212,000 4.1 9,800 4.0 7.3 2.5 510 11.3FAST-RFEP04/07/0310.0 6.00 5.80 23.30 8.90 32.20 7.57 108 245,400 3.7 2,400 3.4 7.5 2.7 531 15.3FAST-RFEP06/25/037.0 2300.00 1.00 24.30 3.20 27.50 8.1384 305,200 3.7 5,200 3.7 7.3 2.2 527 17.9FAST-RFEP08/13/0315.0 4.00 1.90 27.00 2.70 29.70 9.5793 424,800 3.7 3,800 3.6 7.4 3.4 643 20.7FAST-RFEP10/06/0316.0 4.00 2.30 28.30 3.50 31.80 10.00 63 37480 2.7 420 2.6 7.3 2.1 566 19.0BOD5>16FAST-R FEP 01/12/0417.0 2.00 21.00 0.78 21.00 21.78 10.20 250 362,040 3.3 2,380 3.4 7.7 3.3 675 10.0FAST-RFEP04/12/0417.0 3.00 33.00 0.23 39.00 39.23 10.50 246 257.3 3.0 649 13.9Fecal, e.coli void due to laboratory error.FAST-R LE 12/17/012.30 44.10 3.60 47.70 0.44257.1 5.6 270 4.6FAST-RLE01/15/022.6 5.00 0.10 42.00 1.50 43.50 1.0610 25120 2.1 130 2.1 6.0 4.5 452 4.7FAST-RLE02/12/021.7 2.00 0.20 58.10 1.00 59.10 1.209 334 0.610 1.0 6.2 6.4 581 3.4BOD5 is estimateFAST-R LE 03/12/020.5 3.00 0.00 44.00 0.60 44.60 1.8012 3110 1.04 0.6 6.7 6.8 539 3.7BOD5 <1.0FAST-R LE 04/09/020.5 2.00 0.02 37.10 1.20 38.30 3.2414 3010 1.06 0.8 6.2 5.5 294 8.8BOD5 <1.0FAST-R LE 05/07/020.5 23.00 0.03 52.10 1.10 53.20 2.5011 316 0.88 0.9 6.3 6.9 503 9.2BOD5 <1.0FAST-R LE 06/11/029.00 0.04 40.50 1.70 42.20 2.9914 276 0.810 1.0 6.1 5.9 490 13.8FAST-RLE07/16/021.2 14.00 0.04 44.00 1.20 45.20 3.4418 34150 2.2 150 2.2 5.9 3.7 534 17.8FAST-RLE08/14/020.5 14.00 0.04 20.90 2.10 23.00 4.4323 30140 2.1 110 2.0 6.2 6.1 559 17.6TKN is est., BOD5 <1FAST-R LE 09/10/021.2 7.00 0.02 32.50 1.20 33.70 4.7735 26440 2.6 350 2.5 6.4 3.6 448 14.8BOD5 is est.FAST-R LE 10/07/020.5 5.00 0.05 18.30 1.40 19.70 5.4596 2320 1.314 1.1 6.7 4.9 416 11.5BOD5 <1, chloride is est.FAST-R LE 12/18/020.5 9.00 0.07 39.30 0.80 40.10 6.0762 2730 1.514 1.1 6.6 7.0 582 5.3BOD5<1.0, pH is est.FAST-R LE 02/24/030.5 2.00 0.07 33.30 0.80 34.10 6.8167 2232 1.526 1.4 6.8 6.0 517 3.6BOD5<1.0FAST-R LE 04/07/03No samples, all tests CANCELLEDFAST-R LE 04/09/030.50.03 28.70 1.10 29.80 6.7670 258 0.96 0.8 6.7 6.2 508 7.2BOD5<1.0, TSS void, TKN is est.FAST-R LE 06/25/031.7 2.00 0.02 30.80 0.90 31.70 6.9657 2980 1.988 1.9 6.6 5.2 517 15.5FAST-RLE08/13/033.9 3.00 0.03 27.50 0.10 27.60 8.8293 416 0.84 0.6 6.9 4.9 658 17.5BOD5 is est., TKN<0.2FAST-R LE 10/06/030.5 14.00 0.02 34.00 0.80 34.80 8.0646 372 0.32 0.3 6.8 3.4 577 15.2BOD5 <1.0FAST-R LE 01/12/042.8 18.00 0.41 30.50 1.20 31.70 8.50 108 3810 1.04 0.6 6.7 9.6 640 3.7FAST-RLE04/12/042.8 15.00 0.10 73.90 1.00 74.90 6.4210 2812 1.12 0.3 6.1 5.8 750 8.5FAST-RMW Drain 2062 12/17/0126.00.10 43.30 0.50 43.80 0.001 0.01 0.0 7.6 8.2 472 6.8 7.69FAST-RMW Drain 2062 01/15/020.5 7.00 0.04 0.62 0.10 0.72 0.0642 41 0.01 0.0 7.5 8.6 122 5.4 8.27TKN <0.2, BOD5 <1.0FAST-R MW Drain 2062 02/12/020.5 6.00 0.05 30.50 0.40 30.90 0.0024 201 0.01 0.0 7.3 10.5 367 6.4 8.27BOD5 <1FAST-R MW Drain 2062 03/12/020.5 10.00 0.00 6.00 0.20 6.20 0.1038 77.2 7.2 136 5.9 8.30BOD5 <1.0FAST-R MW Drain 2062 03/19/022 0.32 0.3 7.1 9.0 218 6.2 8.31bacteria re-sampleFAST-R MW Drain 2062 03/19/022 0.32 0.3 7.1 9.0 218 6.2QA duplicate - Bacteria re-sampleFAST-R MW Drain 2062 04/09/020.5 6.00 0.03 30.00 0.30 30.30 0.0422 192 0.32 0.3 6.9 9.1 346 5.7 8.25BOD5 <1.0FAST-R MW Drain 2062 05/07/020.5 6.00 0.01 35.20 0.10 35.3023 242 0.32 0.3 6.7 8.8 463 6.1 8.36NH4 <0.02; BOD <1; TKN <0.2FAST-R MW Drain 2062 06/11/021.0 6.00 0.01 35.90 0.30 36.2027 232 0.32 0.3 6.6 8.4 407 7.6 8.29BOD5 is est., NH4 <0.02FAST-R MW Drain 2062 07/16/020.5 4.00 0.01 38.90 0.50 39.4042 292 0.32 0.3 6.8 8.3 476 9.7 8.20BOD5<1.0, NH4 <0.02FAST-R MW Drain 2062 08/13/020.5 2.00 0.01 18.30 0.30 18.6047 252 0.32 0.3 6.8 9.8 420 11.0 7.34TKN is est., BOD5 <1, NH4 <0.02FAST-R MW Drain 2062 09/10/020.5 1.00 0.01 37.30 0.10 37.4041 272 0.32 0.3 6.7 7.6 449 10.6 7.69BOD5<1.0, NH4 <0.02, TKN<0.2FAST-R MW Drain 2062 10/07/020.5 2.00 0.01 36.10 0.40 36.5038 292 0.32 0.3 6.8 8.4 460 11.2 7.87NH4 <0.02; BOD5 <1; chloride and TSS are est.FAST-R MW Drain 2062 12/18/020.5 1.00 0.01 34.50 0.10 34.6026 231 0.01 0.0 6.8 8.4 429 8.5 8.17BOD5<1.0, NH4<0.02, TKN<0.2, pH is est.FAST-R MW Drain 2062 12/18/020.5 0.50 0.01 33.20 0.10 33.30 0.0526 231 0.01 0.0QA Dupl.; BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2FAST-R MW Drain 2062 02/25/031.3 5.00 0.01 28.80 0.10 28.9034 201 0.01 0.0 6.6 7.4 385 7.0 6.59NH4AsN <0.02, TKN <0.2FAST-R MW Drain 2062 03/11/030.5 2.00 0.02 28.20 0.10 28.3044 221 0.01 0.0 6.5 8.1 423 7.2 6.61BOD5<1.0, TKN <0.2Appendix B: Innovative System Field Test DataPage B-27
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesFAST-RMW Drain 2062 04/07/030.5 3.00 0.01 30.50 0.10 30.6042 221 0.01 0.0 6.7 9.2 423 6.5 5.80BOD5<1.0, NH4 <0.02, TKN <0.2FAST-R MW Drain 2062 04/07/030.5 2.00 0.02 30.80 0.10 30.9042 211 0.01 0.0 6.7 9.2 423 6.5QA Duplicate; BOD5<1.0, TKN <0.2FAST-R MW Drain 2062 06/24/030.5 5.00 0.01 32.50 0.10 32.6050 251 0.01 0.0 6.6 8.1 474 8.9 6.74BOD5<1.0, NH4<0.02, TKN<0.2FAST-R MW Drain 2062 08/12/030.5 2.00 0.01 22.90 0.10 23.0058 251 0.01 0.0 6.8 8.2 433 10.4 8.17BOD5<1.0 NH4<0.02, TKN<0.2FAST-R MW Drain 2062 09/03/030.5 2.00 0.01 26.50 0.30 26.8049 311 0.01 0.0 7.0 8.6 460 11.6 7.85NH4AsN<0.02, BOD5<1FAST-R MW Drain 2062 10/06/030.5 2.00 0.01 29.70 0.30 30.0037 361 0.01 0.0 6.6 6.4 487 11.1 8.17BOD5 <1.0, NH4AsN<0.02FAST-R MW Drain 2062 01/12/040.01 20.20 0.10 20.30331 0.01 0.0 6.7 7.6 447 7.8 7.51NH4<0.02, TKN<0.2FAST-R MW Drain 2062 04/12/040.02 30.20 0.20 30.40321 0.01 0.0 6.6 8.7 512 7.4 8.17FAST-RSTE12/17/01140.0 74273 23150,000 5.2 100,000 5.0 8.7 1.7 617 17.0O&G cancelled; no nutrient sample collected.FAST-R STE 01/15/02140.0 20 40.00 0.02 48.00 48.02 6.2024 21180,000 5.3 100,000 5.0 8.8 0.6 526 17.7oil & grease voidFAST-R STE 02/12/02220.0 87 56.00 0.00 70.00 70.00 9.6028 27 39.00 300,000 5.5 420,000 5.6 8.3 1.2 728 16.3FAST-RSTE03/12/02210.0 81 53.00 0.00 66.00 66.00 8.10 312 32 31.00 240,000 5.4 210,000 5.3 8.3 0.8 791 15.2FAST-RSTE04/09/02120.0 53 30.00 0.04 39.00 39.04 6.52 210 21 19.00 72,000 4.9 54,000 4.7 7.7 0.6 550 19.5FAST-RSTE05/07/02140.0 82 49.00 0.08 58.00 58.08 8.07 258 22 19.00 12,000 4.1 11,000 4.0 7.6 0.7 692 18.4FAST-RSTE06/11/02240.0 56 41.00 0.03 47.00 47.03 8.49 239 21 40.00 400,000 5.6 420,000 5.6 7.1 0.6 661 22.6FAST-RSTE07/16/02250.0 44 53.00 0.12 69.00 69.12 10.50 312 39 23.00 200,000 5.3 160,000 5.2 7.1 0.6 833 23.1FAST-RSTE08/14/02340.0 180 40.00 0.02 49.00 49.02 9.82 230 27 350.00 520,000 5.7 640,000 5.8 6.9 0.6 623 23.7TKN is est.FAST-R STE 09/10/02180.0 63 32.00 0.02 45.00 45.02 6.14 220 20 34.00 940,000 6.0 660,000 5.8 7.1 0.6 551 22.8FAST-RSTE10/07/021300.0 2300 44.00 0.01 56.00 56.01 15.80 304 22 65.00 270,000 5.4 170,000 5.2 6.8 0.9 645 20.8chloride and TSS are estimates.FAST-R STE 12/18/021700.0 3000 40.00 0.04 70.00 70.04 18.00 351 25 401.00 400,000 5.6 440,000 5.6 6.7 1.1 743 18.3pH is est.FAST-R STE 02/24/03470.0 600 44.00 0.05 110.00 110.05 39.80 326 26 70.00 560,000 5.7 260,000 5.4 7.1 0.2 727 16.1FAST-RSTE04/07/03380.0 308 44.00 0.01 64.00 64.01 14.40 358 29 63.00 1,260 3.1 174,000 5.2 7.6 0.9 830 18.8FAST-RSTE06/25/031500.0 29 42.00 0.07 64.00 64.07 16.80 350 27 407.00 1.6E+06 6.2 2.2E+06 6.3 6.7 0.9 795 20.1BOD5 is est.FAST-R STE 08/13/031200.0 1300 51.00 0.02 77.00 77.02 31.90 362 486.9E+07 7.8 1.2E+07 7.1 7.2 0.9 829 24.1O&G voidFAST-R STE 10/06/03840.0 980 33.00 0.07 52.00 52.07 12.90 303 37 399.00 880,000 5.9 700,000 5.8 7.2 0.8 756 21.2FAST-RSTE01/12/04360.0 33 34.00 0.01 49.00 49.01 9.17 280 29 21.00 230,000 5.4 204,000 5.3 7.1 0.7 719 17.5FAST-RSTE04/12/04650.0 450 41.00 0.01 51.00 51.01 11.50 251 22 198.006.7 0.6 641 16.4Fecal, e.coli voidIDEA BESTEP-H IE 01/07/0247.0 34 57.00 0.00 76.00 76.00 11.60 228 34120,000 5.1 73,000 4.9 7.3 0.8 892 7.6IDEA BESTEP-HIE02/04/0245.0 54 78.00 0.00 104.00 104.00 14.90 400 51880,000 5.9 1.0E+06 6.0 7.4 2.2 539 8.6IDEA BESTEP-HIE03/04/0227.0 68 102.00 0.10 110.00 110.10 15.10 488 485,200 3.7 6,000 3.8 7.4 4.7 942 7.0IDEA BESTEP-HIE04/01/0266.00 0.00 97.00 97.00 14.10413.9E+06 6.6 3.6E+06 6.6 7.2 1.1 1186 10.3 BOD5, ALK, COND, TSS cancelledIDEA BESTEP-H IE 04/29/02150.0 100 87.00 0.80 94.00 94.80 16.70 425 42180,000 5.3 150,000 5.2 7.2 2.5 1312 11.8 NH4 is est.IDEA BESTEP-H IE 06/18/0211.0 10 0.61 1.89 8.70 10.59 15.10 160 37440,000 5.6 420,000 5.6 6.7 1.3 529 18.1IDEA BESTEP-HIE07/22/0230.0 13 3.50 2.57 7.10 9.67 18.70 1466.8 0.8 563 23.7Insuff. effluent for chloride or bacteria analyses.IDEA BESTEP-H IE 08/28/0266.0 89 0.36 0.82 7.60 8.42 20.00 130 542,000 3.3 1,400 3.1 6.7 3.1 546 18.9BOD5 is est.IDEA BESTEP-H IE 09/16/0214.0 2 1.07 0.63 3.60 4.23 21.80 128 50420 2.6 400 2.6 6.7 1.5 561 16.9IDEA BESTEP-HIE10/16/0272.0 86 0.07 2.08 9.20 11.28 17.80 116 585,400 3.7 6,200 3.8 6.9 4.7 537 10.5BOD5 is est.IDEA BESTEP-H IE 11/11/0223.0 36 0.63 12.90 7.60 20.50 18.00 85 548,400 3.9 8,000 3.9 6.7 2.8 567 8.6IDEA BESTEP-HIE12/09/0248.0 79 0.07 22.40 4.80 27.20 19.80 74 6082,000 4.9 74,000 4.9 6.4 1.1 746 10.5BOD5 is est.IDEA BESTEP-H IE 02/24/034600.0 27000 5.30 0.051400.0 1400.0352.00 569 634.7E+07 7.7 5.6E+07 7.7 7.0 0.9 459 4.6cond. is est.IDEA BESTEP-H IE 04/21/0328.0 18 2.30 3.33 7.10 10.43 21.10 132 67150,000 5.2 86,000 4.9 6.8 1.8 667 11.7IDEA BESTEP-HIE06/23/0340.0 52 15.00 0.10 27.00 27.10 17.90 191 54230,000 5.4 200,000 5.3 6.9 1.5 683 17.0IDEA BESTEP-HMW Drain215312/21/010.080.0137.00.31716.715.44Background/well dev'ment; No TKN reported; NO3 est.IDEA BESTEP-H MW Drain 2153 01/07/020.5 0.50 0.10 0.00 0.10 0.10 0.4074 31 0.01 0.0 7.0 0.7 172 6.9 15.71BOD5 <1, TKN <0.2IDEA BESTEP-H MW Drain 2153 02/04/020.5 0.50 0.06 0.00 0.10 0.10 0.4075 31 0.01 0.0 6.8 0.8 175 6.7 15.76BOD5 <1, TKN <.2, TSS <1IDEA BESTEP-H MW Drain 2153 03/05/020.5 0.50 0.10 0.00 0.10 0.10 0.4072 31 0.01 0.0 7.2 0.1 180 7.2 15.76BOD5 <1.0, TKN <.2IDEA BESTEP-H MW Drain 2153 04/01/020.5 0.50 0.10 0.00 0.30 0.30 0.4072 31 0.01 0.0 6.9 0.1 188 7.3 15.77 BOD5 <1, TSS <1IDEA BESTEP-H MW Drain 2153 04/29/020.5 0.50 0.08 0.00 0.10 0.1072 31 0.01 0.0 6.8 0.1 207 7.1 15.76 TSS <1; BOD <1; TKN <0.2IDEA BESTEP-H MW Drain 2153 04/29/020.5 0.50 0.10 0.00 0.10 0.1070 31 0.01 0.0 6.8 0.1 207 7.1 TSS <1; BOD <1; TKN <0.2; QA duplicateIDEA BESTEP-H MW Drain 2153 06/17/020.50 0.08 0.01 0.10 0.1169 31 0.01 0.0 7.0 0.1 171 7.3 15.78 TKN <0.2, TSS <1IDEA BESTEP-H MW Drain 2153 07/22/020.5 0.50 0.09 0.00 0.10 0.1074 31 0.01 0.0 7.2 0.1 172 7.6 15.80TKN <0.2, TSS <1, BOD5<1.0, nitrate<0.005IDEA BESTEP-H MW Drain 2153 08/26/020.5 0.50 0.10 0.01 0.10 0.1173 31 0.01 0.0 7.0 0.1 180 7.2 15.81TKN <0.2, TSS <1, BOD5 <1IDEA BESTEP-H MW Drain 2153 09/16/020.5 0.50 0.09 0.03 0.10 0.1372 31 0.01 0.0 6.9 0.1 167 7.3 15.80BOD5<1.0, TSS <1, TKN<0.2IDEA BESTEP-H MW Drain 2153 10/15/020.5 0.50 0.10 0.04 0.20 0.2477 31 0.01 0.0 7.1 0.2 175 7.2 15.88BOD5, TSS <1.0IDEA BESTEP-H MW Drain 2153 10/15/020.5 0.50 0.09 0.04 0.30 0.3477 31 0.01 0.0QA Duplicate, BOD5, TSS <1.0IDEA BESTEP-H MW Drain 2153 11/12/020.5 0.50 0.09 0.01 0.10 0.1175 31 0.01 0.0 7.1 0.2 168 7.4 15.83BOD5 <1.0, TKN <0.2, TSS <1IDEA BESTEP-H MW Drain 2153 12/09/020.5 0.50 0.08 0.01 0.10 0.1176 31 0.01 0.0 7.1 0.1 189 7.3 10.70BOD5 <1.0, TKN <0.2, TSS <1IDEA BESTEP-H MW Drain 2153 02/24/030.5 0.50 0.12 0.03 0.10 0.1378 31 0.01 0.0 7.0 0.1 187 7.0 15.77BOD5<1.0, TSS<1, TKN <0.2IDEA BESTEP-H MW Drain 2153 02/24/030.5 1.00 0.12 0.03 0.10 0.1377 31 0.01 0.0QA Duplicate; BOD5<1.0, TKN <0.2IDEA BESTEP-H MW Drain 2153 04/21/030.5 0.50 0.08 0.03 0.10 0.1378 31 0.01 0.0 7.1 0.1 186 7.4 15.82BOD5<1.0, TSS <1, TKN <0.2IDEA BESTEP-H MW Drain 2153 04/21/030.5 0.50 0.09 0.04 0.10 0.1477 31 0.01 0.0QA Duplicate; BOD5<1.0, TSS <1, TKN <0.2IDEA BESTEP-H MW Drain 2153 05/20/030.5 0.50 0.03 0.01 0.10 0.1178 31 0.01 0.0 6.8 0.1 191 7.5 15.75BOD5<1.0, TSS<1, TKN<0.2IDEA BESTEP-H MW Drain 2153 06/23/030.5 0.50 0.08 0.01 0.10 0.1177 41 0.01 0.0 7.1 0.5 184 8.2 15.71BOD5<1.0, TSS<1, TKN<0.2IDEA BESTEP-H MW Drain 2153 08/26/030.5 0.50 0.08 0.02 0.10 0.1280 41 0.01 0.0 7.0 0.3 195 7.5 15.78BOD5<1.0, TSS<1, TKN<0.2Appendix B: Innovative System Field Test DataPage B-28
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesIDEA BESTEP-HMW Drain 2153 08/26/030.5 0.50 0.08 0.02 0.30 0.3280 41 0.01 0.0QA Duplicate; BOD5<1.0, TSS<1IDEA BESTEP-H STE 01/07/02550.0 1300.00 72.00 0.00 170.00 170.00 30.20 161 43 18.00 9.8E+06 7.0 5.1E+06 6.7 7.6 2.4 1105 9.8IDEA BESTEP-HSTE02/04/0249.0 131.00 79.00 0.00 105.00 105.00 15.10 419 45 5.00 220,000 5.3 120,000 5.1 7.5 2.7 1150 9.4IDEA BESTEP-HSTE03/04/0219.0 35.00 108.00 0.00 120.00 120.00 16.60 500 47 2.50 40,000 4.6 50,000 4.7 7.4 1.4 1435 10.7Oil & Grease <5IDEA BESTEP-H STE 04/01/0236.0 46.00 99.00 0.00 107.00 107.00 16.30 419 42 2.50 3.8E+06 6.6 3.9E+06 6.6 7.1 0.4 1223 12.3Oil & Grease <5IDEA BESTEP-H STE 04/29/0280.0 21.00 75.00 0.91 84.00 84.91 15.40 355 40 2.50 1.4E+06 6.1 1.3E+06 6.1 7.1 1.7 1132 12.9O&G <5IDEA BESTEP-H STE 04/29/0250.0 22.00 71.00 0.93 84.00 84.93 15.10 362 39 2.50 5.4E+06 6.7 4.2E+06 6.6 7.1 1.7 1132 12.9O&G <5; QA duplicateIDEA BESTEP-H STE 06/18/0220.0 57.00 0.53 2.98 6.80 9.78 15.20 150 41 2.50 1.3E+06 6.1 1.5E+06 6.2 6.7 0.6 560 18.0O&G <5IDEA BESTEP-H STE 07/22/02120.0 47.00 7.80 0.04 21.00 21.04 19.80 164 37 2.50 4.5E+07 7.7 4.1E+07 7.6 6.7 0.7 288 23.2O&G <5IDEA BESTEP-H STE 08/28/028400.0 590.00 1.21 0.89 430.00 430.89 93.40 238 56760,000 5.9 620,000 5.8 6.6 3.2 548 20.8BOD5 is est. - TSS, TKN est., O&G voidIDEA BESTEP-H STE 09/16/023000.0 4800.00 2.60 1.30 350.00 351.30 84.00 217 521.2E+07 7.1 1.1E+07 7.0 6.6 0.9 569 19.4BOD5, TSS is est., O&G voidIDEA BESTEP-H STE 10/16/023100.0 6000.00 0.95 0.77 370.00 370.77 95.20 244 57 7.00 1.0E+06 6.0 960,000 6.0 6.9 4.7 535 14.4BOD5 is est.IDEA BESTEP-H STE 11/11/02130.0 1400.00 0.08 12.30 15.00 27.30 21.30 108 53 2.50 170,000 5.2 170,000 5.2 6.7 0.9 585 13.0O&G <5IDEA BESTEP-H STE 12/09/0241.0 21.00 0.70 22.00 6.60 28.60 19.90 76 62 17.00 190,000 5.3 120,000 5.1 6.5 2.5 722 7.4IDEA BESTEP-HSTE02/24/032500.0 7600.00 3.30 9.04 420.00 429.04 103.00 274 70 2.50 4.0E+06 6.6 4.6E+06 6.7 7.0 0.7 485 9.3O&G <5, cond. is est.IDEA BESTEP-H STE 04/21/03400.0 380.00 9.20 0.63 74.00 74.63 28.00 200 68 26.00 3.8E+07 7.6 3.3E+07 7.5 6.7 0.7 708 13.9IDEA BESTEP-HSTE06/23/0381.0 290.00 14.00 0.18 26.00 26.18 17.50 182 55 2.50 270,000 5.4 400,000 5.6 6.7 0.7 682 18.2O&G<5IDEA BESTEP-L IE 01/07/025.8 6.00 0.50 0.50 4.20 4.70 0.80 120 201,000 3.0 1,000 3.0 7.5 1.0 382 7.6IDEA BESTEP-LIE02/05/023.1 14.00 1.20 0.40 4.80 5.20 1.00 114 144,800 3.7 4,200 3.6 8.0 5.0 301 6.3IDEA BESTEP-LIE03/04/0212.0 26.00 1.40 0.00 3.70 3.70 0.50 114 203,200 3.5 2,400 3.4 7.2 3.2 377 15.5IDEA BESTEP-LIE04/01/021100.0 3000.00 1.00 0.00 250.00 250.00 79.50 200 162.3E+06 6.4 2.1E+06 6.3 6.4 0.1 370 17.1IDEA BESTEP-LIE04/29/02770.0 2700.00 26.00 0.05 150.00 150.05 35.70 260 192.1E+06 6.3 2.9E+06 6.5 7.2 0.2 549 16.2 BOD5 is est.IDEA BESTEP-L IE 06/03/02190.0 730.00 4.10 0.01 21.00 21.01 5.12 124 2374,000 4.9 84,000 4.9 7.3 1.8 382 20.5 BOD5 is est.IDEA BESTEP-L IE 07/08/021300.0 4600.00 42.00 0.00 220.00 220.00 46.80 300 261.8E+07 7.3 1.6E+07 7.2 7.2 0.1 638 21.5 Nitrate/nitrite <0.005, DO<0.1IDEA BESTEP-L IE 08/05/0270.0 140.00 23.00 0.17 30.00 30.17 3.42 212 23100,000 5.0 64,000 4.8 7.5 1.3 480 16.0 TSS is est.IDEA BESTEP-L IE 09/03/02120.0 290.00 20.00 0.11 67.00 67.11 11.40 189 211.1E+06 6.0 760,000 5.9 7.4 0.9 478 20.7IDEA BESTEP-LIE10/02/0252.0 75.00 3.40 0.36 14.00 14.36 3.02 150 211.0E+07 7.0 7.8E+06 6.9 7.5 1.5 450 18.4TSS is est.IDEA BESTEP-L IE 10/28/02140.0 330.00 7.80 0.07 28.00 28.07 7.11 198 231.7E+07 7.2 1.7E+07 7.2 6.7 0.6 308 13.8TSS is est.IDEA BESTEP-L IE 11/18/0245.0 310.00 2.10 0.02 43.00 43.02 11.60 119 249.0E+06 7.0 6.4E+06 6.8 9.3 3.5 385 11.3BOD5 >90IDEA BESTEP-L IE 02/03/0346.0 200.00 0.08 2.30 4.30 6.60 4.0994 3230,000 4.5 4,000 3.6 7.2 4.8 337 7.6IDEA BESTEP-LIE03/31/03230.0 360.00 20.00 0.10 37.00 37.10 7.16 205 3176,000 4.9 62,000 4.8 7.8 2.0 500 12.7IDEA BESTEP-LIE06/02/0345.0 170.00 0.14 0.28 5.40 5.68 4.44 118 15200 2.3 200 2.3 7.0 1.9 328 15.6IDEA BESTEP-LIE08/04/03610.0 905.00 22.00 0.03 66.00 66.03 18.00 194 266.2E+06 6.8 6.6E+06 6.8 7.0 1.6 488 20.1IDEA BESTEP-LMW Drain 2175 11/16/010.26 3.53157.6 8.7 287 9.1 22.52Background/well development; No TKN reported.IDEA BESTEP-L MW Drain 2175 03/06/020.00 6.70 0.50 7.20 0.40191 0.01 0.0 7.8 7.5 293 8.9 22.78IDEA BESTEP-LMW Drain 2175 04/01/020.00 6.90 0.30 7.20 0.10207.4 6.9 285 10.0 22.75No bacteria sample taken due to extreme low flowIDEA BESTEP-L MW Drain 2177 06/12/020.01 0.31 0.10 0.4121 0.01 0.0 7.2 6.2 90 9.6 23.09TKN <0.2, NH4 <0.02IDEA BESTEP-L MW Drain 2177 08/05/020.02 0.50 0.10 0.6017.1 5.8 84 9.5 23.66TKN <0.2IDEA BESTEP-L MW Drain 2177 08/12/022 0.32 0.3 7.2 8.3 84 9.7Bacteria Re-sampleIDEA BESTEP-L MW Drain 2177 09/03/0223.86IDEA BESTEP-LMW Drain 2177 10/01/0223.93IDEA BESTEP-LMW Drain 2177 10/28/020.01 0.49 0.10 0.5912 0.32 0.3 7.0 8.1 82 8.8 23.97NH4 <0.02, TKN <0.2IDEA BESTEP-L MW Drain 2177 11/18/0224.02IDEA BESTEP-LMW Drain 2177 02/03/030.01 0.42 0.10 0.5212 0.32 0.3 6.8 7.8 91 8.4 23.89NH4 <0.02, TKN <0.2IDEA BESTEP-L MW Drain 2177 04/28/030.01 0.56 0.10 0.6611 0.01 0.0 6.8 8.0 91 8.7 23.67NH4 <0.02, TKN <0.2IDEA BESTEP-L MW Drain 2177 08/04/030.01 0.61 0.10 0.7111 0.01 0.0 6.9 8.0 91 10.4 24.63NH4<0.02, TKN<0.2IDEA BESTEP-L STE 01/07/0213.0 13.00 0.20 0.70 2.80 3.50 0.50 121 21 2.50 660 2.8 660 2.8 7.4 2.7 327 10.6BOD5 is est. (poss. toxic interference)IDEA BESTEP-L STE 02/05/02180.0 265.00 1.00 2.10 10.00 12.10 1.40 170 8 35.00 78,000 4.9 44,000 4.6 9.7 4.7 402 13.5IDEA BESTEP-LSTE03/04/023.10 0.30 13.00 13.30 2.80 109 18 26.00 1.9E+06 6.3 2.2E+06 6.3 7.2 1.0 356 13.8BOD5 void, TSS cancelled; STP sample lostIDEA BESTEP-L STE 04/01/02790.0 2000.00 0.50 0.00 160.0 160.0 52.70 192 16 9.00 5.0E+06 6.7 4.0E+06 6.6 7.0 1.2 356 13.4IDEA BESTEP-LSTE04/29/0274.0 35.00 13.00 1.03 22.00 23.03 2.15 145 14 2.50 4.6E+06 6.7 4.8E+06 6.7 7.3 1.6 426 15.0O&G <5IDEA BESTEP-L STE 06/03/02180.0 39.00 12.40 0.01 20.00 20.01 2.9695 18 2.50 8.6E+06 6.9 6.8E+06 6.8 7.1 0.9 304 19.8O&G <5IDEA BESTEP-L STE 07/08/02440.0 250.00 24.00 0.01 37.00 37.01 3.61 118 29 48.00 170,000 5.2 130,000 5.1 7.2 0.4 414 20.9BOD5 is est.IDEA BESTEP-L STE 08/05/0231.0 25.00 23.00 0.18 29.00 29.18 1.73 198 22 2.50 84,000 4.9 56,000 4.7 7.3 0.9 453 17.5 O&G <5IDEA BESTEP-L STE 09/03/02220.0 39.00 0.20 0.01 22.00 22.01 3.71 108 18 58.00 1.4E+08 8.1 1.3E+08 8.1 7.3 0.7 321 18.9IDEA BESTEP-LSTE10/02/02110.0 70.00 3.40 1.27 24.00 25.27 2.62 189 21 21.00 4.1E+08 8.6 4.8E+08 8.7 8.8 1.8 421 19.3IDEA BESTEP-LSTE10/28/02410.0 240.00 8.90 0.26 24.00 24.26 4.20 104 27 230 7.8E+06 6.9 8.4E+06 6.9 7.0 1.5 373 15.3TSS is est.IDEA BESTEP-L STE 11/18/02120.0 85.00 3.70 1.30 13.00 14.30 2.09 142 16 84.00 8.8E+07 7.9 5.2E+07 7.7 7.3 2.1 355 13.6IDEA BESTEP-LSTE02/03/039.6 16.00 0.28 1.92 3.30 5.22 1.0092 31 2.50 2,000 3.3 200 2.3 7.7 3.1 342 11.7O&G <5IDEA BESTEP-L STE 03/31/0376.0 72.00 5.70 1.34 14.00 15.34 2.31 144 15 30.00 11,000 4.0 8,800 3.9 8.8 5.3 340 14.7IDEA BESTEP-LSTE06/02/0333.0 23.00 7.40 0.71 42.00 42.71 5.19 131 26 2.50 1.0E+06 6.0 880,000 5.9 7.1 1.3 368 18.3BOD5 is est., O&G<5IDEA BESTEP-L STE 08/04/03170.0 54.00 24.00 0.01 37.00 37.01 6.88 172 25 24.00 100 2.0 100 2.0 6.8 1.2 492 20.7IDEA BESTEP-YIE02/11/0239.0 52.00 46.00 0.07 67.00 67.07 7.60 363 518.0E+06 6.9 5.4E+06 6.7 7.3 0.4 1036 6.3IDEA BESTEP-YIE03/11/02220.0 67.00 76.00 0.00 107.00 107.00 26.50 362 721.0E+06 6.0 1.0E+06 6.0 7.9 0.8 1151 8.0Appendix B: Innovative System Field Test DataPage B-29
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesIDEA BESTEP-YIE04/08/02170.0 240.00 74.00 0.00 120.0 120.0 20.30 382 623.0E+07 7.5 4.0E+07 7.6 8.0 0.3 217 9.4IDEA BESTEP-YIE05/06/02370.0 86.00 92.00 0.03 110.00 110.03 19.20 415 606.0E+08 8.8 6.0E+08 8.8 8.2 1.2 1310 12.5IDEA BESTEP-YIE06/24/02280.0 230.00 81.00 0.01 110.00 110.01 17.10 462 621.6E+09 9.2 1.6E+09 9.2 7.7 0.6 1190 20.9IDEA BESTEP-YIE07/22/0245.0 100.00 56.00 0.05 66.00 66.05 9.37 331 681.6E+08 8.2 1.6E+08 8.2 7.6 1.2 963 18.9IDEA BESTEP-YIE08/12/0247.0 47.00 82.00 0.11 93.00 93.11 3.70 400 565.6E+07 7.7 6.6E+07 7.8 7.8 4.8 1038 19.4TKN, BOD5 is est.IDEA BESTEP-Y IE 09/09/0246.0 52.00 56.00 0.32 66.00 66.32 8.55 286 682.2E+08 8.3 2.0E+08 8.3 7.5 1.2 915 16.7IDEA BESTEP-YIE10/09/0272.0 30.00 37.00 0.18 44.00 44.18 10.70 234 762.0E+07 7.3 1.6E+07 7.2 7.4 2.2 752 16.8IDEA BESTEP-YIE11/04/0216.0 21.00 0.15 1.98 5.90 7.88 2.59 117 65980,000 6.0 820,000 5.9 6.8 2.3 507 8.8IDEA BESTEP-YIE12/04/02540.0 110.00 4.10 0.19 89.00 89.19 33.50 138 681.4E+07 7.1 1.2E+07 7.1 6.9 2.0 598 12.6IDEA BESTEP-YIE01/27/032100.0 4300.00 57.00 0.02 280.0 280.0 76.00 435 852.6E+08 8.4 2.0E+08 8.3 7.0 0.1 1135 12.2BOD5 is est.IDEA BESTEP-Y IE 03/17/03680.0 740.00 69.00 0.06 130.0 130.1 34.00 450 743.0E+08 8.5 2.1E+08 8.3 7.5 0.8 1189 8.3IDEA BESTEP-YIE05/21/03480.0 500.00 70.00 0.36 140.0 140.4 14.10 425 721.5E+07 7.2 8.8E+06 6.9 7.3 1.1 694 13.1IDEA BESTEP-YIE07/14/03210.0 290.00 31.00 0.58 55.00 55.58 15.40 236 65 270,000 5.4 210,000 5.3 7.3 1.9 803 17.7IDEA BESTEP-YLE02/11/0226.00 29.30 28.00 57.30 7.53607.2 4.8 417 3.9IDEA BESTEP-YLE04/08/0218.0 6.00 30.00 28.00 36.00 64.00 15.00 190 59 290,000 5.5 260,000 5.4 6.9 3.6 918 7.5IDEA BESTEP-YLE05/06/0211.0 11.00 18.00 58.40 22.00 80.40 10.60 53 57 580,000 5.8 420,000 5.6 6.5 3.0 933 9.5IDEA BESTEP-YLE06/24/027.0 6.00 4.50 69.60 6.40 76.00 5.9410 48 13,000 4.1 14,000 4.1 6.1 1.1 791 15.0IDEA BESTEP-YLE07/22/024.5 33.00 20.00 109.00 24.00 133.0 5.1610 69 52,000 4.7 62,000 4.8 6.0 1.4 1116 20.3IDEA BESTEP-YLE08/12/0218.0 20.00 38.00 56.00 44.00 100.0 3.55 128 57 4,000 3.6 4,600 3.7 6.8 1.1 925 17.2TKN is est.IDEA BESTEP-Y LE 09/09/0219.0 11.00 31.00 31.30 41.00 72.30 5.44 127 661.7E+06 6.2 1.4E+06 6.1 6.8 0.7 816 15.7IDEA BESTEP-YLE10/09/0222.0 8.00 9.00 31.30 15.00 46.30 7.9348 776.4E+06 6.8 3.2E+06 6.5 6.7 4.7 641 14.6IDEA BESTEP-YLE11/04/026.6 13.00 0.07 4.16 2.60 6.76 2.5662 68 240,000 5.4 210,000 5.3 6.8 6.1 445 6.5IDEA BESTEP-YLE12/04/024.4 11.00 0.03 7.97 2.70 10.67 6.1448 67 8,000 3.9 6,600 3.8 6.9 8.0 576 7.3IDEA BESTEP-YLE01/27/033.2 38.00 0.75 69.20 3.90 73.10 5.781 80 8,200 3.9 5,400 3.7 4.7 5.5 885 5.9Alk <1IDEA BESTEP-Y LE 03/17/031.1 2.00 2.10 61.70 3.70 65.40 7.321 72 9,400 4.0 1,600 3.2 4.9 6.0 816 6.1BOD5 is est., alk. <1.0IDEA BESTEP-Y LE 05/21/035.0 11.00 3.20 93.10 19.00 112.10 9.4518 73 39,000 4.6 35,000 4.5 6.4 5.5 1081 10.6IDEA BESTEP-YLE07/14/031.1 6.00 0.20 19.40 3.40 22.80 9.591 695.0 4.5 516 15.3Insuff. sample volume for bacteria, BOD5<1.0, Alk<1IDEA BESTEP-Y MW Drain 2145 01/11/020.02 1.8036.8 6.1 89 7.4 14.10Background/well dev'ment; No TKN result reported.IDEA BESTEP-Y MW Drain 2145 01/11/020.01 1.8136.8 6.1 89 7.4QA Dupl; Well dev'ment; No TKN reported; NH4 <0.02IDEA BESTEP-Y MW Drain 2145 02/11/020.5 4.00 0.00 0.00 0.10 0.10 0.3032 31 0.01 0.0 7.1 7.7 88 7.3 14.46NH4 is estimate; BOD5 <1.0; TKN <0.2IDEA BESTEP-Y MW Drain 2145 03/11/020.5 2.00 0.00 1.70 0.10 1.80 0.3032 31 0.01 0.0 6.6 7.7 97 7.3 14.18TKN <0.2, BOD5 <1.0IDEA BESTEP-Y MW Drain 2145 04/08/020.5 3.00 0.00 1.76 0.10 1.86 0.3030 31 0.01 0.0 6.7 5.5 103 7.3 14.15BOD5 <1, TKN <0.2IDEA BESTEP-Y MW Drain 2145 05/06/020.5 0.50 0.01 1.78 0.10 1.8831 31 0.01 0.0 6.6 6.2 100 7.1 11.21NH4 <0.02, BOD5 <1.0, TKN <0.2, TSS <1IDEA BESTEP-Y MW Drain 2145 06/24/020.5 0.50 0.02 2.07 0.10 2.1733 31 0.01 0.0 6.9 7.1 96 7.7 14.11TSS <1, TKN <0.2, BOD5<1.0IDEA BESTEP-Y MW Drain 2145 07/22/020.5 2.00 0.01 2.25 0.10 2.3533 31 0.01 0.0 7.0 6.0 97 7.8 14.14TKN <0.2, NH4<0.02, BOD5<1.0IDEA BESTEP-Y MW Drain 2145 08/12/020.5 0.50 0.01 2.32 0.30 2.6233 31 0.01 0.0 6.9 7.1 102 7.8 14.46TKN is est., TSS <1, BOD5 <1, NH4 <0.02IDEA BESTEP-Y MW Drain 2145 08/12/020.5 0.50 0.01 2.31 0.10 2.4134 31 0.01 0.0 6.9 7.1 102 7.8QA, TKN<0.2 est., TSS <1, BOD5 <1, NH4 <0.02IDEA BESTEP-Y MW Drain 2145 09/09/020.5 0.50 0.01 2.37 0.10 2.4733 41 0.01 0.0 6.7 5.8 100 8.3 14.11BOD5<1.0, TSS<1, NH4 <0.02, TKN<0.2IDEA BESTEP-Y MW Drain 2145 10/07/020.5 20.00 0.01 2.46 0.10 2.5635 41 0.01 0.0 6.8 5.8 97 8.8 16.76NH4 < 0.02; BOD5 <1; TKN < 0.2; chloride estimate.IDEA BESTEP-Y MW Drain 2145 11/04/020.5 2.00 0.03 2.41 0.10 2.5136 41 0.01 0.0 7.0 5.8 103 8.5 14.12BOD5 <1.0, TKN <0.2IDEA BESTEP-Y MW Drain 2145 11/05/020.5 9.00366.8 7.0 102 8.6BOD5 <1.0, Re-sample - needed more sample.IDEA BESTEP-Y MW Drain 2145 12/03/021.5 0.50 0.03 2.41 0.50 2.9136 41 0.01 0.0 6.8 4.9 116 8.4 14.18TSS<1IDEA BESTEP-Y MW Drain 2145 01/27/030.5 1.00 0.01 2.45 0.20 2.6534 51 0.01 0.0 6.8 6.7 113 8.0 14.14BOD5 <1.0, NH4 <0.02IDEA BESTEP-Y MW Drain 2145 02/03/030.5 0.50 0.01 2.43 0.10 2.5334 61 0.01 0.0 6.9 6.3 114 7.9 14.11BOD5<1.0, TSS<1, NH4 <0.02, TKN <0.2IDEA BESTEP-Y MW Drain 2145 02/03/030.5 1.00 0.01 2.43 0.10 2.5334 51 0.01 0.0QA Duplicate; BOD5<1.0, NH4 <0.02, TKN <0.2IDEA BESTEP-Y MW Drain 2145 03/17/030.5 1.00 0.05 2.51 0.10 2.6134 71 0.01 0.0 6.8 6.9 120 7.7 14.16BOD5<1.0, TKN <0.2IDEA BESTEP-Y MW Drain 2145 05/20/030.5 0.50 0.01 2.46 0.10 2.5635 81 0.01 0.0 7.0 6.5 122 7.7 14.15BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2IDEA BESTEP-Y MW Drain 2145 07/14/030.5 0.50 0.01 2.41 0.10 2.5135 91 0.01 0.0 6.8 6.4 125 9.1 14.09BOD5<1.0, TSS<1 NH4<0.02, TKN<0.2IDEA BESTEP-Y MW Drain 2145 08/26/030.5 0.50 0.01 2.31 0.10 2.4136 91 0.01 0.0 6.7 7.5 127 8.6 14.12BOD5<1.0, TSS<1, NH4AsN<0.02, TKN<0.2IDEA BESTEP-Y STE 02/11/0266.0 50.00260 516.0E+06 6.8 6.0E+06 6.8 7.5 2.4 785 9.9Bottle crushed during transport (NH3N)IDEA BESTEP-Y STE 03/11/02230.0 95.00 46.00 0.0071.0071.00 21.10 265 4132.001.0E+07 7.0 1.0E+07 7.0 8.7 1.3 705 12.0IDEA BESTEP-YSTE04/08/02249.0 210.00 45.00 0.5076.0076.50 10.20 220 39130.006.0E+07 7.8 6.0E+07 7.8 8.9 0.6 611 16.3BOD5 >249IDEA BESTEP-Y STE 05/06/02310.0 200.00 42.00 0.0254.0054.02 16.70 187 43336.008.8 1.3 666 14.5BOD5 is est.IDEA BESTEP-Y STE 06/24/02330.0 240.00 87.00 0.01110.00110.01 17.10 462 6451.001.8E+09 9.3 1.7E+09 9.2 7.7 0.4 1187 20.8IDEA BESTEP-YSTE07/22/0234.0 110.00 56.00 0.0171.0071.01 9.09 334 682.50400000 5.6 680000 5.8 7.9 3.4 989 19.5O&G <5IDEA BESTEP-Y STE 08/12/0254.0 55.00 47.00 0.0164.0064.01 3.33 242 356.001.0E+08 8.0 8.0E+07 7.9 7.7 0.6 691 22.8TKN is est.IDEA BESTEP-Y STE 09/09/02790.0 2200.00 57.00 0.14210.00210.14 58.70 361 675.001.3E+08 8.1 1.4E+08 8.1 7.5 0.5 928 20.7BOD5, TSS is est.IDEA BESTEP-Y STE 10/09/02130.0 93.00 38.00 0.0244.0044.02 7.45 240 7786.008.4E+07 7.9 5.6E+07 7.7 7.5 1.1 764 17.9IDEA BESTEP-YSTE11/04/02480.0 1900.00 1.38 1.86140.00141.86 56.10 148 642.504.7E+08 8.7 4.2E+08 8.6 6.9 1.2 536 12.1Phosphate, alk. is est., O&G <5IDEA BESTEP-Y STE 12/04/0223.0 13.00 4.00 0.0911.0011.09 5.9596 492.508.8E+06 6.9 7.2E+06 6.9 7.0 2.3 500 11.6O&G <5IDEA BESTEP-Y STE 01/27/032400.0 4300.00 63.00 0.01370.00370.01 120.00 461 8055.004.0E+08 8.6 3.4E+08 8.5 7.3 0.1 1143 11.5BOD5 is est.IDEA BESTEP-Y STE 03/17/032700.0 4200.00 66.00 0.02430.00430.02 85.90 529 7465.001.7E+09 9.2 1.4E+09 9.2 7.3 0.3 1173 10.8BOD5 is est.IDEA BESTEP-Y STE 05/21/03440.0 98.00 31.00 0.08120.00120.08 11.20 305 5944.005.4E+08 8.7 4.0E+08 8.6 7.3 1.3 1195 15.9IDEA BESTEP-YSTE07/14/0396.0 44.00 8.20 0.0638.0038.06 5.77 124 3077.003.1E+07 7.5 5.0E+06 6.7 7.0 1.3 371 21.7BOD5 >96Appendix B: Innovative System Field Test DataPage B-30
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesInn. Trench Design A-B ATE09/04/0212.0 14.00 6.40 0.27 7.20 7.47 2.48 185 201,500 3.2 460 2.7 7.0 0.5 449 16.7Inn. Trench Design A-B ATE09/30/029.6 9.00 2.70 24.00 4.20 28.20 4.9474 261,300 3.1 680 2.8 7.1 0.7 491 14.0BOD5 & TSS are est.Inn. Trench Design A-B ATE 09/30/025.4 2.00 2.70 23.90 4.20 28.10 4.9874 2714,000 4.1 6,400 3.8 6.9 0.8 508 14.5QA Duplicate; BOD and TSS is est.Inn. Trench Design A-B ATE 10/29/022.3 0.50 0.97 37.50 2.40 39.90 5.5638 321,000 3.0 560 2.7 6.7 0.8 485 10.3BOD5 is est., TSS <1Inn. Trench Design A-B ATE 11/19/021.2 4.00 0.22 45.40 1.40 46.80 6.3018 46220 2.3 280 2.4 6.2 2.3 667 8.9BOD5 is est.Inn. Trench Design A-B ATE 01/06/033.3 2.00 0.87 42.50 1.60 44.10 5.4638 32200 2.3 170 2.2 6.5 1.5 620 4.5Inn. Trench Design A-B ATE02/05/030.5 3.00 0.68 51.80 2.20 54.00 4.8624 31120 2.1 140 2.1 6.3 1.4 641 5.6BOD5<1.0Inn. Trench Design A-B ATE 03/03/034.2 3.00 1.39 51.60 2.80 54.40 6.6610 32240 2.4 180 2.3 6.3 1.3 665 5.7Inn. Trench Design A-B ATE03/31/032.0 0.50 1.32 50.60 1.70 52.30 6.868 328 0.96 0.8 6.4 0.6 642 8.6BOD5 is est., TSS <1Inn. Trench Design A-B ATE 04/28/032.2 0.50 0.20 52.70 2.00 54.70 7.638 31560 2.7 236 2.4 6.7 0.8 655 8.5BOD5 is est., TSS <1Inn. Trench Design A-B ATE 06/25/032.3 2.00 1.01 5.65 2.50 8.15 9.0182 26174 2.2 210 2.3 6.7 0.5 428 17.1Inn. Trench Design A-B ATE07/07/030.5 2.00 0.97 7.60 2.30 9.90 9.6988 2722 1.318 1.3 6.6 1.4 461 18.7BOD5<1.0Inn. Trench Design A-B ATE 08/18/036.2 3.00 1.40 1.31 3.00 1.31 9.86 156 410 1.06 0.8 6.9 0.8 548 23.1Inn. Trench Design A-B ATE09/03/033.2 0.50 1.70 0.16 3.30 3.46 10.10 182 31200 2.3 170 2.2 7.0 1.1 596 21.1BOD5 is est., TSS<1Inn. Trench Design A-B ATE 10/29/033.6 0.50 1.17 11.70 2.70 14.40 10.80 130 32230 2.4 180 2.3 7.1 1.2 581 13.0QA Duplicate; TSS<1Inn. Trench Design A-B ATE 10/29/033.2 0.50 1.20 11.70 2.60 14.30 11.00 130 32420 2.6 440 2.6 7.1 1.4 571 12.5TSS<1Inn. Trench Design A-B ATE 02/09/041.6 2.00 1.50 18.50 3.30 21.80 9.3092 28262 2.4 226 2.4 7.1 2.2 594 3.7BOD5 is est.Inn. Trench Design A-B ATE 04/27/045.6 3.00 5.00 11.00 6.40 17.40 10.90 125 41440 2.6 500 2.7 6.9 0.8 598 11.2QA DuplicateInn. Trench Design A-B ATE 04/27/043.2 2.00 4.80 11.10 6.70 17.80 11.10 118 41560 2.7 420 2.6 6.9 0.8 580 11.5Inn. Trench Design A-B ATE11/17/042.7 0.50 0.35 26.30 1.30 27.60 6.1464 29290 2.5 270 2.4 6.6 1.1 499 8.4Chloride is est., TSS<1Inn. Trench Design A-B AXE 09/04/0214.0 10.00 23.00 8.27 24.00 32.27 6.67 170 231,100 3.0 760 2.9 7.6 3.3 566 16.1Inn. Trench Design A-B AXE09/30/028.2 4.00 0.73 28.30 3.30 31.60 7.1655 2511,000 4.0 6,000 3.8 6.8 3.8 500 15.0Inn. Trench Design A-B AXE10/29/023.0 5.00 0.24 41.60 2.80 44.40 7.5724 38100 2.0 100 2.0 6.9 3.7 525 13.6Inn. Trench Design A-B AXE11/19/022.3 4.00 0.17 48.30 1.30 49.60 6.945 49420 2.6 380 2.6 6.2 5.0 684 12.5Inn. Trench Design A-B AXE01/06/0312.0 13.00 5.00 50.00 8.60 58.60 7.7626 321,800 3.3 1,500 3.2 6.6 4.8 707 8.9Inn. Trench Design A-B AXE02/05/033.3 7.00 1.80 58.20 4.70 58.20 6.522 34240 2.4 180 2.3 5.8 6.3 676 9.6QA DuplicateInn. Trench Design A-B AXE 02/05/032.8 8.00 1.90 56.80 4.40 56.80 6.413 35280 2.4 200 2.3 5.8 6.5 682 9.4Inn. Trench Design A-B AXE03/03/037.7 8.00 8.90 47.50 11.00 58.50 7.9417 3294 2.060 1.8 6.3 4.6 659 9.2Inn. Trench Design A-B AXE03/31/032.8 4.00 0.71 48.50 2.90 51.40 8.278 3366 1.842 1.6 6.1 4.0 636 12.0QA DuplicateInn. Trench Design A-B AXE 03/31/033.9 4.00 0.69 49.40 2.20 51.60 8.188 3368 1.860 1.8 6.2 4.0 641 12.0Inn. Trench Design A-B AXE04/28/037.2 12.00 1.60 51.70 4.10 55.80 9.542 302,280 3.4 2,140 3.3 5.7 3.3 643 11.5Inn. Trench Design A-B AXE06/25/034.4 6.00 2.80 12.90 5.70 18.60 10.40 105 262 0.34 0.6 7.0 0.8 535 18.3Inn. Trench Design A-B AXE07/07/035.7 6.00 3.20 15.50 6.20 21.70 11.30 123 2884 1.942 1.6 6.9 0.5 580 20.3Inn. Trench Design A-B AXE08/18/039.2 12.00 3.50 3.95 7.30 11.25 11.70 220 3860 1.864 1.8 7.1 1.6 700 21.7Inn. Trench Design A-B AXE09/03/037.6 3.00 2.10 6.88 3.90 10.78 11.70 165 2810 1.01 0.0 7.1 2.2 610 21.7Inn. Trench Design A-B AXE10/29/0312.0 7.00 4.30 16.10 6.50 22.60 12.10 130 3446 1.736 1.6 7.1 2.8 633 14.9Inn. Trench Design A-B AXE02/09/0410.0 16.00 7.00 28.20 10.00 38.20 11.20 106 34440 2.6 1,000 3.0 7.1 4.3 680 7.6Inn. Trench Design A-B AXE04/27/0417.0 17.00 14.10 12.40 18.00 30.40 11.60 136 434 0.66 0.8 7.2 2.3 624 14.3Inn. Trench Design A-B AXE11/17/046.3 9.00 3.50 33.10 5.70 38.80 7.1423 281,600 3.2 1,600 3.2 6.5 2.6 526 11.4Chloride is est.Inn. Trench Design A-B MW Drain 2116 05/10/020.11 0.00 0.10 0.1097.1 0.8 294 8.4 12.80well development; TKN <0.2Inn. Trench Design A-B MW Drain 2116 09/03/020.5 2.00 0.10 0.01 0.10 0.1175 91 0.01 0.0 7.3 0.1 262 8.6 13.85BOD5<1.0, TKN<0.2, D.O.<0.1Inn. Trench Design A-B MW Drain 2116 09/03/021.4 2.00 0.09 0.01 0.10 0.1176 91 0.01 0.0 7.3 0.1 262 8.6QA Duplicate - BOD5 is est., TKN<0.2, D.O.<0.1Inn. Trench Design A-B MW Drain 2116 09/30/020.5 0.50 0.09 0.02 0.10 0.1282 91 0.01 0.0 7.2 0.1 266 8.6 13.96BOD5 <1; TKN <0.2; TSS <1Inn. Trench Design A-B MW Drain 2116 10/28/020.5 1.00 0.07 0.02 0.10 0.1290 91 0.01 0.0 7.2 0.1 261 9.1 14.04BOD5<1.0, TKN <0.2, D.O. <0.1Inn. Trench Design A-B MW Drain 2116 10/28/020.5 2.00 0.08 0.02 0.10 0.1288 91 0.01 0.0QA Duplicate; BOD5<1.0, TKN <0.2Inn. Trench Design A-B MW Drain 2116 11/19/020.5 3.00 0.07 0.02 0.30 0.3292 91 0.01 0.0 7.2 0.1 283 9.1 14.07BOD5 <1.0, D.O. <0.1Inn. Trench Design A-B MW Drain 2116 01/07/030.5 3.00 0.07 0.00 0.10 0.1094 71 0.01 0.0 7.1 2.6 259 9.3 14.12BOD5<1.0, Nitrate<0.0050, TKN<0.2Inn. Trench Design A-B MW Drain 2116 02/03/030.5 1.00 0.05 0.01 0.10 0.1194 71 0.01 0.0 7.2 0.1 243 9.2 13.98BOD5<1.0, TKN <0.2, D.O. <0.1Inn. Trench Design A-B MW Drain 2116 03/03/030.5 0.50 0.06 0.01 5.10 5.1189 71 0.01 0.0 7.2 0.1 233 9.0 13.95BOD5<1.0, TSS<1, D.O. <0.1Inn. Trench Design A-B MW Drain 2116 03/31/030.5 2.00 0.06 0.03 0.10 0.1384 101 0.01 0.0 7.2 0.2 246 8.9 13.95BOD5<1.0, TKN <0.2Inn. Trench Design A-B MW Drain 2116 04/28/030.5 2.00 0.05 0.01 0.10 0.1178 131 0.01 0.0 7.3 0.1 258 8.6 14.00BOD5<1.0, TKN <0.2Inn. Trench Design A-B MW Drain 2116 04/28/030.5 2.00 0.05 0.01 0.10 0.1178 131 0.01 0.0QA Duplicate; BOD5<1.0, TKN <0.2Inn. Trench Design A-B MW Drain 2116 06/23/030.5 1.00 0.05 0.01 0.10 0.0174 171 0.01 0.0 7.3 0.1 269 8.8 14.27BOD5<1.0, TKN<0.2Inn. Trench Design A-B MW Drain 2116 07/07/030.5 2.00 0.05 0.02 0.10 0.0273 171 0.01 0.0 7.3 0.1 272 8.7 14.44BOD5<1.0, TKN<0.2Inn. Trench Design A-B MW Drain 2116 07/07/030.5 2.00 0.05 0.01 0.10 0.0174 171 0.01 0.0QA Duplicate; BOD5<1.0, TKN<0.2Inn. Trench Design A-B MW Drain 2116 08/19/030.5 2.00 0.05 0.04 0.10 0.1473 151 0.01 0.0 7.3 0.1 277 9.1 14.67BOD5<1.0, TKN<0.2Inn. Trench Design A-B MW Drain 2116 08/19/030.5 1.00 0.06 0.03 0.10 0.1372 151 0.01 0.0QA Duplicate; BOD5<1.0, TKN<0.2Inn. Trench Design A-B MW Drain 2116 09/02/030.5 3.00 0.04 0.00 0.10 0.1074 141 0.01 0.0 7.3 0.1 278 9.3 14.78BOD5<1.0, Nitrate<0.005, TKN<0.2Inn. Trench Design A-B MW Drain 2116 09/29/030.5 2.00 0.04 0.02 0.10 0.1274 131 0.01 0.0 7.3 0.1 283 10.4 14.91BOD5 <1.0, TKN<0.2, D.O.<0.1Inn. Trench Design A-B MW Drain 2116 10/27/030.5 0.50 0.03 0.00 0.10 0.1077 131 0.01 0.0 7.2 0.2 277 10.2 14.87BOD5<1.0, TSS<1, Nitrate <0.050, TKN<0.2Inn. Trench Design A-B MW Drain 2116 02/09/040.04 0.00 0.10 0.10171 0.01 0.0 7.2 0.2 301 9.4 14.80nitrate <0.005, TKN<0.2Inn. Trench Design A-B MW Drain 2116 04/26/040.04 0.02 0.10 0.12251 0.01 0.0 7.2 0.1 342 9.7 14.10TKN<0.2Inn. Trench Design A-B MW Drain 2116 11/16/040.04 0.01 0.10 0.11141 0.01 0.0 7.1 0.3 309 10.0 15.21TKN<0.2Inn. Trench Design A-B STD-E 09/30/021.0 4.00 0.06 34.50 0.70 35.20 0.1519 2560 1.854 1.7 7.0 5.1 471 11.5BOD5 is est.Appendix B: Innovative System Field Test DataPage B-31
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesInn. Trench Design A-B STD-E10/29/020.5 3.00 0.03 38.50 0.40 38.90 0.0816 272 0.32 0.3 6.9 6.3 455 7.3BOD5<1.0Inn. Trench Design A-B STD-E 11/19/020.5 3.00 0.03 43.30 0.10 43.40 0.0712 4514 1.110 1.0 7.3 6.8 618 7.6 BOD5 <1.0, TKN <0.2Inn. Trench Design A-B STD-E 01/06/031.3 6.00 0.02 51.00 0.60 51.60 0.0718 3310 1.08 0.9 7.1 8.1 640 3.3BOD5 is est.Inn. Trench Design A-B STD-E 02/05/030.5 1.00 0.03 64.70 0.50 64.70 0.0610 3214 1.14 0.6 7.1 10.2 735 2.8BOD5<1.0Inn. Trench Design A-B STD-E 03/03/031.5 11.00 0.04 56.60 0.40 57.00 0.608 336 0.812 1.1 7.1 9.5 679 4.8BOD5 is est.Inn. Trench Design A-B STD-E 03/31/031.2 9.00 0.03 56.30 0.10 56.40 0.148 3216 1.210 1.0 7.1 7.0 686 7.5TKN <0.2Inn. Trench Design A-B STD-E 04/28/030.5 3.00 0.01 56.40 0.10 56.50 0.178 322 0.32 0.3 7.3 6.8 661 7.8BOD5<1.0 NH4 <0.02, TKN <0.2Inn. Trench Design A-B STD-E 06/25/030.5 4.00 0.04 19.60 0.80 20.40 0.4218 2618 1.312 1.1 6.9 6.0 409 14.8BOD5<1.0Inn. Trench Design A-B STD-E 07/07/030.5 3.00 0.05 19.80 0.10 19.90 0.5420 282 0.38 0.9 6.9 5.8 426 15.9BOD5<1.0, TKN<0.2Inn. Trench Design A-B STD-E 08/18/030.5 2.00 0.04 10.80 1.10 11.90 0.8730 3914 1.14 0.6 6.9 6.9 420 18.1BOD5<1.0Inn. Trench Design A-B STD-E 09/03/031.4 2.00 0.02 11.00 1.10 12.10 1.0846 3312 1.14 0.6 7.1 4.9 425 18.1BOD5 is est.Inn. Trench Design A-B STD-E 10/29/031.6 1.00 0.06 19.60 0.80 20.40 1.3152 332 0.32 0.3 7.3 6.9 490 10.4BOD5 is est.Inn. Trench Design A-B STD-E 02/09/040.5 4.00 0.03 39.70 0.70 40.40 6.3160 328 0.98 0.9 7.1 9.2 656 4.3BOD<1.0Inn. Trench Design A-B STD-E 04/27/040.5 0.50 0.04 31.90 0.30 32.20 7.1956 4146 1.744 1.6 7.1 7.2 634 9.5BOD5<1.0, TSS<1Inn. Trench Design A-B STD-E 11/17/040.5 4.00 0.03 37.00 0.10 37.10 3.9424 336 0.84 0.6 6.7 6.7 564 7.4Chloride is est., BOD5<1.0, TKN<0.2Inn. Trench Design A-B STE 09/04/0297.0 22.00 35.00 0.01 52.00 52.01 10.80 226 26 38.00 420,000 5.6 380,000 5.6 8.7 0.9 586 18.0BOD5 >97Inn. Trench Design A-B STE 09/30/02150.0 26.00 40.00 0.01 44.00 44.01 8.18 254 24 25.00 1.9E+07 7.3 4.6E+06 6.7 8.3 1.2 612 16.5Inn. Trench Design A-B STE10/29/02170.0 35.00 44.00 0.02 53.00 53.02 11.70 306 53 31.00 120,000 5.1 100,000 5.0 8.4 0.7 345 15.2cond. is est.Inn. Trench Design A-B STE 11/19/02180.0 45.00 50.00 0.03 63.00 63.03 11.70 319 46 33.00 200,000 5.3 220,000 5.3 8.4 1.0 934 14.6Inn. Trench Design A-B STE01/06/03160.0 51.00 58.00 0.05 71.00 71.05 10.70 352 32 28.00 64,000 4.8 58,000 4.8 8.7 1.1 904 11.7Inn. Trench Design A-B STE02/05/03160.0 30.00 53.00 0.04 58.00 58.04 10.30 332 41 41.00 270,000 5.4 260,000 5.4 8.7 1.3 888 12.3Inn. Trench Design A-B STE03/03/03190.0 31.00 47.00 0.02 68.00 68.02 9.84 296 42 42.00 52,000 4.7 38,000 4.6 8.5 1.1 815 12.1Inn. Trench Design A-B STE03/31/03190.0 44.00 42.00 0.07 49.00 49.07 8.87 346 38 46.00 68,000 4.8 64,000 4.8 8.8 1.0 862 14.6Inn. Trench Design A-B STE04/28/03200.0 24.00 45.00 0.06 51.00 51.06 10.20 302 34 34.00 112,000 5.0 128,000 5.1 8.1 1.1 815 15.0Inn. Trench Design A-B STE06/25/03240.0 45.00 51.00 0.03 64.00 64.03 13.70 344 30 29.00 44,000 4.6 38,000 4.6 7.4 0.6 897 20.4Inn. Trench Design A-B STE07/07/03330.0 26.00 46.00 0.05 57.00 57.05 11.20 328 30 32.00 98,000 5.0 110,000 5.0 7.2 0.3 837 21.5Inn. Trench Design A-B STE08/18/03370.0 59.00 45.00 0.02 75.00 75.02 15.00 391 37 30.00 100,000 5.0 100,000 5.0 7.0 0.0 964 22.5O&G is est.Inn. Trench Design A-B STE 09/03/03360.0 50.00 42.00 0.01 55.00 55.01 11.70 316 32 37.00 130,000 5.1 94,000 5.0 7.0 0.6 812 22.1Inn. Trench Design A-B STE10/29/03330.0 62.00 52.00 0.03 66.00 66.03 13.50 382 45 27.00 170,000 5.2 130,000 5.1 7.1 1.2 962 16.0Inn. Trench Design A-B STE02/09/04240.0 46.00 56.00 0.01 72.00 72.01 11.60 382 39 48.00 2,000 3.3 8,000 3.9 7.7 1.4 961 12.4Inn. Trench Design A-B STE04/27/04210.0 42.00 48.00 0.04 63.00 63.04 11.20 306 49 28.00 2,000 3.3 2,000 3.3 7.3 1.0 836 17.0Inn. Trench Design A-B STE11/17/04200.0 27.00 46.00 0.01 58.00 58.01 8.16 290 36 29.00 480,000 5.7 480,000 5.7 7.3 1.0 775 19.3Chloride is est.Inn. Trench Design A-B WTE 09/04/0216.0 6.00 23.00 2.71 26.00 28.71 6.41 195 222,600 3.4 2,400 3.4 7.5 0.8 553 17.9Inn. Trench Design A-B WTE09/04/0231.0 5.00 24.00 2.70 28.00 30.70 6.12 196 224,400 3.6 4,200 3.6 7.5 0.8 553 17.9QA DuplicateInn. Trench Design A-B WTE 10/29/024.5 6.00 0.20 41.20 2.20 43.40 7.6126 37140 2.1 160 2.2 6.6 3.2 529 11.4Inn. Trench Design A-B WTE11/19/021.2 2.00 0.08 47.10 1.60 48.70 7.3411 49250 2.4 190 2.3 6.5 3.0 676 8.2Inn. Trench Design A-B WTE01/06/036.3 9.00 6.70 46.80 12.00 58.80 8.4943 32360 2.6 340 2.5 6.4 2.2 706 6.0Inn. Trench Design A-B WTE02/05/034.8 8.00 3.00 54.80 5.50 60.30 6.606 3320 1.32 0.3 6.0 1.9 681 5.3Inn. Trench Design A-B WTE03/03/033.0 3.00 5.90 49.90 7.70 57.60 7.675 3116 1.216 1.2 5.8 1.6 646 6.0QA DuplicateInn. Trench Design A-B WTE 03/03/0313.0 6.00 6.10 49.50 7.80 57.30 7.695 3130 1.524 1.4 5.9 1.8 648 5.8Inn. Trench Design A-B WTE03/31/032.6 2.00 1.33 49.40 2.30 51.70 8.242 326 0.82 0.3 6.4 1.3 638 10.4Inn. Trench Design A-B WTE04/28/033.1 4.00 0.22 52.10 1.40 53.50 9.321 30176 2.2 156 2.2 6.1 1.6 649 9.4Inn. Trench Design A-B WTE06/25/037.9 4.00 3.00 8.76 5.10 13.86 9.94 116 262 0.31 0.0 7.0 0.9 515 17.5Inn. Trench Design A-B WTE07/07/033.5 3.00 2.50 11.50 5.40 16.90 10.50 130 282 0.32 0.3 6.8 1.1 566 19.5Inn. Trench Design A-B WTE08/18/034.8 7.00 3.30 1.52 5.30 1.52 11.80 215 391 0.01 0.0 7.2 1.5 642 22.7Inn. Trench Design A-B WTE08/18/036.6 4.00 3.70 1.43 5.30 1.43 11.60 223 3820 1.310 1.0 7.2 1.3 675 22.3Inn. Trench Design A-B WTE09/03/033.1 3.00 3.50 3.78 5.60 9.38 11.80 192 281 0.01 0.0 7.1 1.4 623 21.5BOD5 is est.Inn. Trench Design A-B WTE 10/29/035.7 3.00 5.10 12.50 7.00 19.50 11.80 143 3394 2.082 1.9 7.1 2.6 622 12.3Inn. Trench Design A-B WTE02/09/045.7 11.00 5.00 30.30 7.10 37.40 11.10 94 33740 2.9 440 2.6 7.0 1.7 659 4.8Inn. Trench Design A-B WTE04/27/049.5 7.00 15.00 7.91 20.00 27.91 11.80 164 4140 1.622 1.3 7.2 1.0 656 12.4Inn. Trench Design A-B WTE11/17/044.0 4.00 3.70 31.30 5.40 36.70 7.0336 28800 2.9 1,100 3.0 6.6 1.6 540 9.5Chloride, TKN, nitrate, NH4, phosphate is est.Inn. Trench Design A-K ATE 08/06/0240.0 34.00 7.50 44.80 9.80 54.60 14.60 92 19064 1.862 1.8 7.2 1.0 1193 17.1Inn. Trench Design A-K ATE09/09/028.3 2.00 3.20 59.00 4.70 63.70 17.10 41 17072 1.978 1.9 6.8 0.7 1234 16.4Inn. Trench Design A-K ATE10/09/026.6 0.50 1.12 62.00 3.20 65.20 18.00 28 1708 0.96 0.8 6.7 0.9 1170 13.1TSS <1Inn. Trench Design A-K ATE 11/04/021.8 3.00 0.05 67.00 1.50 68.50 18.20 32 19024 1.48 0.9 6.4 1.6 1262 8.5Inn. Trench Design A-K ATE12/04/0240.0 6.00 7.80 24.50 12.00 36.50 12.30 175 15050,000 4.7 37,000 4.6 7.0 1.3 1182 9.5Inn. Trench Design A-K ATE01/21/032.6 0.50 0.28 58.00 0.10 58.10 12.00 22 17016 1.216 1.2 6.6 1.5 1207 4.6TSS <1, TKN <0.2Inn. Trench Design A-K ATE 02/12/033.0 2.00 0.10 64.60 0.90 65.50 14.20 29 17030 1.532 1.5 6.1 2.1 1262 4.6pH is est.Inn. Trench Design A-K ATE 02/12/031.7 0.50 0.10 65.90 1.20 67.10 14.20 28 17052 1.748 1.7 6.1 1.5 1263 5.0QA Duplicate; BOD5 is est., TSS <1, pH is est.Inn. Trench Design A-K ATE 03/10/036.9 4.00 0.34 65.20 1.60 66.80 13.70 41 160300 2.5 360 2.6 6.5 1.9 1263 5.9Inn. Trench Design A-K ATE04/21/039.8 2.00 0.24 57.80 2.10 59.90 14.10 132 170180 2.3 124 2.1 7.3 1.6 1409 8.2TKN is est.Inn. Trench Design A-K ATE 04/28/0311.0 5.00 1.20 52.80 3.40 56.20 14.80 184 160172 2.2 300 2.5 7.1 1.2 1395 7.8Inn. Trench Design A-K ATE06/16/0312.0 2.00 6.00 14.00 8.30 22.30 17.60 339 190820 2.9 740 2.9 7.5 1.1 1465 16.3Inn. Trench Design A-K ATE07/14/0310.0 6.00 8.40 17.00 10.00 27.00 15.40 236 190150 2.2 160 2.2 7.4 0.9 1294 18.8Appendix B: Innovative System Field Test DataPage B-32
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesInn. Trench Design A-K ATE07/14/036.0 4.00 8.60 17.00 11.00 28.00 15.40 232 180160 2.2 140 2.1 7.4 1.0 1289 18.7QA DuplicateInn. Trench Design A-K ATE 09/10/034.8 2.00 6.60 41.40 7.20 48.60 14.70 92 18066 1.850 1.7 7.0 1.2 1218 18.2NH4AsN, TKN is est.Inn. Trench Design A-K ATE 11/03/034.8 4.00 4.20 43.90 5.70 49.60 15.80 64 170130 2.1 110 2.0 6.9 1.6 1153 9.4Inn. Trench Design A-K ATE02/09/0410.0 3.00 9.10 25.80 12.00 37.80 13.80 137 160780 2.9 1,740 3.2 7.2 3.6 1116 3.3QA DuplicateInn. Trench Design A-K ATE 02/09/048.4 2.00 8.50 26.80 11.00 37.80 13.70 122 160860 2.9 1,420 3.2 7.2 3.8 1086 3.4Inn. Trench Design A-K ATE05/17/048.8 1.00 9.30 21.40 11.00 32.40 13.70 140 15098 2.0 110 2.0 7.2 1.6 1089 12.0QA duplicateInn. Trench Design A-K ATE 05/17/048.1 2.00 8.80 22.10 11.00 33.10 14.00 120 150160 2.294 2.0 7.1 1.6 1076 11.9Inn. Trench Design A-K AXE08/06/0211.0 6.00 0.19 47.40 4.20 51.60 16.40 70 18038 1.642 1.6 7.2 2.6 1160 18.9Inn. Trench Design A-K AXE09/09/022.8 4.00 0.47 55.50 3.10 58.60 18.20 49 17072,000 4.9 82,000 4.9 6.9 2.3 1211 19.8Inn. Trench Design A-K AXE10/09/023.0 4.00 0.09 60.50 2.10 62.60 19.80 49 17010 1.04 0.6 6.9 5.3 1212 16.8Inn. Trench Design A-K AXE11/04/020.5 0.50 0.08 65.60 1.90 67.50 19.70 45 19016 1.222 1.3 6.5 4.7 1269 12.9BOD5 <1.0, TSS<1Inn. Trench Design A-K AXE 12/04/026.9 5.00 15.00 14.90 20.00 34.90 7.31 161 1306,000 3.8 420,000 5.6 7.1 5.2 1013 11.5Inn. Trench Design A-K AXE12/04/026.9 4.00 14.60 14.80 19.00 33.80 7.25 161 1307,200 3.9 7,000 3.8 7.1 4.9 1016 12.1QA DuplicateInn. Trench Design A-K AXE 01/21/031.8 1.00 0.18 59.20 1.00 60.20 14.00 44 17766 1.856 1.7 6.9 5.4 1279 9.4BOD5 is est.Inn. Trench Design A-K AXE 02/12/031.9 1.00 0.69 67.80 1.10 68.90 14.80 36 170140 2.1 150 2.2 6.3 6.0 1277 9.6BOD5 is est., pH is est.Inn. Trench Design A-K AXE 03/10/036.6 7.00 2.10 63.10 5.50 68.60 13.10 69 160540 2.7 380 2.6 6.9 5.9 1283 11.0Inn. Trench Design A-K AXE04/21/038.5 2.00 4.40 52.90 5.80 58.70 14.40 186 17096 2.078 1.9 7.5 2.3 1420 11.2QA DuplicateInn. Trench Design A-K AXE 04/21/037.4 1.00 4.10 53.40 4.80 58.20 14.50 186 170100 2.074 1.9 7.3 2.3 1431 10.8Inn. Trench Design A-K AXE04/28/0324.0 13.00 4.70 44.30 8.00 52.30 14.60 243 1701,880 3.3 1,780 3.3 7.6 3.6 1433 11.7BOD5 is est.Inn. Trench Design A-K AXE 06/16/039.0 4.00 8.70 13.20 17.00 30.20 16.50 355 200120 2.1 126 2.1 7.7 1.0 1517 17.8Inn. Trench Design A-K AXE07/14/039.9 6.00 14.80 19.90 16.00 35.90 14.20 210 18024 1.418 1.3 7.5 1.5 1275 10.5Inn. Trench Design A-K AXE09/10/037.5 7.00 9.00 40.00 10.00 50.00 16.00 94 17010 1.012 1.1 7.1 1.3 1235 19.7Inn. Trench Design A-K AXE11/03/0313.0 5.00 11.40 41.20 15.00 56.20 17.40 96 160160 2.2 150 2.2 7.1 2.5 1185 12.6Inn. Trench Design A-K AXE02/09/0413.0 9.00 14.60 25.80 19.00 44.80 13.70 154 160540 2.7 700 2.8 7.4 4.5 1118 5.9Inn. Trench Design A-K AXE05/17/0410.0 6.00 16.00 21.40 20.00 41.40 13.40 160 15048 1.754 1.7 7.2 2.0 1113 15.1Inn. Trench Design A-K MW Drain 2123 05/09/020.03 3.12 0.10 3.22256.9 1.0 306 8.3 18.09TKN <0.2; Background/well developmentInn. Trench Design A-K MW Drain 2123 07/15/020.5 7.00 0.01 4.00 0.10 4.1043 251 0.01 0.0 7.1 2.5 248 9.1 18.34TKN <0.2, NH4<0.02, BOD5<1.0Inn. Trench Design A-K MW Drain 2123 08/06/021.2 6.00 0.02 4.26 0.10 4.3642 241 0.01 0.0 7.0 2.9 246 8.3 18.44TKN <0.2Inn. Trench Design A-K MW Drain 2123 09/09/020.5 6.00 0.01 4.43 0.30 4.7342 231 0.01 0.0 7.0 2.6 231 8.6 18.55 BOD5<1.0, NH4 <0.02Inn. Trench Design A-K MW Drain 2123 10/07/020.5 9.00 0.01 4.72 0.10 4.8244 221 0.01 0.0 6.9 2.7 229 8.6 18.64NH4 <0.02; BOD5 <1; TKN < 0.2; chloride is est.Inn. Trench Design A-K MW Drain 2123 11/04/020.5 20.00 0.03 4.85 0.10 4.9545 211 0.01 0.0 7.0 3.2 226 8.6 18.71BOD5 <1.0, TKN <0.2Inn. Trench Design A-K MW Drain 2123 12/03/020.5 0.50 0.01 5.15 0.10 5.2546 221 0.01 0.0 7.0 2.5 273 8.8 18.79BOD5 <1.0, TSS<1 NH4 <0.02, TKN <0.2Inn. Trench Design A-K MW Drain 2123 01/21/030.5 2.00 0.01 4.90 0.10 5.0046 201 0.01 0.0 7.0 3.0 241 8.4 18.89BOD5 <1.0, NH4 <0.02, TKN <0.2Inn. Trench Design A-K MW Drain 2123 01/21/030.5 1.00 0.01 4.94 0.30 5.2446 201 0.01 0.0QA Duplicate; BOD5 <1.0, NH4 <0.02Inn. Trench Design A-K MW Drain 2123 02/11/030.5 5.00 0.03 3.91 0.10 4.0144 171 0.01 0.0 7.0 4.7 210 8.6 18.89BOD5<1.0, TKN <0.2Inn. Trench Design A-K MW Drain 2123 03/10/031.2 2.00 0.01 3.26 0.30 3.5645 171 0.01 0.0 7.0 6.0 197 8.7 18.96BOD5 is est., NH4AsN <0.02Inn. Trench Design A-K MW Drain 2123 04/21/030.5 7.00 0.01 2.95 0.10 3.0544 151 0.01 0.0 6.9 5.3 187 8.6 18.98BOD5<1.0 NH4 <0.02, TKN <0.2Inn. Trench Design A-K MW Drain 2123 04/28/030.5 2.00 0.01 3.11 0.20 3.3144 161 0.01 0.0 7.0 6.9 186 8.4 18.99BOD5<1.0 NH4 <0.02Inn. Trench Design A-K MW Drain 2123 06/17/030.5 0.50 0.02 6.35 0.10 6.4540 281 0.01 0.0 7.0 5.5 247 9.1 19.21BOD5<1.0, TSS <1, TKN<0.2Inn. Trench Design A-K MW Drain 2123 06/17/030.5 0.50 0.02 6.35 0.10 6.4540 281 0.01 0.0QA Duplicate; BOD5<1.0, TSS <1, TKN<0.2Inn. Trench Design A-K MW Drain 2123 07/14/030.5 0.50 0.02 8.48 0.20 8.6840 321 0.01 0.0 7.0 5.3 280 9.6 19.30BOD5<1.0, TSS<1Inn. Trench Design A-K MW Drain 2123 07/14/030.5 0.50 0.01 8.51 0.30 8.8140 331 0.01 0.0QA Duplicate; BOD5<1.0, TSS<1 NH4<0.02Inn. Trench Design A-K MW Drain 2123 09/09/030.5 1.00 0.02 14.40 0.10 14.5036 491 0.01 0.0 7.0 8.5 380 8.3 19.51TKN<0.2, BOD5<1Inn. Trench Design A-K MW Drain 2123 10/07/030.5 0.50 0.01 11.60 0.10 11.7037 411 0.01 0.0 7.0 6.3 334 8.7 19.51BOD5 <1.0, TSS<1, NH4AsN<0.02, TKN<0.2Inn. Trench Design A-K MW Drain 2123 10/07/030.5 0.50 0.02 11.60 0.10 11.7037 411 0.01 0.0QA Duplicate; BOD5 <1.0, TSS<1, TKN<0.2Inn. Trench Design A-K MW Drain 2123 11/04/030.5 0.50 0.02 9.77 0.10 9.8728 341 0.01 0.0 6.9 6.4 290 8.2 19.55BOD5<1.0, TSS<1, TKN<0.2Inn. Trench Design A-K MW Drain 2123 02/09/040.01 10.50 0.30 10.80351 0.01 0.0 6.9 5.3 313 8.3 19.69NH4AsN<0.02Inn. Trench Design A-K MW Drain 2123 02/09/040.01 10.70 0.20 10.90351 0.01 0.0QA Duplicate; NH4AsN<0.02Inn. Trench Design A-K MW Drain 2123 05/17/040.02 17.00 0.10 17.10681 0.01 0.0 6.9 5.8 455 9.1 19.41TKN<0.2Inn. Trench Design A-K STD-E 08/06/020.33 59.50 0.80 60.30 0.401907.5 4.3 316 13.1Inn. Trench Design A-K STD-E09/09/020.5 9.00 0.12 60.30 0.60 60.90 0.2313 1902 0.32 0.3 7.2 5.3 1181 12.8BOD5<1.0Inn. Trench Design A-K STD-E 10/09/021.2 1.00 0.04 60.70 1.10 61.80 1.0814 1702 0.32 0.3 6.9 8.1 1099 11.2BOD5 is estimate.Inn. Trench Design A-K STD-E 11/04/021.1 4.00 0.04 61.10 1.10 62.20 2.7214 19014 1.114 1.1 6.6 8.0 1185 4.4BOD5 is est.Inn. Trench Design A-K STD-E 12/04/0224.0 9.00 0.06 29.50 2.00 31.50 9.13 132 16011,000 4.0 8,000 3.9 7.3 8.3 1176 4.7Inn. Trench Design A-K STD-E01/21/030.5 4.00 0.03 55.40 1.10 56.50 3.4616 17014 1.112 1.1 7.2 9.4 1058 4.7BOD5 <1.0Inn. Trench Design A-K STD-E 02/12/031.5 2.00 0.04 61.70 0.10 61.80 5.1816 17038 1.634 1.5 6.6 10.7 1229 2.0BOD5 is est., TKN <0.2, pH is est.Inn. Trench Design A-K STD-E 03/10/031.4 2.00 0.08 66.80 0.80 67.60 6.2115 17032 1.526 1.4 6.9 11.1 1245 4.3Inn. Trench Design A-K STD-E04/21/030.5 2.00 0.04 64.10 0.10 64.20 8.9826 1701,100 3.0 640 2.8 7.3 6.1 1229 7.6BOD5<1.0, TKN <0.2Inn. Trench Design A-K STD-E 04/28/031.4 2.00 0.05 61.30 0.10 61.40 12.10 46 1702,920 3.5 1,480 3.2 7.2 5.5 1255 6.4BOD5, TKN is est. <0.2Inn. Trench Design A-K STD-E 06/16/030.5 4.00 0.06 34.10 1.60 35.70 15.10 122 1802 0.32 0.3 7.5 6.0 1227 14.0BOD5<1.0Inn. Trench Design A-K STD-E 07/14/030.5 3.00 0.05 33.30 0.50 33.80 14.50 128 190170 2.2 140 2.1 7.7 5.1 1265 15.6BOD5<1.0Inn. Trench Design A-K STD-E 09/10/030.5 3.00 0.03 52.50 0.60 53.10 7.4361 18072 1.958 1.8 7.4 4.9 1257 14.5BOD5<1Inn. Trench Design A-K STD-E 11/03/030.5 5.00 0.02 48.20 1.00 49.20 7.2442 17014 1.116 1.2 7.4 7.8 1143 8.5BOD5<1.0Inn. Trench Design A-K STD-E 02/09/041.3 7.00 0.04 41.40 1.40 42.80 11.10 52 160220 2.3 300 2.5 7.1 8.4 1085 2.4Appendix B: Innovative System Field Test DataPage B-33
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesInn. Trench Design A-K STD-E05/17/041.8 4.00 0.04 39.90 0.70 40.60 13.70 52 1606 0.82 0.3 7.1 6.8 1023 11.6BOD5 is est.Inn. Trench Design A-K STE 08/06/02180.0 40.00 54.00 0.02 63.00 63.02 17.90 345 170 46.00 84000 4.9 110000 5.0 8.4 0.6 1338 21.3Inn. Trench Design A-K STE09/09/02150.0 58.00 49.00 0.01 67.00 67.01 21.70 359 170 26.00 22 1.320 1.3 8.1 0.4 1416 21.4Inn. Trench Design A-K STE10/09/02210.0 47.00 58.00 0.02 72.00 72.02 23.10 480 1907,000 3.8 6,000 3.8 7.9 1.3 1479 19.3Oil & grease VOID.Inn. Trench Design A-K STE 11/04/02210.0 0.50 64.00 0.02 76.00 76.02 23.20 472 200 21.00 64000 4.8 46000 4.7 7.7 1.1 1569 16.2TSS<1Inn. Trench Design A-K STE 12/04/0244.0 37.00 0.28 0.01 27.00 27.01 5.11 166 100 11.00 70000 4.8 54000 4.7 7.5 1.1 766 12.5Inn. Trench Design A-K STE01/21/03160.0 84.00 46.00 0.02 60.00 60.02 15.90 421 180 30.00 58000 4.8 76000 4.9 8.1 1.0 1504 13.4Inn. Trench Design A-K STE02/12/03150.0 73.00 61.00 0.02 74.00 74.02 19.00 464 180 31.00 190000 5.3 180000 5.3 7.6 1.0 1575 13.6pH is est.Inn. Trench Design A-K STE 03/10/03180.0 40.00 58.00 0.02 68.00 68.02 15.40 501 170 14.00 320000 5.5 300000 5.5 8.1 0.5 1607 14.4Inn. Trench Design A-K STE04/21/03170.0 84.00 49.00 0.02 66.00 66.02 17.90 585 180 35.00 150000 5.2 110000 5.0 8.5 0.6 1713 13.9Inn. Trench Design A-K STE04/28/03180.0 77.00 46.00 0.04 57.00 57.04 16.80 564 170 53.00 1.0E+06 6.0 980000 6.0 8.7 0.8 1676 14.9Inn. Trench Design A-K STE06/16/03220.0 100.00 54.00 0.03 65.00 65.03 22.20 489 200 44.00 152000 5.2 152000 5.2 8.0 0.7 1670 20.7Inn. Trench Design A-K STE07/14/03130.0 65.00 58.00 0.02 73.00 73.02 14.70 391 170 35.00 180000 5.3 180000 5.3 7.8 0.7 1424 21.7Inn. Trench Design A-K STE09/10/03110.0 41.00 52.00 0.02 70.00 70.02 18.10 384 180 53.00 54000 4.7 52000 4.7 7.7 0.7 1424 22.9Inn. Trench Design A-K STE11/03/03150.0 53.00 59.00 0.01 72.00 72.01 19.00 406 170 36.00 40000 4.6 14000 4.1 7.8 1.2 1443 16.5Inn. Trench Design A-K STE02/09/0498.0 30.00 50.00 0.01 65.00 65.01 14.40 340 160 98.00 1,000 3.0 6,000 3.8 7.7 0.7 1253 14.1Inn. Trench Design A-K STE05/17/04120.0 21.00 43.00 0.02 59.00 59.02 10.70 310 140 56.00 8,800 3.9 6,400 3.8 7.5 1.1 1187 18.7Inn. Trench Design A-K WTE08/06/027.2 4.00 3.90 44.60 6.60 51.20 16.30 83 1902 0.34 0.6 7.2 1.5 1129 17.5Inn. Trench Design A-K WTE09/09/022.1 2.00 0.79 55.60 3.00 58.60 18.30 50 1701 0.02 0.3 7.0 0.5 1203 17.3QA DuplicateInn. Trench Design A-K WTE 09/09/022.5 2.00 0.77 54.80 2.11 56.91 18.30 50 1702 0.31 0.0 7.0 0.5 1203 17.3NH4, Nitrate, TKN, Phosphate are est.Inn. Trench Design A-K WTE 10/09/021.3 1.00 0.06 59.10 2.70 61.80 19.40 52 1702 0.32 0.3 6.9 1.8 1167 12.9BOD5 is est.Inn. Trench Design A-K WTE 10/09/021.8 0.50 0.07 58.60 2.20 60.80 19.50 52 1702 0.32 0.3 6.9 2.0 1175 13.8QA Duplicate; BOD5 is estimate; TSS <1Inn. Trench Design A-K WTE 11/04/020.5 1.00 0.03 65.40 1.40 66.80 19.10 46 1902 0.310 1.0 6.7 2.8 1260 8.1BOD5 <1.0Inn. Trench Design A-K WTE 11/04/020.5 1.00 0.03 65.10 1.80 66.90 19.20 46 1904 0.62 0.3 6.7 4.1 1290 8.4BOD5 <1.0, TSS<2Inn. Trench Design A-K WTE 12/04/0218.0 6.00 20.00 13.60 26.00 39.60 10.10 216 14065,000 4.8 57,000 4.8 7.1 1.4 1148 9.2Inn. Trench Design A-K WTE01/21/031.1 0.50 0.07 58.10 0.80 58.90 13.60 37 17720 1.322 1.3 6.8 3.9 1273 4.6QA Duplicate; BOD5 is est., TSS <1Inn. Trench Design A-K WTE 01/21/032.0 2.00 0.06 60.60 0.80 61.40 14.20 41 18024 1.418 1.3 6.9 3.8 1250 4.5Inn. Trench Design A-K WTE02/12/031.3 0.50 0.06 63.00 1.00 64.00 14.90 38 1702 0.32 0.3 6.3 4.6 1252 4.8BOD5 is est., TSS <1, pH is est.Inn. Trench Design A-K WTE 03/10/033.6 2.00 0.39 64.20 2.60 66.80 13.30 42 160120 2.180 1.9 6.5 1.3 1283 5.6Inn. Trench Design A-K WTE03/10/034.6 4.00 0.35 65.50 2.40 67.90 13.40 50 160126 2.1 116 2.1 6.6 1.9 1267 6.4QA DuplicateInn. Trench Design A-K WTE 04/21/032.5 2.00 2.00 53.00 3.00 56.00 13.90 180 17044 1.636 1.6 7.1 1.2 1359 8.1BOD5 is est.Inn. Trench Design A-K WTE 04/28/035.3 4.00 3.70 44.80 4.00 48.80 14.90 224 170440 2.6 216 2.3 7.3 1.2 1428 8.2Inn. Trench Design A-K WTE06/16/0325.0 9.00 14.00 0.35 19.00 19.35 17.00 418 200140 2.1 138 2.1 7.4 0.8 1499 16.8Inn. Trench Design A-K WTE06/16/0314.0 5.00 13.00 0.43 21.00 21.43 16.70 422 200222 2.3 244 2.4 7.5 0.9 1516 17.1QA DuplicateInn. Trench Design A-K WTE 07/14/038.1 3.00 15.00 13.20 17.00 30.20 14.60 270 18048 1.746 1.7 7.5 1.2 1297 19.6Inn. Trench Design A-K WTE09/10/0376.0 450.00 10.50 32.70 12.00 44.70 14.30 120 1802 0.32 0.3 6.8 0.9 1220 17.7Inn. Trench Design A-K WTE11/03/036.8 3.00 5.50 43.70 7.90 51.60 16.90 59 17060 1.856 1.7 6.8 2.2 1144 7.5Inn. Trench Design A-K WTE02/09/047.2 5.00 13.90 26.10 18.00 44.10 14.20 144 160260 2.4 420 2.6 7.3 4.9 1151 2.3Inn. Trench Design A-K WTE05/17/0411.0 4.00 13.70 15.60 20.00 35.60 13.30 190 15052 1.766 1.8 7.3 0.6 1100 12.6Inn. Trench Design A-P ATE11/20/026.5 2.00 2.10 28.20 3.90 32.10 2.3691 3140 1.630 1.5 7.3 1.1 599 7.3Inn. Trench Design A-P ATE01/08/0312.0 2.00 1.08 30.70 2.70 33.40 3.7466 372 0.32 0.3 6.9 1.5 588 4.3Inn. Trench Design A-P ATE02/04/036.6 5.00 0.99 29.40 3.10 32.50 3.7264 3224 1.420 1.3 7.0 1.1 562 4.0Inn. Trench Design A-P ATE03/05/0315.0 4.00 1.07 32.00 4.10 36.10 5.3960 4016 1.212 1.1 6.7 1.9 565 4.2Inn. Trench Design A-P ATE04/02/0311.0 2.00 0.91 32.20 2.30 34.50 5.1259 4010 1.08 0.9 6.6 1.0 566 4.9Inn. Trench Design A-P ATE04/30/0311.0 1.00 0.80 32.80 3.00 35.80 6.5452 392 0.32 0.3 6.5 1.6 547 6.1Inn. Trench Design A-P ATE06/09/034.9 8.00 0.93 15.40 3.00 18.40 7.0585 4032 1.528 1.4 6.7 1.4 521 11.6Inn. Trench Design A-P ATE07/16/034.5 2.00 0.96 12.60 2.90 15.50 7.6195 3428 1.418 1.3 6.9 1.1 493 15.1Inn. Trench Design A-P ATE08/20/0312.0 5.00 5.00 0.01 7.00 7.01 5.78 246 3582 1.958 1.8 7.2 1.3 626 17.3Inn. Trench Design A-P ATE09/03/037.2 2.00 5.20 0.00 7.50 7.50 7.19 232 3632 1.520 1.3 7.2 0.5 660 19.1Nitrate/Nitrite<.005Inn. Trench Design A-P ATE 10/08/037.0 1.00 3.40 5.96 5.80 11.76 7.71 198 331,500 3.2 2,000 3.3 7.2 1.4 608 14.5QA DuplicateInn. Trench Design A-P ATE 10/08/035.8 2.00 3.50 5.96 5.80 11.76 7.57 198 341,600 3.2 1,900 3.3 7.2 1.6 610 14.1Inn. Trench Design A-P ATE10/27/031.4 0.50 1.60 15.00 3.50 18.50 7.44 160 336 0.86 0.8 7.2 1.3 583 11.6BOD5 is est., TSS<1Inn. Trench Design A-P ATE 02/04/041.3 2.00 1.12 21.80 2.80 24.60 8.3068 3318 1.334 1.5 6.9 2.6 511 4.0QA Duplicate; BOD5 is est.Inn. Trench Design A-P ATE 02/04/041.2 2.00 1.24 21.70 2.90 24.60 8.3968 3342 1.624 1.4 6.8 2.1 501 4.8BOD5 is est.Inn. Trench Design A-P ATE 05/17/042.2 0.50 1.40 24.10 2.90 27.00 8.1965 4056 1.730 1.5 7.1 1.8 527 9.7TSS<1, BOD5 is est.Inn. Trench Design A-P ATE 11/03/041.4 0.50 0.50 20.50 2.00 22.50 9.9288 3410 1.012 1.1 6.8 1.5 550 8.4TSS<1Inn. Trench Design A-P AXE 10/30/0210.0 4.00 1.34 35.10 5.70 40.80 5.7886 35880 2.9 820 2.9 7.1 3.2 623 11.5Inn. Trench Design A-P AXE11/20/025.6 3.00 1.03 37.90 4.40 42.30 6.0340 3910 1.010 1.0 6.8 3.6 674 11.2Inn. Trench Design A-P AXE01/08/0320.0 5.00 1.35 45.60 5.10 50.70 7.917 4118 1.310 1.0 6.1 4.6 650 8.9Inn. Trench Design A-P AXE02/04/0321.0 10.00 8.00 32.20 13.00 45.20 7.5472 4692 2.064 1.8 6.8 3.1 655 10.2Inn. Trench Design A-P AXE03/05/039.0 4.00 1.17 29.10 3.70 32.80 7.3862 438 0.922 1.3 6.7 3.7 596 10.1Inn. Trench Design A-P AXE04/02/0312.0 5.00 0.93 41.50 3.90 45.40 8.5712 448 0.96 0.8 6.0 5.1 598 9.6BOD5 is est.Inn. Trench Design A-P AXE 04/30/0315.0 6.00 0.44 31.10 4.70 35.80 8.8142 416 0.82 0.3 6.7 5.5 559 11.4Inn. Trench Design A-P AXE06/09/035.1 6.00 4.70 16.60 7.90 24.50 10.10 96 3720 1.310 1.0 6.8 1.2 544 16.9Appendix B: Innovative System Field Test DataPage B-34
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesInn. Trench Design A-P AXE07/16/036.3 5.00 2.50 15.20 5.60 20.80 8.9791 3376 1.980 1.9 6.8 1.1 516 18.8Inn. Trench Design A-P AXE08/20/0319.0 12.00 5.20 3.36 11.00 14.36 16.50 215 38380 2.6 280 2.4 7.1 1.7 677 20.9Inn. Trench Design A-P AXE09/03/0322.0 8.00 4.00 4.15 9.70 13.85 16.00 232 3526 1.422 1.3 7.1 0.7 714 23.4Inn. Trench Design A-P AXE10/08/0321.0 5.00 4.70 18.20 7.30 25.50 11.80 139 31420 2.6 260 2.4 7.0 1.6 615 16.6Inn. Trench Design A-P AXE10/27/0320.0 6.00 6.30 17.60 10.00 27.60 10.70 118 342 0.32 0.3 7.0 1.3 587 14.7Inn. Trench Design A-P AXE02/04/044.8 3.00 1.25 24.60 5.40 30.00 8.4258 3514 1.114 1.1 7.0 2.9 525 7.0Inn. Trench Design A-P AXE05/17/043.9 3.00 1.60 27.30 2.10 29.40 10.60 44 3816 1.224 1.4 8.0 2.7 526 13.5Inn. Trench Design A-P AXE11/03/042.7 5.00 2.20 22.10 4.40 26.50 9.97 110 3240 1.638 1.6 7.6 3.2 687 10.4Inn. Trench Design A-P MW Drain 2137 05/02/020.01 1.94 0.10 2.0417.1 8.0 165 8.0 10.90Well Development; NH4 <0.02; TKN <0.2Inn. Trench Design A-P MW Drain 2137 10/30/021.2 6.00 0.01 1.66 0.30 1.9666 11 0.01 0.0 7.0 5.6 133 8.3 10.80BOD5 is est., NH4 <0.02Inn. Trench Design A-P MW Drain 2137 11/19/020.5 4.00 0.01 1.46 0.30 1.7666 11 0.01 0.0 6.9 5.6 147 8.6 10.87BOD5 <1.0 NH4 <0.02Inn. Trench Design A-P MW Drain 2137 01/07/030.5 4.00 0.01 0.98 0.10 1.0864 11 0.01 0.0 6.8 4.9 140 8.1 10.91BOD5<1.0, NH4<0.02, TKN<0.2, pH is est.Inn. Trench Design A-P MW Drain 2137 01/07/031.0 9.00 0.01 0.98 0.10 1.0864 11 0.01 0.0QA Duplicate; BOD5 is est., NH4<0.02, TKN<0.2Inn. Trench Design A-P MW Drain 2137 02/04/030.5 10.00 0.01 0.95 0.10 1.0564 21 0.01 0.0 6.9 5.2 141 7.9 10.82BOD5<1.0, NH4<0.02, TKN<0.2Inn. Trench Design A-P MW Drain 2137 02/04/030.5 9.00 0.01 0.94 0.10 1.0464 11 0.01 0.0QA Duplicate; BOD5<1.0, NH4<0.02, TKN<0.2Inn. Trench Design A-P MW Drain 2137 03/04/030.5 3.00 0.01 1.01 0.10 1.1166 21 0.01 0.0 6.8 5.3 140 7.8 10.82BOD5<1.0, NH4AsN <0.02, TKN <0.2Inn. Trench Design A-P MW Drain 2137 03/04/030.5 11.00 0.01 1.00 0.10 1.1066 11 0.01 0.0QA Duplicate; BOD <1.0, NH4AsN <0.02, TKN <0.2Inn. Trench Design A-P MW Drain 2137 03/31/030.5 52.00 0.01 0.83 0.10 0.9367 11 0.01 0.0 6.9 6.0 140 7.6 10.86BOD5<1.0, NH4 <0.02, TKN <0.2Inn. Trench Design A-P MW Drain 2137 03/31/030.5 82.00 0.01 0.83 0.20 1.0366 11 0.01 0.0QA Duplicate; BOD5<1.0, NH4 <0.02Inn. Trench Design A-P MW Drain 2137 04/29/030.5 5.00 0.01 0.94 0.10 1.0466 11 0.01 0.0 6.8 5.7 141 7.5 10.82BOD5<1.0 NH4 <0.02, TKN <0.2Inn. Trench Design A-P MW Drain 2137 06/11/030.5 2.00 0.01 1.58 0.10 1.6866 21 0.01 0.0 7.0 6.3 146 8.0 10.93BOD5<1.0, NH4<0.02, TKN<0.2Inn. Trench Design A-P MW Drain 2137 07/15/030.5 5.00 0.01 1.49 0.10 1.5965 21 0.01 0.0 6.9 6.5 144 8.0 11.09BOD5<1.0, NH4<0.02, TKN<0.2Inn. Trench Design A-P MW Drain 2137 08/19/030.5 1.00 0.01 1.34 0.10 1.4466 21 0.01 0.0 7.0 7.3 145 8.9 11.29BOD5<1.0, NH4AsN<0.02, TKN<0.2Inn. Trench Design A-P MW Drain 2137 09/03/030.5 1.00 0.01 1.21 0.10 1.3165 21 0.01 0.0 7.0 7.3 142 8.3 11.39TKN<0.2, NH4AsN<0.02, BOD5<1Inn. Trench Design A-P MW Drain 2137 09/03/030.5 2.00 0.01 1.21 0.30 1.5165 21 0.01 0.0QA Duplicate; NH4AsN<0.02, BOD5<1Inn. Trench Design A-P MW Drain 2137 10/07/030.5 0.50 0.01 0.86 0.10 0.9666 11 0.01 0.0 6.9 7.9 137 9.0 11.57BOD5 <1.0, TSS<1, NH4AsN<0.02, TKN<0.2Inn. Trench Design A-P MW Drain 2137 10/27/030.5 1.00 0.01 0.83 0.10 0.9366 11 0.01 0.0 6.8 5.9 137 10.0 11.61BOD5<1.0, NH4AsN<0.02, TKN<0.2Inn. Trench Design A-P MW Drain 2137 02/04/040.01 1.04 0.10 1.1421 0.01 0.0 6.9 7.6 141 7.8 11.79 NH4<0.02, TKN<0.2Inn. Trench Design A-P MW Drain 2137 02/04/040.01 1.05 0.10 1.1521 0.01 0.0QA Duplicate; NH4<0.02, TKN<0.2Inn. Trench Design A-P MW Drain 2137 05/17/040.04 6.05 0.10 6.1591 0.01 0.0 6.9 6.6 213 7.5 11.30TKN<0.2Inn. Trench Design A-P MW Drain 2137 05/17/040.02 6.04 0.30 6.349QA duplicateInn. Trench Design A-P MW Drain 2137 11/02/040.01 2.19 0.10 2.2931 0.01 0.0 6.9 6.3 156 9.1 12.21NH4 <0.02, TKN<0.2Inn. Trench Design A-P STD-E 01/08/0312.0 6.00 0.25 39.10 2.50 41.60 5.5226 382 0.32 0.3 6.5 5.2 606 2.8Inn. Trench Design A-P STD-E02/04/033.8 72.00 0.36 42.80 2.10 44.90 2.1942 4154 1.748 1.7 6.6 6.5 629 3.8Inn. Trench Design A-P STD-E03/05/032.1 12.00 0.08 40.70 0.40 41.10 2.2230 454 0.628 1.4 6.6 8.9 615 3.8BOD5 is est.Inn. Trench Design A-P STD-E 04/02/033.4 6.00 0.04 38.70 1.40 40.10 2.8330 432 0.34 0.6 6.3 9.3 598 4.6BOD5, TKN is est.Inn. Trench Design A-P STD-E 04/30/032.8 8.00 0.04 43.10 1.00 44.10 3.6326 432 0.32 0.3 6.5 8.4 632 6.4Inn. Trench Design A-P STD-E06/09/033.6 32.00 0.10 26.40 1.50 27.90 6.3238 412 0.34 0.6 6.5 5.9 544 11.5Inn. Trench Design A-P STD-E07/16/032.4 28.00 0.04 22.40 1.30 23.70 5.9638 3222 1.318 1.3 6.5 4.8 467 15.0BOD5 is est.Inn. Trench Design A-P STD-E 08/20/035.4 11.00 0.07 11.50 1.70 13.20 7.0154 3932 1.534 1.5 6.7 7.5 442 15.7Inn. Trench Design A-P STD-E09/03/035.8 11.00 0.07 1.95 1.40 3.35 7.7174 4378 1.9 100 2.0 7.1 5.6 416 17.6Inn. Trench Design A-P STD-E10/08/039.0 6.00 0.05 6.06 1.50 7.56 8.2492 40200 2.3 220 2.3 6.9 4.4 469 13.4BOD5 is est.Inn. Trench Design A-P STD-E 10/27/032.4 2.00 0.02 20.60 1.40 22.00 7.6378 3726 1.44 0.6 7.0 7.6 545 10.1Inn. Trench Design A-P STD-E02/04/045.5 21.00 0.03 28.40 1.70 30.10 8.3750 332 0.32 0.3 6.8 9.5 561 4.0Inn. Trench Design A-P STD-E05/17/042.0 17.00 0.04 29.80 1.10 30.90 7.5041 434 0.68 0.9 6.9 6.6 545 9.4Inn. Trench Design A-P STD-E11/03/043.4 17.00 0.04 25.70 1.20 26.90 8.9246 3312 1.116 1.2 7.0 7.8 515 7.7Inn. Trench Design A-P STE10/30/02260.0 44.00 41.00 0.04 49.00 49.04 7.45 328 36 26.00 560000 5.7 560,000 5.7 8.6 0.8 749 15.1Inn. Trench Design A-P STE11/20/02310.0 57.00 58.00 0.04 62.00 62.04 8.07 328 40 25.00 80,000 4.9 20,000 4.3 8.1 1.0 890 13.8NH4, nitrate/nitrite is est.Inn. Trench Design A-P STE 01/08/03320.0 49.00 70.00 0.02 80.00 80.02 9.52 394 53 28.00 18,000 4.3 14,000 4.1 8.2 0.7 1021 11.3Inn. Trench Design A-P STE02/04/03510.0 67.00 55.00 0.03 69.00 69.03 8.99 346 48 33.00 100000 5.0 88,000 4.9 7.1 1.2 943 13.1Inn. Trench Design A-P STE03/05/03490.0 63.00 44.00 0.04 58.00 58.04 7.49 309 42 25.00 12,000 4.1 30,000 4.5 7.1 1.0 788 12.3Inn. Trench Design A-P STE04/02/03410.0 51.00 0.91 0.06 73.00 73.06 9.39 342 44 15.00 80,000 4.9 60,000 4.8 7.5 0.5 895 12.2NH4 value suspectInn. Trench Design A-P STE 04/30/03470.0 47.00 62.00 0.05 78.00 78.05 10.90 376 45 40.00 10,000 4.0 4,800 3.7 7.4 0.6 987 13.0Inn. Trench Design A-P STE06/09/03330.059.00 0.04 75.00 75.04 10.10 355 39 62.00 48,000 4.7 40,000 4.6 7.5 0.7 897 18.3TSS not analyzed - lab errorInn. Trench Design A-P STE 07/16/03330.0 31.00 48.00 0.04 60.00 60.04 9.64 320 36 49.00 19,000 4.3 9,600 4.0 7.3 0.6 804 20.4Inn. Trench Design A-P STE08/20/03240.0 34.00 51.00 0.03 62.00 62.03 12.20 390 39 19.00 200 2.3 1,200 3.1 7.4 0.5 1020 20.5O&G is est.Inn. Trench Design A-P STE 09/03/03730.0 91.00 54.00 0.06 74.00 74.06 14.60 390 35 93.00 19,000 4.3 7,800 3.9 7.4 0.3 1055 23.1Inn. Trench Design A-P STE10/08/03350.0 60.00 58.00 0.04 65.00 65.04 11.40 368 35 63.00 110,000 5.0 98,000 5.0 7.6 0.9 912 18.5Inn. Trench Design A-P STE10/27/03400.0 41.00 62.00 0.05 81.00 81.05 10.90 380 38 47.00 10,400 4.0 9,000 4.0 7.7 1.0 968 17.5Inn. Trench Design A-P STE02/04/04360.0 44.00 66.00 0.04 80.00 80.04 8.76 368 37 54.00 36,000 4.6 38,000 4.6 7.7 1.4 925 12.4Inn. Trench Design A-P STE05/17/04246.0 39.00 51.00 0.03 66.00 66.03 8.90 320 38 54.00 20,000 4.3 3,200 3.5 8.9 0.6 844 16.7BOD5>246Inn. Trench Design A-P STE 11/03/04230.0 67.00 77.00 0.05 87.00 87.05 11.20 430 42 38.00 120000 5.1 74,000 4.9 7.6 1.1 1109 14.0Inn. Trench Design A-P WTE10/30/029.0 5.00 16.00 18.00 21.00 39.00 5.46 183 352,300 3.4 2,300 3.4 7.3 1.5 713 8.3Inn. Trench Design A-P WTE10/30/0211.0 4.00 12.00 21.90 18.00 39.90 5.54 178 362,300 3.4 1,600 3.2 7.4 1.5 712 9.6QA DuplicateAppendix B: Innovative System Field Test DataPage B-35
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesInn. Trench Design A-P WTE11/20/025.1 5.00 0.10 34.70 5.70 40.40 5.7656 3840 1.616 1.2 7.1 2.6 669 8.3Inn. Trench Design A-P WTE01/08/0316.0 2.00 0.91 37.30 4.50 41.80 7.4942 412 0.32 0.3 6.6 2.1 616 4.1QA DuplicateInn. Trench Design A-P WTE 01/08/0313.0 2.00 0.99 33.40 5.10 38.50 7.2038 404 0.62 0.3 6.6 1.6 640 4.6Inn. Trench Design A-P WTE02/04/0321.0 5.00 3.50 40.30 4.80 45.10 7.8134 4666 1.852 1.7 6.5 3.1 643 4.5Inn. Trench Design A-P WTE03/05/0311.0 3.00 1.90 31.20 6.00 37.20 7.9258 444 0.62 0.3 6.6 2.3 596 4.3Inn. Trench Design A-P WTE04/02/036.6 3.00 0.85 38.20 4.30 42.50 8.3421 444 0.62 0.3 6.1 2.4 591 5.8Inn. Trench Design A-P WTE04/30/0310.0 3.00 0.53 34.50 4.30 38.80 8.8437 422 0.32 0.3 6.4 2.7 544 6.7Inn. Trench Design A-P WTE04/30/0311.0 2.00 0.58 32.80 4.10 36.90 8.9738 422 0.32 0.3 6.4 2.6 558 6.8QA DuplicateInn. Trench Design A-P WTE 06/09/0340.0 10.00 4.20 4.75 9.70 14.45 9.85 166 40140 2.180 1.9QA DuplicateInn. Trench Design A-P WTE 06/09/0370.0 8.00 4.50 3.02 9.50 12.52 9.54 170 40160 2.2 100 2.0 6.7 1.1 544 13.3Inn. Trench Design A-P WTE07/16/037.5 3.00 4.50 4.51 7.70 12.21 8.03 146 3362 1.854 1.7 6.9 0.7 512 16.4QA DuplicateInn. Trench Design A-P WTE 07/16/038.6 3.00 4.10 4.96 7.30 12.26 8.02 158 3292 2.0 100 2.0 6.9 0.9 516 16.2Inn. Trench Design A-P WTE08/20/0316.0 4.00 5.50 0.02 9.10 9.12 14.40 218 3780 1.9 120 2.1 7.1 1.4 628 17.8Inn. Trench Design A-P WTE08/20/0315.0 6.00 5.40 0.04 9.20 9.24 14.20 219 37200 2.3 200 2.3 7.1 1.5 631 17.7Inn. Trench Design A-P WTE09/03/0315.0 4.00 5.30 0.18 9.00 9.18 15.50 244 3674 1.976 1.9 7.7 0.5 693 18.5Inn. Trench Design A-P WTE10/08/035.8 4.00 5.50 9.41 8.80 18.21 9.40 191 31180 2.3 220 2.3 7.0 1.7 626 14.4Inn. Trench Design A-P WTE10/27/032.8 0.50 6.50 13.00 8.90 21.90 8.30 146 3310 1.010 1.0 7.1 1.3 595 11.6TSS<1Inn. Trench Design A-P WTE 02/04/043.6 0.50 3.50 21.30 5.20 26.50 9.0878 362 0.32 0.3 7.0 2.5 547 3.1TSS<1Inn. Trench Design A-P WTE 05/17/0435.0 4.00 1.33 13.70 2.30 16.00 11.10 98 3876 1.980 1.9 7.0 1.5 527 9.9Inn. Trench Design A-P WTE11/03/0411.0 110.00 1.80 20.50 3.40 23.90 9.08 110 3110 1.04 0.6 6.9 1.5 580 7.4Inn. Trench Design B-J ATE09/03/0216.0 10.00 5.00 0.01 7.90 7.91 1.72 281 37110,000 5.0 42,000 4.6 7.1 0.7 670 19.0Inn. Trench Design B-J ATE10/29/0214.0 6.00 3.10 0.01 7.20 7.21 2.74 172 384,400 3.6 800 2.9 7.1 1.0 494 10.8Inn. Trench Design B-J ATE10/29/028.8 4.00 3.00 0.01 7.30 7.31 2.75 180 384,800 3.7 800 2.9 7.3 0.8 526 10.9QA DuplicateInn. Trench Design B-J ATE 11/19/0211.0 7.00 7.40 0.02 8.30 8.32 5.32 218 4623,000 4.4 17,000 4.2 7.1 1.3 666 9.3QA DuplicateInn. Trench Design B-J ATE 11/19/028.8 4.00 7.40 0.02 8.90 8.92 5.40 212 4524,000 4.4 20,000 4.3 7.2 1.3 698 9.8Inn. Trench Design B-J ATE01/06/033.3 5.00 5.50 9.02 6.60 15.62 0.36 127 57380 2.6 280 2.4 7.3 1.8 698 4.3Inn. Trench Design B-J ATE01/06/034.2 4.00 5.40 9.00 6.60 15.60 0.38 140 56400 2.6 320 2.5 7.3 1.8 702 5.0QA DuplicateInn. Trench Design B-J ATE 02/11/031.6 2.00 4.70 33.40 5.80 39.20 0.7458 36340 2.5 300 2.5 7.7 1.4 658 4.0Inn. Trench Design B-J ATE02/11/031.5 1.00 4.80 32.60 5.70 38.30 0.7566 36460 2.7 360 2.6 7.8 1.4 662 4.0QA DuplicateInn. Trench Design B-J ATE 03/03/032.5 2.00 4.80 32.90 6.00 38.90 0.9262 365,400 3.7 3,200 3.5 7.5 1.5 643 4.6Inn. Trench Design B-J ATE04/15/033.6 13.00 4.70 42.50 4.80 47.30 0.8854 3244 1.644 1.6 7.3 1.2 715 5.9Inn. Trench Design B-J ATE04/28/032.1 0.50 4.60 36.800.6380 362 0.32 0.3 7.5 1.2 721 6.7TSS <1, TKN voidInn. Trench Design B-J ATE 04/28/031.7 1.00 4.40 41.200.6474 352 0.32 0.3 7.5 2.1 719 6.3QA Duplicate; TKN voidInn. Trench Design B-J ATE 06/09/0312.0 11.00 8.20 5.34 11.00 16.34 6.42 162 34260,000 5.4 180,000 5.3 6.8 0.8 518 17.5Inn. Trench Design B-J ATE07/07/039.4 1.00 5.30 68.10 5.10 73.20 0.6295 3260 1.826 1.4 7.2 0.9 926 15.0NH4 is est.Inn. Trench Design B-J ATE 07/07/0312.0 2.00 4.60 69.60 5.90 75.50 0.6589 3260 1.826 1.4 7.2 1.0 930 15.3QA Duplicate; NH4 is est.Inn. Trench Design B-J ATE 09/03/039.0 5.00 7.40 52.20 9.10 61.30 2.2286 30180 2.342 1.6 7.1 1.1 788 18.3QA DuplicateInn. Trench Design B-J ATE 09/03/035.8 4.00 7.00 53.50 8.40 61.90 2.0464 30190 2.376 1.9 7.1 1.1 802 18.1Inn. Trench Design B-J ATE10/27/033.3 2.00 4.60 33.20 5.60 38.80 1.6474 40120 2.178 1.9 6.8 1.2 521 12.4Inn. Trench Design B-J ATE02/04/040.5 0.50 2.20 38.90 3.00 41.90 3.4850 100200 2.3 200 2.3 7.4 2.0 874 5.0BOD5<1.0, TSS<1Inn. Trench Design B-J ATE 05/17/043.6 1.00 1.50 40.40 1.80 42.20 1.7771 1102 0.32 0.3 6.9 2.3 933 9.6Inn. Trench Design B-J ATE11/17/042.2 3.00 0.64 35.70 1.70 37.40 1.9876 1102 0.32 0.3 6.9 6.9 969 8.9Chloride is est.Inn. Trench Design B-J MW Drain 2165 05/10/020.20 0.00 0.40 0.4057.5 0.1 166 8.0 15.53 well development; D.O. <0.1Inn. Trench Design B-J MW Drain 2165 09/03/020.5 4.00 0.19 0.00 0.20 0.2052 51 0.01 0.0 7.8 0.1 149 7.9 15.56BOD5 <1.0Inn. Trench Design B-J MW Drain 2165 10/01/020.5 5.00 0.20 0.01 0.20 0.2164 51 0.01 0.0 7.6 0.1 149 7.6 15.48Inn. Trench Design B-J MW Drain 2165 10/30/020.5 1.00 0.19 0.01 0.20 0.2154 51 0.01 0.0 7.7 0.1 145 8.0 15.47BOD5<1.0, D.O. <0.1Inn. Trench Design B-J MW Drain 2165 11/19/020.5 1.00 0.19 0.01 0.20 0.2154 51 0.01 0.0 7.8 0.1 158 8.3 15.47BOD5 <1.0Inn. Trench Design B-J MW Drain 2165 01/07/030.5 1.00 0.17 0.00 0.30 0.3052 51 0.01 0.0 7.5 0.1 152 8.4 15.47BOD5<1.0, Nitrate<0.0050, D.O.<0.1Inn. Trench Design B-J MW Drain 2165 02/11/030.5 4.00 0.21 0.01 0.20 0.2152 51 0.01 0.0 7.6 0.1 150 8.5 15.48BOD5<1.0Inn. Trench Design B-J MW Drain 2165 03/03/030.5 3.00 0.19 0.00 0.30 0.3052 41 0.01 0.0 7.6 0.1 146 8.2 15.39BOD5<1.0, Nitrate-Nitrite <0.0050Inn. Trench Design B-J MW Drain 2165 04/14/030.5 0.50 0.20 0.00 0.10 0.1052 51 0.01 0.0 7.3 0.1 144 8.0 15.40BOD5<1.0, TSS <1, nitrate <0.0050, TKN <0.2Inn. Trench Design B-J MW Drain 2165 04/28/030.5 1.00 0.19 0.01 0.30 0.3152 41 0.01 0.0 7.3 0.1 147 8.0 15.40BOD5<1.0Inn. Trench Design B-J MW Drain 2165 06/09/030.5 0.50 0.17 0.01 0.30 0.3151 41 0.01 0.0 7.8 0.1 144 7.9 15.47BOD5<1.0, TSS<1,D.O.<0.1Inn. Trench Design B-J MW Drain 2165 06/09/030.5 0.50 0.17 0.01 0.20 0.2152 41 0.01 0.0QA Duplicate; BOD5<1.0, TSS<1Inn. Trench Design B-J MW Drain 2165 07/07/030.5 1.00 0.18 0.01 0.10 0.1151 51 0.01 0.0 7.6 0.1 146 8.7 15.46BOD5<1.0, TKN<0.2Inn. Trench Design B-J MW Drain 2165 09/02/030.5 1.00 0.17 0.00 0.10 0.1051 51 0.01 0.0 7.6 0.1 147 7.9 15.51BOD5<1.0, Nitrate<0.005, TKN<0.2Inn. Trench Design B-J MW Drain 2165 09/02/030.5 0.50 0.19 0.00 0.10 0.1051 51 0.01 0.0QA; BOD5<1.0, TSS<1, Nitrate<0.005, TKN<0.2Inn. Trench Design B-J MW Drain 2165 09/29/030.5 1.00 0.18 0.01 0.10 0.1151 51 0.01 0.0 7.7 0.1 149 8.3 15.60BOD5 <1.0, TKN<0.2Inn. Trench Design B-J MW Drain 2165 09/29/030.5 0.50 0.18 0.01 0.10 0.1152 51 0.01 0.0QA Duplicate; BOD5 <1.0, TSS<1, TKN<0.2Inn. Trench Design B-J MW Drain 2165 10/27/030.1 0.50 0.16 0.00 0.20 0.2052 51 0.01 0.0 7.5 0.1 148 8.6 15.48BOD5<0.1, TSS<1, Nitrate <0.050Inn. Trench Design B-J MW Drain 2165 02/04/040.18 0.01 0.20 0.2151 0.01 0.0 7.4 0.2 144 8.0 15.45Inn. Trench Design B-J MW Drain 2165 05/17/040.18 0.02 0.10 0.1261 0.01 0.0 7.4 0.1 153 8.2 15.46TKN<0.2Inn. Trench Design B-J MW Drain 2165 11/16/040.22 0.01 0.10 0.1171 0.01 0.0 7.6 0.2 161 8.6 15.46TKN<0.2Inn. Trench Design B-J SATR-E 09/03/0290.0 18.00 17.00 0.01 19.00 19.01 3.62 246 30300,000 5.5 130,000 5.1 6.9 0.4 599 19.4Appendix B: Innovative System Field Test DataPage B-36
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesInn. Trench Design B-J SATR-E10/29/028.2 30.00 5.40 0.31 6.60 6.91 4.43 168 422,400 3.4 400 2.6 7.7 5.1 546 8.7Inn. Trench Design B-J SATR-E11/19/0216.0 18.00 3.20 5.73 5.40 11.13 6.4676 542,000 3.3 2,600 3.4 7.3 4.5 708 11.5Inn. Trench Design B-J SATR-E01/06/035.1 2.00 0.36 44.60 0.90 45.50 5.5121 47400 2.6 280 2.4 7.2 8.7 583 3.1Inn. Trench Design B-J SATR-E02/11/038.60 38.90 10.00 48.90 5.0336360,000 5.6 60,000 4.8 7.6 7.8 672 1.9BOD5, TSS, alk. cancelledInn. Trench Design B-J SATR-E 03/03/037.8 200.00 5.30 32.90 7.00 39.90 4.4932 245,800 3.8 5,600 3.7 7.4 7.9 498 3.4Inn. Trench Design B-J SATR-E04/15/030.38 67.103.663120 1.320 1.3 7.1 8.0 472 6.2Alk, BOD5, TSS cancelled, TKN void; not enough flowInn. Trench Design B-J SATR-E 04/28/0321.0 31.00 7.40 31.10 11.00 42.10 6.2993 26174,000 5.2 90,000 5.0 6.9 3.2 603 9.7Inn. Trench Design B-J SATR-E06/09/0311.0 9.00 7.10 27.60 13.00 40.60 6.6494 3288,000 4.9 62,000 4.8 6.8 3.0 569 17.7Inn. Trench Design B-J SATR-E07/07/0314.0 15.00 3.40 34.70 5.20 39.90 6.3252 4115,000 4.2 8,400 3.9 6.4 2.3 587 18.6Inn. Trench Design B-J SATR-E09/03/0316.0 170.00 4.00 44.80 0.90 45.70 3.3729 397.1 4.5 746 16.9Bacteria cancelled; Not enough effluentInn. Trench Design B-J SATR-E 10/27/030.5 1.00 0.06 38.60 0.50 39.10 3.402 3916 1.214 1.1 6.3 5.0 586 11.1BOD5<1.0Inn. Trench Design B-J SATR-E 02/04/040.5 21.00 0.07 48.50 1.20 49.70 4.9843 442,000 3.3 2,000 3.3 7.4 10.0 775 2.4BOD5<1.0Inn. Trench Design B-J SATR-E 05/17/04SATR-E tests cancelled due to lack of sampleInn. Trench Design B-J STE 09/03/02250.0 24.00 37.00 0.01 44.00 44.01 8.74 234 33 46.00 8.8E+06 6.9 4.4E+06 6.6 7.8 1.0 636 21.5Inn. Trench Design B-J STE10/29/02240.0 22.00 31.00 0.04 35.00 35.04 7.38 216 49 30.00 72,000 4.9 44,000 4.6 7.7 1.0 245 14.9cond. is est.Inn. Trench Design B-J STE 11/19/02260.0 18.00 25.00 0.02 35.00 35.02 9.50 222 58 31.00 3.4E+07 7.5 2.0E+07 7.3 7.3 0.9 764 15.6Inn. Trench Design B-J STE01/06/03250.0 37.00 36.00 0.05 49.00 49.05 9.01 240 73 40.00 2.1E+06 6.3 1.9E+06 6.3 7.7 1.3 795 12.9Inn. Trench Design B-J STE02/11/03200.0 36.00 25.00 0.02 37.00 37.02 9.39 229 51 33.00 3.1E+07 7.5 3.4E+07 7.5 7.8 1.1 709 13.0Inn. Trench Design B-J STE03/03/03220.0 56.00 26.00 0.02 40.00 40.02 9.43 228 30 37.00 1.1E+06 6.0 1.3E+06 6.1 7.6 1.3 643 12.9Inn. Trench Design B-J STE04/15/03260.0 29.00 35.00 0.04 38.00 38.04 9.09 250 36 57.00 1.2E+06 6.1 900000 6.0 7.6 1.1 667 15.0Inn. Trench Design B-J STE04/28/03230.0 48.00 30.00 0.01 44.00 44.01 9.81 265 28 38.00 400000 5.6 300000 5.5 8.0 1.1 689 15.4Inn. Trench Design B-J STE06/09/03240.0 89.00 32.00 0.01 41.00 41.01 10.10 226 34 68.00 4.2E+06 6.6 2.0E+06 6.3 7.0 0.2 626 21.2Inn. Trench Design B-J STE07/07/03200.0 49.00 27.00 0.04 35.00 35.04 10.60 250 42 34.00 120000 5.1 8,400 3.9 7.4 0.9 697 20.3Inn. Trench Design B-J STE09/03/03290.0 180.00 30.00 0.01 63.00 63.01 9.42 268 321.2E+06 6.1 800000 5.9 7.2 0.5 686 22.5O&G void; Sample lost at labInn. Trench Design B-J STE 10/27/03270.0 36.00 31.00 0.01 39.00 39.01 9.88 254 50 66.00 540000 5.7 62000 4.8 6.9 0.8 750 18.8Inn. Trench Design B-J STE02/04/04270.0 46.00 49.00 0.01 62.00 62.01 9.10 392 78 53.00 940000 6.0 200000 5.3 7.4 1.3 1094 13.5Inn. Trench Design B-J STE05/17/04310.0 110.00 42.00 0.10 55.00 55.10 11.90 330 30 80.00 48,000 4.7 14,000 4.1 7.0 0.9 806 17.1Inn. Trench Design B-J STE11/17/04190.0 59.00 43.00 0.01 57.00 57.01 12.70 330 59 39.00 1.4E+06 6.1 1.1E+06 6.0 7.5 1.3 1007 15.4Chloride is est.Inn. Trench Design B-M ATE 08/27/021.8 3.00 5.00 42.20 6.80 49.00 0.4087 6442 1.638 1.6 6.4 1.1 776 18.3QA Duplicate; Phosphate is est.Inn. Trench Design B-M ATE 08/27/021.2 16.00 5.30 41.80 7.20 49.00 0.3982 6694 2.060 1.8 6.4 1.1 776 18.3Inn. Trench Design B-M ATE09/24/0214.0 11.00 2.30 0.07 4.30 4.37 0.63 192 56110 2.092 2.0 6.6 1.0 619 15.5QA DuplicateInn. Trench Design B-M ATE 09/24/025.1 9.00 2.50 0.06 3.90 3.96 0.58 172 56150 2.2 120 2.1 6.6 1.0 619 15.5Inn. Trench Design B-M ATE10/21/026.6 8.00 0.77 3.21 2.90 6.11 0.30 222 62220 2.3 180 2.3 6.9 1.7 642 12.8Inn. Trench Design B-M ATE11/13/022.5 1.00 1.18 1.56 3.60 5.16 0.26 232 6510 1.014 1.1 7.1 1.4 638 8.8BOD5 is est.Inn. Trench Design B-M ATE 12/16/023.0 2.00 0.84 4.91 2.00 6.91 0.26 212 6918 1.316 1.2 6.9 1.3 713 6.5BOD5 is est.Inn. Trench Design B-M ATE 01/29/032.2 2.00 3.30 7.60 5.10 12.70 0.21 123 6374 1.962 1.8 6.8 2.1 713 5.3Inn. Trench Design B-M ATE02/24/0316.0 5.00 5.70 3.70 7.40 11.10 0.37 242 641,500 3.2 1,800 3.3 6.9 1.8 729 3.7Inn. Trench Design B-M ATE02/24/0316.0 6.00 5.20 3.75 7.40 11.15 0.32 264 6513,000 4.1 13,000 4.1 6.9 1.7 751 4.3QA DuplicateInn. Trench Design B-M ATE 03/19/03140.0 27.00 17.00 0.01 23.00 23.01 3.46 345 7159,000 4.8 56,000 4.7 7.2 0.7 885 7.2Inn. Trench Design B-M ATE04/15/0380.0 17.00 22.00 0.01 25.00 25.01 2.85 399 697,000 3.8 8,400 3.9 7.4 0.6 969 7.2QA DuplicateInn. Trench Design B-M ATE 04/15/0376.0 18.00 20.00 0.01 20.00 20.01 2.76 398 688,400 3.9 8,000 3.9 7.4 0.6 965 7.1Inn. Trench Design B-M ATE05/14/0328.0 12.00 18.00 0.02 22.00 22.02 2.25 424 72840 2.9 720 2.9 7.3 1.0 984 9.4Inn. Trench Design B-M ATE06/18/0356.0 10.00 21.00 0.02 25.00 25.02 1.57 480 641,100 3.0 1,100 3.0 7.0 1.1 1085 14.4Inn. Trench Design B-M ATE07/30/0328.0 88.00 34.00 0.01 43.00 43.01 1.55 460 66480 2.7 460 2.7 7.1 0.8 1078 18.8Inn. Trench Design B-M ATE09/15/0378.0 30.00 37.00 0.00 40.00 40.00 6.93 310 6164,000 4.8 72,000 4.9 7.6 1.0 846 17.1Nitrate/Nitrite<.005Inn. Trench Design B-M ATE 11/19/0399.0 69.00 41.00 0.02 44.00 44.02 5.99 341 7740,000 4.6 40,000 4.6 7.1 1.2 955 8.5Inn. Trench Design B-M ATE11/17/0468.0 32.00 64.00 0.02 77.00 77.02 9.66 430 618.4 0.8 1149 8.3Chloride is est.Inn. Trench Design B-M MW Drain 2197 05/10/020.01 1.57 0.30 1.8727.2 6.5 127 7.7 27.56Well development; NH4 <0.02Inn. Trench Design B-M MW Drain 2197 09/24/020.5 4.00 0.01 2.73 0.10 2.8342 41 0.01 0.0 7.1 7.0 117 8.3 27.57NH4 < 0.02; BOD5 <1; TKN < 0.2Inn. Trench Design B-M MW Drain 2197 10/21/020.5 0.50 0.01 2.86 0.10 2.9646 41 0.01 0.0 7.1 4.2 124 8.4 27.52BOD5, TSS <1.0, NH4 <0.02, TKN <0.2Inn. Trench Design B-M MW Drain 2197 11/13/020.5 0.50 0.01 3.00 0.10 3.1045 41 0.01 0.0 7.2 5.4 126 7.8 27.52NH4 <0.02, BOD5 <1.0, TKN <0.2, TSS <1Inn. Trench Design B-M MW Drain 2197 12/17/020.5 6.00 0.01 3.08 0.10 3.1846 41 0.01 0.0 7.3 8.2 141 6.8 27.50BOD5<1.0, NH4<0.02, TKN<0.2Inn. Trench Design B-M MW Drain 2197 01/28/030.5 2.00 0.01 3.81 0.10 3.9145 51 0.01 0.0 7.2 6.9 143 7.6 27.61BOD5 <1.0, NH4 <0.02, TKN <0.2Inn. Trench Design B-M MW Drain 2197 01/28/031.0 3.00 0.02 3.79 0.10 3.8944 51 0.01 0.0QA Duplicate; BOD5 is est., TKN <0.2Inn. Trench Design B-M MW Drain 2197 02/24/030.5 1.00 0.03 4.44 0.10 4.5444 61 0.01 0.0 7.1 8.3 152 7.5 27.60BOD5<1.0, TKN <0.2Inn. Trench Design B-M MW Drain 2197 03/19/030.5 2.00 0.01 5.04 0.10 5.1445 71 0.01 0.0 7.1 6.6 162 7.7 27.67BOD5<1.0, NH4AsN <0.02, TKN <0.2Inn. Trench Design B-M MW Drain 2197 03/19/030.5 0.50 0.01 5.04 0.30 5.3445 71 0.01 0.0QA Duplicate; BOD5<1.0, TSS<1, NH4AsN <0.02Inn. Trench Design B-M MW Drain 2197 04/15/030.5 2.00 0.01 5.73 0.10 5.8346 81 0.01 0.0 7.1 6.3 170 7.9 27.51BOD5<1.0 NH4 <0.02, TKN <0.2Inn. Trench Design B-M MW Drain 2197 04/15/030.5 6.00 0.01 5.74 0.10 5.8445 81 0.01 0.0QA Duplicate; BOD5<1.0 NH4 <0.02, TKN <0.2Inn. Trench Design B-M MW Drain 2197 05/14/030.5 0.50 0.01 6.09 0.10 6.1946 81 0.01 0.0 6.8 6.4 181 8.4 27.56BOD5<1.0, TSS <1 NH4 <0.02, TKN <0.2Inn. Trench Design B-M MW Drain 2197 06/16/030.5 0.50 0.04 6.41 0.10 6.5148 91 0.01 0.0 7.2 5.8 185 8.7 27.57BOD5<1.0, TSS<1, TKN<0.2Inn. Trench Design B-M MW Drain 2197 07/29/030.5 0.50 0.01 6.11 0.10 6.2148 91 0.01 0.0 7.0 6.0 188 12.4 27.59BOD5<1.0, TSS<1 NH4<0.02, TKN<0.2Inn. Trench Design B-M MW Drain 2197 09/15/030.5 0.50 0.01 6.17 0.10 6.2748 91 0.01 0.0 7.1 5.4 185 8.7 27.60TKN<0.2, NH4AsN<0.02, TSS<1, BOD5<1Inn. Trench Design B-M MW Drain 2197 10/14/030.5 0.50 0.01 5.79 0.10 5.8948 91 0.01 0.0 7.0 5.8 183 8.3 27.62BOD5<1, TSS<1, NH4<0.02, TKN<0.2Appendix B: Innovative System Field Test DataPage B-37
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesInn. Trench Design B-M MW Drain 2197 10/14/030.5 0.50 0.01 5.79 0.10 5.8949 91 0.01 0.0QA Duplicate; BOD5<1, TSS<1, NH4<0.02, TKN<0.2Inn. Trench Design B-M MW Drain 2197 11/19/030.5 0.50 0.01 5.46 0.10 5.5649 81 0.01 0.0 6.9 6.1 197 8.4 27.60BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2Inn. Trench Design B-M MW Drain 2197 11/16/040.01 2.61 0.10 2.7161 0.01 0.0 7.1 6.1 164 8.8 27.62NH4 <0.02, TKN<0.2Inn. Trench Design B-M SATR-E 08/27/025.1 9.00 6.50 42.40 8.40 50.80 0.2451 6342 1.642 1.6 6.2 3.3 734 18.6Inn. Trench Design B-M SATR-E09/24/0212.0 21.00 3.90 5.15 6.00 11.15 0.39 195 57400 2.6 280 2.4 6.7 2.4 511 16.8Inn. Trench Design B-M SATR-E11/13/0227.0 6.00 7.50 9.41 10.00 19.41 0.37 188 1006,600 3.8 2,000 3.3 6.6 2.9 677 8.9Inn. Trench Design B-M SATR-E12/16/024.8 4.00 7.40 12.10 9.10 21.20 0.15 170 721,900 3.3 1,800 3.3 6.7 3.7 708 5.9Inn. Trench Design B-M SATR-E01/29/037.0 5.00 11.90 7.65 15.00 22.65 0.20 235 607,200 3.9 6,000 3.8 6.9 5.0 750 5.4Inn. Trench Design B-M SATR-E02/24/0323.0 11.00 14.40 8.54 17.00 25.54 0.39 220 7174,000 4.9 82,000 4.9 6.8 3.3 727 3.3Inn. Trench Design B-M SATR-E03/19/03240.0 16.00 26.00 0.02 32.00 32.02 2.14 331 7223,200 4.4 22,000 4.3 6.9 2.1 918 6.5Inn. Trench Design B-M SATR-E04/15/03130.0 20.00 35.00 0.00 39.00 39.00 2.06 376 676,200 3.8 4,800 3.7 6.9 1.6 987 7.5Nitrate <0.005Inn. Trench Design B-M SATR-E 05/14/03380.0 64.00 44.00 0.02 48.00 48.02 3.72 378 658,400 3.9 6,000 3.8 6.9 1.4 1029 9.7Inn. Trench Design B-M SATR-E06/18/03150.0 28.00 47.00 0.01 49.00 49.01 1.82 420 652,400 3.4 2,200 3.3 6.8 2.4 1084 15.0Inn. Trench Design B-M SATR-E07/30/0364.0 14.00 52.00 0.03 59.00 59.03 2.23 425 652,300 3.4 1,900 3.3 6.8 1.5 1097 19.1Inn. Trench Design B-M SATR-E09/15/0324.0 10.00 45.00 0.00 48.00 48.00 2.09 375 676,200 3.8 4,800 3.7 7.2 1.8 992 16.5Nitrate/Nitrite<.005Inn. Trench Design B-M SATR-E 11/19/0392.0 56.00 47.00 0.02 49.00 49.02 3.89 326 7816,000 4.2 13,000 4.1 6.9 2.4 934 8.3BOD5>92Inn. Trench Design B-M STE 08/27/02117.0 31.00 54.00 0.01 61.00 61.01 7.31 332 61 29.00 200,000 5.3 140,000 5.1 8.5 0.9 941 22.1Inn. Trench Design B-M STE09/24/02550.0 46.00 43.00 0.02 54.00 54.02 15.00 286 75 108.00 1.1E+06 6.0 680000 5.8 7.3 0.4 836 21.0Inn. Trench Design B-M STE10/21/02570.0 85.00 62.00 0.02 75.00 75.02 10.90 342 79 76.00 1.7E+06 6.2 1.4E+06 6.1 7.2 0.9 987 18.5Inn. Trench Design B-M STE11/13/02570.0 59.00 59.00 0.02 75.00 75.02 10.90 344 72 133.00 1.4E+06 6.1 1.1E+06 6.0 7.2 0.7 956 15.8Inn. Trench Design B-M STE12/16/02520.0 90.00 57.00 0.02 77.00 77.02 10.80 356 93 159.00 1.7E+06 6.2 1.7E+06 6.2 7.4 0.5 1180 14.5Inn. Trench Design B-M STE01/29/03380.0 35.00 53.00 0.02 77.00 77.02 13.10 376 68 87.00 5.0E+06 6.7 4.2E+06 6.6 7.2 0.7 1090 14.1Inn. Trench Design B-M STE02/24/03350.0 75.00 57.00 0.04 74.00 74.04 9.97 349 74 86.00 2.1E+06 6.3 1.8E+06 6.3 7.1 0.8 1066 12.8Inn. Trench Design B-M STE03/19/03570.0 98.00 55.00 0.01 79.00 79.01 11.00 335 71 191.00 86,000 4.9 56,000 4.7 6.8 0.9 1040 15.9Inn. Trench Design B-M STE04/15/03540.0 90.00 72.00 0.01 90.00 90.01 12.70 384 72 133.00 108,000 5.0 66,000 4.8 6.1 0.9 1124 14.8Inn. Trench Design B-M STE05/14/03340.0 86.00 67.00 0.03 82.00 82.03 12.10 372 68 85.00 68,000 4.8 56,000 4.7 7.1 0.5 1108 17.5Inn. Trench Design B-M STE06/18/03460.0 110.00 70.00 0.04 96.00 96.04 11.80 419 71 141.00 14,000 4.1 15,000 4.2 7.2 0.7 1166 22.0Inn. Trench Design B-M STE07/30/03340.0 64.00 50.00 0.02 67.00 67.02 9.25 328 72 109.00 120,000 5.1 120,000 5.1 7.4 0.5 950 24.5Inn. Trench Design B-M STE09/15/03390.0 69.00 58.00 0.01 72.00 72.01 9.91 340 73 146.00 110,000 5.0 130,000 5.1 7.8 0.6 994 21.9Inn. Trench Design B-M STE11/19/03450.0 170.00 48.00 0.02 60.00 60.02 8.48 296 80 49.00 120,000 5.1 84,000 4.9 7.2 0.6 919 16.7Inn. Trench Design B-M STE11/17/04440.0 340.00 65.00 0.50 77.00 77.50 10.00 460 56 90.00 800,000 5.9 60,000 4.8 9.1 1.5 1095 14.1Chloride is est.Inn. Trench Design B-P ATE 08/27/024.1 32.00 2.20 0.08 3.30 3.38 0.45 212 3242 1.640 1.6 6.8 0.7 508 15.5Inn. Trench Design B-P ATE09/23/024.00 14.00 4.60 18.60 0.202620 1.32 0.3 6.8 0.6 461 15.8BOD5, alk., TSS VOIDInn. Trench Design B-P ATE 10/21/020.5 0.50 2.20 11.90 2.80 14.70 0.17 180 282 0.32 0.3 7.0 0.8 481 9.3BOD5, TSS <1.0Inn. Trench Design B-P ATE 10/21/020.5 1.00 2.30 12.00 2.90 14.90 0.16 176 282 0.34 0.6 7.1 0.9 516 9.2BOD5<1.0Inn. Trench Design B-P ATE 11/13/021.9 0.50 1.60 33.60 2.10 35.70 0.2090 322 0.32 0.3 6.8 1.2 514 5.4TSS <1Inn. Trench Design B-P ATE 11/13/020.5 2.00 1.60 32.80 2.30 35.10 0.2088 322 0.32 0.3 6.9 1.3 523 5.7BOD5 <1.0Inn. Trench Design B-P ATE 12/16/021.3 6.00 1.70 29.00 1.70 30.70 0.22 103 3558 1.832 1.5 6.7 1.2 602 4.2Inn. Trench Design B-P ATE01/29/030.5 2.00 1.70 14.40 2.70 17.10 0.32 128 31170 2.276 1.9 6.8 1.4 493 3.0QA Duplicate; BOD5 <1.0Inn. Trench Design B-P ATE 01/29/031.2 1.00 1.90 14.90 3.00 17.90 0.33 117 31180 2.364 1.8 6.8 1.7 532 2.9BOD5 is est.Inn. Trench Design B-P ATE 02/19/031.5 0.50 2.00 9.64 2.70 12.34 0.26 160 321,800 3.3 1,300 3.1 6.8 1.7 525 3.5TSS<1Inn. Trench Design B-P ATE 02/19/031.4 2.00 2.00 9.80 2.60 12.40 0.29 164 322,000 3.3 1,900 3.3 6.9 2.0 524 2.9QA Duplicate; BOD5 is est.Inn. Trench Design B-P ATE 03/19/032.5 2.00 3.40 1.65 4.20 5.85 1.05 186 29780 2.9 800 2.9 7.0 1.4 489 3.5QA DuplicateInn. Trench Design B-P ATE 03/19/032.6 1.00 3.40 1.49 4.20 5.69 1.09 184 291,060 3.0 920 3.0 6.9 1.3 501 3.6Inn. Trench Design B-P ATE04/15/037.3 3.00 2.80 0.00 3.60 3.60 0.91 209 301,500 3.2 1,300 3.1 7.0 1.4 508 5.5Nitrate <0.005Inn. Trench Design B-P ATE 05/14/0342.0 14.00 11.80 0.01 14.00 14.01 2.39 260 354,800 3.7 2,600 3.4 6.9 0.7 628 8.5QA DuplicateInn. Trench Design B-P ATE 05/14/0344.0 14.00 11.80 0.01 14.00 14.01 2.47 259 35210,000 5.3 8,000 3.9 6.9 0.6 629 10.0Inn. Trench Design B-P ATE06/23/0372.0 30.00 16.00 0.00 19.00 19.00 1.39 318 3436,000 4.6 32,000 4.5 6.8 1.8 360 13.0Nitrate<0.0050Inn. Trench Design B-P ATE 07/30/0337.0 36.00 19.00 0.01 23.00 23.01 1.58 345 3421,000 4.3 17,000 4.2 6.9 1.1 787 16.5Inn. Trench Design B-P ATE07/30/0344.0 21.00 19.00 0.01 23.00 23.01 1.53 346 3423,000 4.4 25,000 4.4 6.8 1.0 792 17.1Inn. Trench Design B-P ATE09/15/0317.0 31.00 24.00 0.00 25.00 25.00 1.67 305 35150,000 5.2 180,000 5.3 7.0 1.2 723 14.2QA Duplicate; Nitrate/Nitrite<.005Inn. Trench Design B-P ATE 09/15/0320.0 30.00 23.00 0.00 24.00 24.00 1.68 308 35170,000 5.2 140,000 5.1 7.0 1.1 727 14.0Nitrate/Nitrite<.005Inn. Trench Design B-P ATE 11/19/039.2 15.00 19.00 0.03 20.00 20.03 1.12 309 401.4E+06 6.1 1.2E+06 6.1 7.3 1.2 726 7.9Inn. Trench Design B-P ATE11/17/041.00 18.70 2.60 21.30 0.60437.2 5.0 618 7.2Chloride, TKN, nitrate, NH4, phosphate is est.Inn. Trench Design B-P MW Drain 2181 05/10/020.03 0.57 0.10 0.6757.1 2.7 246 8.1 28.13well development; TKN <0.2Inn. Trench Design B-P MW Drain 2181 08/27/0228.54Inn. Trench Design B-P MW Drain 2181 09/23/021.2 190.00 0.05 0.62 0.30 0.92 65.0047.0 5.2 218 11.2 28.60BOD5 is est.Inn. Trench Design B-P MW Drain 2181 09/30/022 0.32 0.3 7.0 5.0 239 8.8Bacteria Re-sampleInn. Trench Design B-P MW Drain 2181 10/22/021.0 440.00 0.01 0.67 0.10 0.7770 52 0.32 0.3 7.2 4.8 215 8.4 28.63BOD5 is est., NH4 <0.02, TKN <0.2Inn. Trench Design B-P MW Drain 2181 11/13/021.2 550.00 0.01 0.82 0.20 1.0272 57.1 6.2 246 8.1 28.73NH4 <0.02, BOD5 is est.Inn. Trench Design B-P MW Drain 2181 12/17/020.5 120.00 0.01 1.81 0.10 1.9171 61 0.01 0.0 7.1 6.5 163 6.2 28.72BOD5<1.0, NH4<0.02, TKN<0.2Inn. Trench Design B-P MW Drain 2181 01/28/030.5 130.00 0.01 3.61 0.10 3.7171 81 0.01 0.0 7.0 6.5 280 7.3 28.80BOD5 <1.0, NH4 <0.02, TKN <0.2Inn. Trench Design B-P MW Drain 2181 02/19/030.5 50.00 0.08 3.61 0.10 3.7171 91 0.01 0.0 7.0 7.1 305 7.5 28.83BOD5<1.0, TKN <0.2Inn. Trench Design B-P MW Drain 2181 03/19/030.5 59.00 0.03 3.30 0.40 3.7073 81 0.01 0.0 7.1 6.7 275 8.0 28.90BOD5<1.0Appendix B: Innovative System Field Test DataPage B-38
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesInn. Trench Design B-P MW Drain 2181 04/15/030.5 89.00 0.03 2.93 0.10 3.0372 71 0.01 0.0 7.2 7.0 259 7.8 28.93BOD5<1.0, TKN <0.2Inn. Trench Design B-P MW Drain 2181 05/14/031.2 4.00 0.01 3.32 0.10 3.4271 81 0.01 0.0 6.7 6.2 283 9.6 28.98NH4 <0.02, TKN <0.2Inn. Trench Design B-P MW Drain 2181 06/17/031.1 177.00 0.05 2.54 0.10 2.6472 67.1 5.9 257 10.5 29.13TKN<0.2, BOD5 is est.Inn. Trench Design B-P MW Drain 2181 06/24/032 0.32 0.3 6.9 5.5 277 10.3Bacteria re-sampleInn. Trench Design B-P MW Drain 2181 06/24/032 0.32 0.3QA Duplicate; Bacteria Re-sampleInn. Trench Design B-P MW Drain 2181 07/29/030.5 120.00 0.01 1.86 0.10 1.9671 52 0.32 0.3 7.0 6.4 259 10.2 29.33BOD5<1.0 NH4<0.02, TKN<0.2Inn. Trench Design B-P MW Drain 2181 09/16/030.5 59.00 0.01 1.24 0.10 1.3472 42 0.32 0.3 7.1 5.2 242 9.4 29.55BOD5<1.0, NH4AsN<0.02, TKN<0.2Inn. Trench Design B-P MW Drain 2181 10/14/030.5 56.00 0.01 0.97 0.10 1.0772 42 0.32 0.3 7.0 5.4 230 8.7 29.66BOD5<1, NH4<0.02, TKN<0.2Inn. Trench Design B-P MW Drain 2181 10/14/032 0.32 0.3QA DuplicateInn. Trench Design B-P MW Drain 2181 11/19/030.5 0.50 0.03 1.40 0.10 1.5073 42 0.32 0.3 7.0 5.3 240 8.8 29.67BOD5<1.0, TSS<1, TKN<0.2Inn. Trench Design B-P MW Drain 2181 11/17/040.02 2.05 0.10 2.1551 0.01 0.0 6.9 4.2 205 8.1 30.32Chloride is est. TKN<0.2Inn. Trench Design B-P SATR-E 08/27/023.6 27.00 12.70 19.00 13.00 32.00 0.49 190 256,000 3.8 4,200 3.6 6.6 2.5 607 15.8Inn. Trench Design B-P SATR-E09/23/0247.0 7.00 11.30 24.90 12.00 36.90 0.11 132 2568 1.874 1.9 6.6 1.6 516 14.7Inn. Trench Design B-P SATR-E10/21/02140.0 1.00 7.10 29.70 7.40 37.10 0.0682 3158 1.864 1.8 6.7 4.3 493 8.8Inn. Trench Design B-P SATR-E11/13/022.0 0.50 3.80 27.20 4.20 31.40 0.0763 4130 1.528 1.4 6.6 3.2 482 5.7TSS <1Inn. Trench Design B-P SATR-E 12/16/024.0 2.00 3.20 24.70 3.90 28.60 0.1581 371,700 3.2 1,500 3.2 6.3 2.7 548 4.5Inn. Trench Design B-P SATR-E01/29/0311.0 7.00 9.40 8.95 12.00 20.95 1.48 126 326,800 3.8 4,600 3.7 6.6 2.4 501 3.7Inn. Trench Design B-P SATR-E02/19/0312.9 7.00 14.00 7.81 17.00 24.81 2.49 175 3565,000 4.8 70,000 4.8 6.7 2.5 558 2.7Inn. Trench Design B-P SATR-E03/19/038.6 6.00 13.00 4.10 15.00 19.10 1.71 171 291,820 3.3 2,000 3.3 6.8 2.9 494 4.0Inn. Trench Design B-P SATR-E04/15/0314.0 46.00 15.00 1.98 18.00 19.98 1.71 214 326,000 3.8 6,000 3.8 6.8 2.1 553 6.0Inn. Trench Design B-P SATR-E05/14/0342.0 26.00 13.90 0.03 20.00 20.03 1.60 231 353,000 3.5 2,400 3.4 7.0 3.0 595 8.5Inn. Trench Design B-P SATR-E06/23/0372.0 30.00 24.00 0.02 29.00 29.02 1.99 288 3346,000 4.7 43,000 4.6 6.9 2.8 325 12.3Inn. Trench Design B-P SATR-E07/30/0349.0 41.00 28.00 0.02 34.00 34.02 1.94 316 3684,000 4.9 76,000 4.9 7.0 3.1 748 17.6Inn. Trench Design B-P SATR-E09/15/0328.00 0.00 30.00 30.00 2.68367.1 3.2 720 14.8BOD5, TSS, Alk, bacteria cancelled, NO3<.005Inn. Trench Design B-P SATR-E 11/19/0329.00 0.01 31.00 31.01 2.33437.4 3.4 722 8.0most tests cancelledInn. Trench Design B-P STE 08/27/0266.0 22.00 24.00 0.03 28.00 28.03 5.11 160 25 8.00 200,000 5.3 200,000 5.3 7.0 0.8 428 17.2Inn. Trench Design B-P STE09/23/02140.0 26.00 32.00 0.01 44.00 44.01 6.54 202 30 16.00 14,000 4.1 11,000 4.0 7.9 0.7 515 16.7Inn. Trench Design B-P STE10/21/02150.0 46.00 36.00 0.02 45.00 45.02 8.04 244 38 21.00 960,000 6.0 940,000 6.0 7.9 1.1 609 13.9Inn. Trench Design B-P STE11/13/02160.0 26.00 53.00 0.02 66.00 66.02 10.90 298 49 34.00 18,000 4.3 17,000 4.2 6.8 1.2 694 10.8Inn. Trench Design B-P STE12/16/02160.0 18.00 39.00 0.02 54.00 54.02 8.54 240 38 20.00 1.6E+06 6.2 840,000 5.9 8.0 0.9 675 9.9Inn. Trench Design B-P STE01/29/03140.0 30.00 38.00 0.01 53.00 53.01 8.84 248 40 30.00 19,000 4.3 12,000 4.1 8.4 1.0 706 8.8Inn. Trench Design B-P STE02/19/03110.0 22.00 41.00 0.01 56.00 56.01 8.04 248 38 22.00 140,000 5.1 130,000 5.1 8.5 1.2 666 8.3Inn. Trench Design B-P STE03/19/0369.0 31.00 34.00 0.01 45.00 45.01 8.02 212 29 39.00 15,000 4.2 1,100 3.0 8.1 1.1 565 10.1Inn. Trench Design B-P STE04/15/03190.0 38.00 40.00 0.02 51.00 51.02 7.54 270 34 18.00 78,000 4.9 58,000 4.8 7.5 0.9 700 10.9Inn. Trench Design B-P STE05/14/03180.0 39.00 37.00 0.02 52.00 52.02 7.84 260 39 22.00 60,000 4.8 42,000 4.6 7.3 0.7 726 14.4Inn. Trench Design B-P STE06/23/03160.0 37.00 34.00 0.03 50.00 50.03 6.20 263 31 39.00 630,000 5.8 630,000 5.8 7.6 1.2 665 16.5Inn. Trench Design B-P STE07/30/03140.0 46.00 52.00 0.02 62.00 62.02 8.60 312 39 27.00 2.9E+06 6.5 2.8E+06 6.4 7.6 0.8 798 21.2Inn. Trench Design B-P STE09/15/03190.0 66.00 52.00 0.01 59.00 59.01 8.34 305 46 61.00 7.6E+06 6.9 7.2E+06 6.9 8.0 0.7 784 19.7Inn. Trench Design B-P STE11/19/03190.0 55.00 55.00 0.02 64.00 64.02 7.68 322 48 138.00 1.4E+07 7.1 1.5E+07 7.2 8.2 1.0 832 13.3Inn. Trench Design B-P STE11/17/04160.0 46.00 66.00 0.02 79.00 79.02 7.78 390 54 13.00 2.2E+07 7.3 3.4E+07 7.5 8.0 1.2 1041 12.7Chloride is est.Nayadic-B LE 11/05/0123.0 21.00 0.10 28.80 0.90 29.70 0.31 100 2428 1.426 1.4 7.1 5.8 356 6.8Nayadic-BLE12/04/0123.0 45.00 0.26 11.80 5.10 16.90 19.20 151 269,400 4.0 4,200 3.6 7.5 7.9 502 3.5TKN is estimateNayadic-B LE 01/15/022.8 4.00 0.05 13.60 1.70 15.30 4.60 128 25520 2.7 480 2.7 7.2 6.4 550 1.0Nayadic-BLE02/12/0246.0 20.00 1.10 16.30 7.00 23.30 23.70 150 232,800 3.4 1,600 3.2 7.7 6.2 300 0.9Nayadic-BLE03/12/022.1 5.00 0.10 25.60 1.90 27.50 11.00 94 2374 1.972 1.9 7.2 8.6 550 3.6Nayadic-BLE04/09/021.6 1.00 0.02 23.60 1.30 24.90 12.40 90 284 0.66 0.8 6.8 7.4 515 7.5BOD5 is est.Nayadic-B LE 04/09/023.4 18.00 0.03 24.40 1.50 25.90 12.90 90 2816 1.212 1.1 6.8 7.4 515 7.5QA duplicate, BOD5 is est.Nayadic-B LE 05/07/021.7 4.00 0.01 18.50 1.30 19.80 11.90 95 2664 1.852 1.7 7.0 6.6 498 8.7NH4 <0.02Nayadic-B LE 06/11/02380.00 0.10 13.40 3.20 16.60 19.30 135 26500 2.7 400 2.6 7.0 4.0 543 11.0Nayadic-BLE07/16/023.0 5.00 0.04 4.07 1.30 5.37 16.40 186 26480 2.7 420 2.6 6.9 3.7 501 17.6Nayadic-BLE08/14/025.4 6.00 0.18 1.66 2.60 4.26 15.10 178 26150 2.2 140 2.1 7.0 3.8 494 16.7TKN is est.Nayadic-B LE 09/10/026.1 16.00 0.22 34.50 1.80 36.30 10.10 97 26130 2.172 1.9 7.3 5.2 565 10.8Nayadic-BLE10/07/023.0 6.00 0.07 41.90 1.80 43.70 9.3078 272,600 3.4 1,600 3.2 7.2 5.5 588 9.6chloride is estimate.Nayadic-B LE 12/02/0220.0 5.00 16.00 25.30 20.00 45.30 9.88 178 27440 2.6 190 2.3 7.5 5.7 701 3.0Nayadic-BLE02/10/039.4 11.00 2.30 44.90 3.20 48.10 9.3944 292,100 3.3 840 2.9 7.0 6.2 607 2.1Nayadic-BLE04/07/030.5 5.00 0.02 43.10 0.20 43.30 7.9740 3210 1.02 0.3 6.8 4.3 514 4.4BOD5<1.0Nayadic-B LE 06/11/030.5 10.00 0.01 39.30 0.60 39.90 9.5247 342 0.32 0.3 6.4 5.6 578 13.5BOD5<1.0 BOD5<1.0, NH4<0.02Nayadic-B LE 08/13/038.8 5.00 0.04 27.10 0.10 27.20 9.0654 482 0.32 0.3 6.8 5.4 536 15.9TKN<0.2Nayadic-B LE 11/19/03tests cancelled; not enough flow to collect samplesNayadic-B LE 03/29/040.5 8.00 0.03 33.50 0.70 34.20 8.7030 3016 1.24 0.6 6.6 6.2 485 5.6BOD5<1.0Nayadic-B LE 05/24/041.0 1.00 0.06 24.20 0.80 25.00 8.8656 544 0.62 0.3 6.7 7.1 548 10.4BOD5 is est.Nayadic-B MW Drain 2105 12/04/010.5 8.00 0.00 1.60 0.30 1.90 0.10 151 21 0.01 0.0 6.7 2.7 143 8.3 8.34Nitrite <.02, BOD5 <1.0, TKN is estimate.Nayadic-B MW Drain 2105 01/15/020.5 17.00 0.02 2.08 0.10 2.18 0.1058 41 0.01 0.0 6.6 3.9 136 7.6 8.24BOD5 <1.0, TKN <0.2Nayadic-B MW Drain 2105 02/12/020.5 5.00 0.00 3.10 0.10 3.20 0.1052 51 0.01 0.0 6.9 4.8 157 7.1 8.24BOD5 <1, TKN <0.2Appendix B: Innovative System Field Test DataPage B-39
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesNayadic-BMW Drain 2105 03/12/020.5 4.00 0.00 2.70 0.10 2.80 0.1058 71 0.01 0.0 6.8 4.3 153 6.6 6.84BOD5 <1.0, TKN <0.2Nayadic-B MW Drain 2105 04/09/020.5 2.00 0.01 5.08 0.20 5.28 0.0844 111 0.01 0.0 6.8 5.8 184 6.4 6.12NH4 <0.02, BOD5 <1.0Nayadic-B MW Drain 2105 05/06/020.5 3.00 0.01 4.98 0.10 5.0848 71 0.01 0.0 6.6 4.7 180 7.2 8.27NH4 <0.02, BOD5 <1.0, TKN <0.2Nayadic-B MW Drain 2105 06/11/021.00 0.01 4.24 0.10 4.3452 51 0.01 0.0 6.8 4.5 155 7.1 6.59TKN <0.2, NH4 <0.02Nayadic-B MW Drain 2105 06/11/021.00 0.01 4.24 0.10 4.3452 51 0.01 0.0 6.8 4.5 155 7.1QA Duplicate; TKN <0.2, NH4 <0.02Nayadic-B MW Drain 2105 06/11/028.93Nayadic-BMW Drain 2105 07/16/020.5 1.00 0.01 3.90 0.20 4.1058 41 0.01 0.0 6.9 4.5 151 8.2QA duplicate; BOD5<1.0, NH4 <0.02Nayadic-B MW Drain 2105 07/16/020.5 2.00 0.01 3.97 0.20 4.1754 41 0.01 0.0 6.9 4.5 151 8.2 8.19BOD5<1.0, NH4 <0.02Nayadic-B MW Drain 2105 08/13/020.5 4.00 0.01 3.84 0.10 3.9452 41 0.01 0.0 6.9 4.6 149 8.9 8.26TKN <0.2 est., BOD5 <1, NH4 <0.02Nayadic-B MW Drain 2105 08/13/020.5 3.00 0.01 3.85 0.30 4.1552 41 0.01 0.0 6.9 4.6 149 8.9QA Duplicate, TKN is est., BOD5 <1, NH4 <0.02Nayadic-B MW Drain 2105 09/10/020.5 2.00 0.03 3.98 0.10 4.0854 41 0.01 0.0 6.6 3.7 143 9.3 8.22BOD5<1.0, TKN<0.2Nayadic-B MW Drain 2105 09/10/020.5 3.00 0.02 3.98 0.10 4.0854 41 0.01 0.0 6.6 3.7 143 9.3QA Duplicate; BOD5<1.0, TKN<0.2Nayadic-B MW Drain 2105 10/07/020.5 0.50 0.01 3.54 0.20 3.7458 31 0.01 0.0 6.1 3.3 146 9.6 8.24NH4 <0.02; BOD5 <1; TSS <1Nayadic-B MW Drain 2105 11/06/020.5 2.00 0.03 3.03 0.10 3.1355 31 0.01 0.0 6.9 7.3 137 9.9 8.52BOD5 <1.0, TKN <0.2Nayadic-B MW Drain 2105 12/02/020.5 4.00 0.01 2.09 0.30 2.3954 31 0.01 0.0 7.0 3.8 143 9.0 8.24BOD5 <1.0 NH4 <0.02Nayadic-B MW Drain 2105 02/10/030.5 2.00 0.01 2.96 0.10 3.0654 101 0.01 0.0 6.8 6.3 176 7.1 8.24BOD5<1.0, NH4AsN <0.02, TKN <0.2Nayadic-B MW Drain 2105 04/07/030.5 1.00 0.01 6.29 0.10 6.3946 101 0.01 0.0 6.8 7.0 183 6.7 6.55BOD5<1.0, NH4 <0.02, TKN <0.2Nayadic-B MW Drain 2105 05/06/030.5 1.00 0.01 4.93 0.10 5.0348 81 0.01 0.0 6.8 7.3 170 6.6 8.31BOD5<1.0 NH4 <0.02, TKN <0.2Nayadic-B MW Drain 2105 05/06/030.5 1.00 0.01 4.91 0.10 5.0148 91 0.01 0.0QA Duplicate; BOD5<1.0 NH4 <0.02, TKN <0.2Nayadic-B MW Drain 2105 06/10/030.5 2.00 0.01 5.84 0.10 5.9452 111 0.01 0.0 6.8 5.9 191 7.5 8.20BOD5<1.0, NH4<0.02, TKN<0.2Nayadic-B MW Drain 2105 08/12/030.5 1.00 0.03 4.78 0.30 5.0856 111 0.01 0.0 6.7 5.5 197 9.1 8.20BOD5<1.0Nayadic-B MW Drain 2105 10/06/030.5 0.50 0.01 4.54 0.10 4.6455 111 0.01 0.0 6.6 5.8 189 9.2 8.46BOD5 <1.0, TSS<1, NH4AsN<0.02, TKN<0.2Nayadic-B MW Drain 2105 10/06/030.5 0.50 0.01 4.55 0.10 4.6555 111 0.01 0.0QA Duplicate; BOD <1.0, TSS<1, NH4<0.02, TKN<0.2Nayadic-B MW Drain 2105 11/19/030.5 0.50 0.01 3.80 0.10 3.9054 91 0.01 0.0 6.6 5.7 176 9.2 8.62BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2Nayadic-B MW Drain 2105 03/29/040.01 6.12 0.10 6.22131 0.01 0.0 6.8 7.3 203 6.6 8.19TKN<0.2, NH4<0.02Nayadic-B MW Drain 2105 03/29/040.01 6.09 0.10 6.19131 0.01 0.0QA Duplicate; TKN<0.2; NH4<0.02Nayadic-B MW Drain 2105 05/24/040.01 1.93 0.10 2.03101 0.01 0.0 6.8 7.5 187 6.8 8.20NH4 <0.02, TKN<0.2Nayadic-B MW Drain 2105 05/24/040.01 1.94 0.10 2.04101 0.01 0.0QA Duplicate, NH4 <0.02, TKN<0.2Nayadic-B MW Drain 2105 09/14/040.01 0.67 0.10 0.7791 0.01 0.0 6.6 5.5 143 9.0 8.23NH4<0.02, TKN<0.2Nayadic-B NDE 11/05/01110.0 28.00 3.50 12.80 8.90 21.70 18.00 153 254,000 3.6 3,800 3.6 7.7 1.3 483 11.7BOD5 is estimate.Nayadic-B NDE 12/04/0140.0 10.00 0.90 11.10 6.20 17.30 19.40 158 2530,000 4.5 26,000 4.4 7.8 2.0 506 6.6Nayadic-BNDE01/15/0263.0 5.00 1.90 9.40 7.90 17.30 23.70 191 236,800 3.8 3,400 3.5 7.6 1.1 605 9.6Nayadic-BNDE02/12/0268.0 21.00 2.30 15.10 9.10 24.20 24.00 148 233,800 3.6 3,400 3.5 7.7 1.7 548 4.4Nayadic-BNDE03/12/0250.0 11.00 2.20 19.70 6.70 26.40 18.00 105 22760 2.9 1,000 3.0 7.4 1.7 534 5.8Nayadic-BNDE04/09/0241.0 11.00 1.90 17.10 8.30 25.40 20.70 102 27200 2.3 400 2.6 7.3 1.2 514 8.7Nayadic-BNDE05/07/0244.0 11.00 1.60 13.50 7.90 21.40 22.00 108 26740 2.9 420 2.6 7.1 1.0 511 8.8Nayadic-BNDE06/11/022.00 1.08 8.64 5.10 13.74 22.10 180 24460 2.7 420 2.6 7.4 1.5 563 12.0QA DuplicateNayadic-B NDE 06/11/0219.0 6.00 1.06 8.66 5.30 13.96 22.20 180 22940 3.0 640 2.8 7.4 1.5 563 12.0Nayadic-BNDE07/16/0213.0 4.00 0.78 5.02 4.00 9.02 17.60 200 2694 2.0 110 2.0 7.6 0.8 525 15.8BOD5 is est.Nayadic-B NDE 07/16/0210.0 4.00 0.78 5.02 3.90 8.92 17.20 206 25140 2.1 140 2.1 7.6 0.8 525 15.8QA duplicateNayadic-B NDE 08/14/0232.0 15.00 0.51 16.20 4.20 20.40 14.30 137 2672 1.980 1.9 7.3 1.6 557 16.1TKN is est., BOD5 is est.Nayadic-B NDE 09/10/028.4 8.00 0.56 35.70 3.60 39.30 11.50 85 25160 2.2 120 2.1 7.4 1.6 550 13.1Nayadic-BNDE09/10/027.9 15.00 0.56 35.80 3.40 39.20 11.30 85 25200 2.3 180 2.3 7.4 1.6 550 13.1Nayadic-BNDE10/07/024.0 5.00 0.10 44.00 2.10 46.10 10.80 66 26180 2.3 120 2.1 7.3 1.8 582 13.2chloride is estimate.Nayadic-B NDE 10/07/023.7 2.00 0.10 44.50 2.10 46.60 10.60 66 27190 2.3 120 2.1 7.4 2.2 578 12.6chloride and TKN are estimates.Nayadic-B NDE 12/02/0222.0 6.00 26.00 9.24 35.00 44.24 10.90 252 26270 2.4 190 2.3 7.7 2.1 726 7.4Nayadic-BNDE02/10/0328.0 10.00 8.40 38.70 12.00 50.70 11.10 73 301,500 3.2 720 2.9 7.2 1.7 682 6.3QA DuplicateNayadic-B NDE 02/10/0331.0 12.00 9.30 38.40 10.00 48.40 11.10 74 291,600 3.2 820 2.9 7.2 1.7 682 6.3Nayadic-BNDE04/07/033.6 8.00 0.11 45.90 2.00 47.90 10.20 22 3420 1.310 1.0 6.8 2.4 518 6.8Nayadic-BNDE04/07/032.1 5.00 0.11 46.00 2.20 48.20 10.50 22 3440 1.610 1.0 6.8 2.3 566 7.6QA Duplicate; BOD5 is est.Nayadic-B NDE 06/11/0310.4 5.00 5.40 44.40 6.40 50.80 11.80 14 328 0.910 1.0 6.2 1.6 581 14.1QA DuplicateNayadic-B NDE 06/11/039.5 5.00 4.70 44.40 5.90 50.30 11.90 12 3210 1.010 1.0 6.3 1.8 638 13.6Nayadic-BNDE08/13/0321.0 10.00 6.10 48.80 9.10 57.90 18.30 18 4036 1.614 1.1 6.6 1.6 667 17.1TKN is est.Nayadic-B NDE 08/13/0343.0 22.00 6.70 48.20 10.00 58.20 18.50 16 4042 1.616 1.2 6.5 1.6 670 16.7QA Duplicate; TKN is est.Nayadic-B NDE 11/19/034.1 3.00 7.30 47.40 9.20 56.60 16.60 14 3770 1.862 1.8 6.6 2.0 639 9.4Nayadic-BNDE11/19/033.6 0.50 7.00 47.70 9.40 57.10 16.40 14 3790 2.056 1.7 6.7 2.2 637 9.4QA Duplicate; TSS<1Nayadic-B NDE 03/29/0436.0 6.00 0.13 37.80 15.00 52.80 11.80 16 29300 2.5 240 2.4 6.6 2.8 531 7.4Nayadic-BNDE05/24/0410.0 4.00 9.70 52.00 11.00 63.00 16.30 14 4242 1.612 1.1 6.7 2.5 712 17.8Nayadic-BSTE11/05/01150.0 96.00 1.30 12.50 8.00 20.50 19.90 150 28 2.50 10,000 4.0 6,600 3.8 7.4 2.9 489 13.6BOD5 is estimate; oil & grease <5Nayadic-B STE 12/04/01280.0 890.00 1.16 11.00 13.00 24.00 21.60 192 27 2.50 10,000 4.0 12,000 4.1 7.8 3.8 498 8.9TKN is estimate; Oils & Grease is <5Nayadic-B STE 01/15/02280.0 53.00 3.10 12.80 14.00 26.80 23.60 175 25 2.50 18,000 4.3 9,800 4.0 7.7 1.8 606 5.0oil&grease <5Nayadic-B STE 02/12/02280.0 94.00 4.40 17.70 19.00 36.70 22.50 130 21 2.50 7,000 3.8 7,000 3.8 7.5 2.3 518 7.2Oil & Grease <5Nayadic-B STE 03/12/02400.0 96.00 0.80 15.00 17.00 32.00 23.60 126 24 2.50 8,400 3.9 6,400 3.8 7.5 2.6 527 8.6Oil & Grease <5Nayadic-B STE 04/09/0269.0 14.00 2.30 12.10 11.00 23.10 24.20 114 27 2.50 8,000 3.9 10,000 4.0 7.4 1.2 501 11.2O&G <5Appendix B: Innovative System Field Test DataPage B-40
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesNayadic-BSTE05/07/02170.0 110.00 1.44 14.00 11.00 25.00 21.90 102 25 2.50 26,000 4.4 30,000 4.5 7.1 1.2 489 12.1O&G <5Nayadic-B STE 06/11/02170.0 150.00 3.00 8.30 10.00 18.30 22.90 220 23 2.50 84,000 4.9 78,000 4.9 7.5 1.2 660 14.2O&G <5Nayadic-B STE 07/16/02210.0 130.00 41.00 0.02 63.00 63.02 15.00 315 34 39.00 7.0E+06 6.8 8.4E+06 6.9 7.4 0.5 777 16.6Nayadic-BSTE08/14/02310.0 210.00 45.00 0.01 61.00 61.01 12.50 304 29 39.00 680,000 5.8 620,000 5.8 6.9 0.4 792 17.3TKN is est.Nayadic-B STE 09/10/02230.0 49.00 45.00 0.01 59.00 59.01 10.60 299 31 24.00 980,000 6.0 400,000 5.6 7.0 1.2 771 15.7Nayadic-BSTE10/07/02270.0 78.00 65.00 0.01 73.00 73.01 12.70 389 32 26.00 560,000 5.7 540,000 5.7 7.4 0.8 889 13.4chloride is estimate.Nayadic-B STE 12/02/02260.0 72.00 54.00 0.01 68.00 68.01 14.90 402 38 26.00 840,000 5.9 130,000 5.1 7.2 1.1 1047 10.2Nayadic-BSTE02/10/03150.0 75.00 34.00 0.01 46.00 46.01 7.33 238 20 41.00 840,000 5.9 330,000 5.5 7.2 1.4 604 8.3Nayadic-BSTE04/07/03290.0 59.00 74.00 0.01 86.00 86.01 15.90 438 46 18.00 540,000 5.7 340,000 5.5 7.0 0.6 1077 10.1Nayadic-BSTE06/11/03330.0 71.00 64.00 0.02 73.00 73.02 14.40 346 42 72.00 2.2E+06 6.3 1.9E+06 6.3 6.8 0.2 922 16.2Nayadic-BSTE08/13/03360.0 53.00 71.00 0.01 80.00 80.01 18.60 402 44 75.00 860,000 5.9 520,000 5.7 6.9 0.7 1029 18.6Nayadic-BSTE11/19/03300.0 100.00 58.00 0.01 79.00 79.01 17.00 376 43 96.00 480,000 5.7 420,000 5.6 7.0 1.2 964 11.9Nayadic-BSTE03/29/04430.0 89.00 0.59 0.03 76.00 76.03 24.20 356 374.5E+06 6.7 380,000 5.6 6.9 1.1 940 11.7Nayadic-BSTE05/24/04250.0 31.00 60.00 0.05 66.00 66.05 15.90 370 35520,000 5.7 150,000 5.2 7.0 0.7 953 14.9Nayadic-DMW Drain 2120 11/27/010.0 1.00 0.00 0.11 0.10 0.21 0.2252 21 0.01 0.0 6.7 0.4 113 8.5 11.14 BOD5 <1.0; TKN <0.2Nayadic-D MW Drain 2120 01/14/020.5 2.00 0.00 0.10 0.10 0.20 0.2052 31 0.01 0.0 6.8 0.1 115 8.2 11.02TKN <0.2Nayadic-D MW Drain 2120 01/14/020.5 0.50 0.00 0.10 0.10 0.20 0.2054 31 0.01 0.0 6.8 0.1 115 8.2QA Duplicate; BOD <1.0; TKN <0.2; TSS<1Nayadic-D MW Drain 2120 02/13/020.5 9.00 0.00 0.10 0.10 0.20 0.2050 21 0.01 0.0 6.7 0.1 105 7.7 11.19TKN <0.2; BOD <1Nayadic-D MW Drain 2120 02/13/020.5 3.00 0.00 0.10 0.10 0.20 0.2050 21 0.01 0.0 6.7 0.1 105 7.7QA Duplicate; BOD <1; TKN <0.2Nayadic-D MW Drain 2120 03/11/020.5 5.00 0.00 0.10 0.40 0.50 0.2052 21 0.01 0.0 6.8 0.1 114 7.7 11.17 BOD5<1; D.O. <0.1Nayadic-D MW Drain 2120 04/08/021.1 4.00 0.00 0.10 0.10 0.20 0.2050 21 0.01 0.0 6.5 0.1 115 7.5 11.12 TKN <0.2, BOD5 is estimate, dissolved oxygen <0.1Nayadic-D MW Drain 2120 05/06/020.5 4.00 0.01 0.10 0.10 0.2047 21 0.01 0.0 7.0 0.1 111 7.3 11.14 NH4 <0.02, BOD5 <1.0, TKN <0.2, D.O. <0.1Nayadic-D MW Drain 2120 05/06/021.0 3.00 0.01 0.10 0.10 0.2047 21 0.01 0.0 6.6 0.1 111 7.3QA, NH4 <0.02, BOD est., TKN <0.2, D.O. <0.1Nayadic-D MW Drain 2120 06/11/021.8 2.00 0.01 0.08 0.10 0.1846 21 0.01 0.0 7.0 0.1 100 7.7 11.11 TKN <0.2, NH4 <0.02; D.O. <0.1Nayadic-D MW Drain 2120 07/15/020.5 3.00 0.03 0.07 0.10 0.1752 21 0.01 0.0 7.1 0.1 97 8.1 11.14TKN <0.2, BOD5<1.0, DO <0.1Nayadic-D MW Drain 2120 08/19/021.3 3.00 0.01 0.09 0.10 0.1945 21 0.01 0.0 7.1 0.1 103 9.5 11.08TKN <0.2, BOD5 is est., NH4 <0.02Nayadic-D MW Drain 2120 09/16/020.5 1.00 0.01 0.09 0.10 0.1949 21 0.01 0.0 6.9 0.1 103 8.9 11.14BOD5<1.0, NH4 <0.02, TKN<0.2Nayadic-D MW Drain 2120 10/08/020.5 2.00 0.01 0.12 0.10 0.2253 21 0.01 0.0 7.0 0.1 99 8.7 11.11NH4 < 0.02; BOD5 <1; TKN < 0.2Nayadic-D MW Drain 2120 10/08/020.5 1.00 0.10 0.12 0.10 0.2253 21 0.01 0.0QA Duplicate; NH4 < 0.02; BOD5 <1; TKN < 0.2Nayadic-D MW Drain 2120 10/30/021.2 6.00 0.01 0.14 0.10 0.2452 21 0.01 0.0 6.9 0.5 102 8.5 11.06BOD5 is est., NH4 <0.02, TKN <0.2Nayadic-D MW Drain 2120 10/30/020.5 5.00 0.01 0.14 0.10 0.2453 21 0.01 0.0QA Duplicate; BOD5<1.0, NH4 <0.02, TKN <0.2Nayadic-D MW Drain 2120 12/09/020.5 4.00 0.01 0.14 0.10 0.2452 21 0.01 0.0 6.9 0.1 114 8.4 11.04NH4 <0.02, BOD5 <1.0, TKN <0.2Nayadic-D MW Drain 2120 02/18/030.5 2.00 0.05 0.14 0.10 0.2453 21 0.01 0.0 6.7 0.1 112 7.6 11.15BOD5<1.0, TKN <0.2Nayadic-D MW Drain 2120 04/23/030.5 1.00 0.01 0.15 0.10 0.2554 31 0.01 0.0 6.7 0.1 112 7.3 11.18BOD5<1.0 NH4 <0.02, TKN <0.2Nayadic-D MW Drain 2120 05/12/030.5 0.50 0.01 0.14 0.10 0.2453 21 0.01 0.0 6.9 0.1 112 7.7 11.09BOD5<1.0, TSS <1 NH4 <0.02, TKN <0.2Nayadic-D MW Drain 2120 05/12/030.5 1.00 0.01 0.14 0.10 0.2452 21 0.01 0.0QA Duplicate; BOD5<1.0 NH4 <0.02, TKN <0.2Nayadic-D MW Drain 2120 06/23/030.5 1.00 0.01 0.13 0.10 0.2348 21 0.01 0.0 6.9 0.4 110 8.2 11.13BOD5<1.0 NH4<0.02, TKN<0.2Nayadic-D MW Drain 2120 08/18/030.5 1.00 0.01 0.11 0.10 0.2152 21 0.01 0.0 6.7 0.3 109 9.1 11.21BOD5<1.0, NH4AsN<0.02, TKN<0.2Nayadic-D MW Drain 2120 10/13/030.1 1.00 0.01 0.16 0.10 0.2652 21 0.01 0.0 6.7 0.1 109 9.1 11.20BOD5 <0.1, NH4AsN<0.02, TKN<0.2Nayadic-D MW Drain 2120 10/27/030.5 0.50 0.01 0.17 0.10 0.2752 21 0.01 0.0 6.6 0.2 109 9.6 11.11BOD5<1.0, TSS<1, NH4AsN<0.02, TKN<0.2Nayadic-D MW Drain 2120 03/15/040.03 0.22 0.10 0.3221 0.01 0.0 6.7 0.1 111 8.1 11.06TKN<0.2Nayadic-D MW Drain 2120 06/07/040.01 0.22 0.10 0.3231 0.01 0.0 6.7 0.1 110 7.9 11.08NH4<0.02, TKN<0.2Nayadic-D MW Drain 2120 09/27/040.01 0.25 0.10 0.3521 0.01 0.0 6.6 0.3 109 9.4 11.13NH4 <0.02, TKN<0.2Nayadic-D NDE 11/05/0114.0 14.00 49.00 0.00 100.00 100.00 6.45 314 7842,000 4.6 32,000 4.5 8.1 0.9 800 13.0Nayadic-DNDE11/26/0128.0 18.00 49.00 2.82 56.00 58.82 7.98 302 6736,000 4.6 44,000 4.6 8.3 0.6 959 11.0Nayadic-DNDE01/14/0257.0 19.00 44.00 6.60 53.00 59.60 9.40 260 614,300 3.6 2,800 3.4 7.9 1.7 811 6.4Nayadic-DNDE02/11/02140.0 21.00 24.00 19.60 32.00 51.60 10.30 158 792,000 3.3 1,400 3.1 7.6 1.8 855 6.1Nayadic-DNDE02/11/02110.0 21.00 25.00 19.90 32.00 51.90 10.60 161 782,000 3.3 1,400 3.1 7.6 1.8 855 6.1QA DuplicateNayadic-D NDE 03/11/02150.0 18.00 16.00 26.20 23.00 49.20 11.00 109 872,800 3.4 2,200 3.3 7.1 1.2 741 7.7Nayadic-DNDE03/11/02140.0 21.00 16.00 25.80 23.00 48.80 10.70 110 863,800 3.6 2,400 3.4 7.1 1.2 741 7.7QA Duplicate - BOD5 is est.Nayadic-D NDE 04/08/02110.0 15.00 8.30 28.70 18.00 46.70 10.50 113 8156,000 4.7 58,000 4.8 7.3 0.8 819 9.6Nayadic-DNDE04/08/02100.0 16.00 7.90 28.90 19.00 47.90 10.60 114 8558,000 4.8 46,000 4.7 7.3 0.8 819 9.6QA duplicateNayadic-D NDE 05/06/0244.0 10.00 3.40 28.80 11.00 39.80 12.10 159 62900 3.0 8,800 3.9 7.3 1.3 892 9.8Nayadic-DNDE05/06/0237.0 17.00 3.50 28.40 12.00 40.40 11.70 159 6310,000 4.0 11,000 4.0 7.3 1.3 892 9.8QA duplicateNayadic-D NDE 06/11/0214.00 7.60 19.30 14.00 33.30 13.60 238 498,200 3.9 8,600 3.9 7.9 1.1 864 13.1QA duplicateNayadic-D NDE 06/11/0290.0 13.00 7.30 19.30 14.00 33.30 14.20 238 5612,000 4.1 9,200 4.0 7.9 1.1 864 13.1Nayadic-DNDE07/15/0284.0 44.00 35.00 0.41 47.00 47.41 14.60 336 6156,000 4.7 40,000 4.6 7.8 1.5 891 16.7Nayadic-DNDE07/15/0298.0 36.00 36.00 0.38 43.00 43.38 14.60 339 6064,000 4.8 54,000 4.7 7.8 1.5 891 16.7QA DuplicateNayadic-D NDE 08/21/0222.0 24.00 3.80 10.70 9.20 19.90 14.10 236 6110,000 4.0 7,000 3.8 7.6 1.0 381 16.7cond. is est.Nayadic-D NDE 08/21/0222.0 15.00 3.70 11.10 9.60 20.70 14.20 238 6611,000 4.0 8,200 3.9 7.6 1.0 381 16.7QA Duplicate; cond. is est.Nayadic-D NDE 09/16/0214.0 2.00 0.80 16.60 4.40 21.00 13.60 230 621,300 3.1 400 2.6 7.4 1.8 823 15.3Nayadic-DNDE09/16/0220.0 3.00 0.82 16.50 4.80 21.30 14.20 230 591,300 3.1 640 2.8 7.4 1.8 823 15.3QA DuplicateNayadic-D NDE 10/09/0215.0 4.00 0.35 13.10 4.60 17.70 13.40 242 62100 2.0 100 2.0 7.5 2.2 868 15.4E Coli and fecal coli <200.Nayadic-D NDE 12/09/0242.0 10.00 5.10 26.90 7.20 34.10 13.10 232 564 0.62 0.3 7.3 1.4 950 8.2Appendix B: Innovative System Field Test DataPage B-41
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesNayadic-DNDE02/19/0324.0 13.00 3.90 59.00 6.10 65.101160 6416 1.212 1.1 7.3 1.9 960 6.7Nayadic-DNDE04/23/0343.0 25.00 9.00 37.60 9.90 47.50 11.40 94 59560 2.7 440 2.6 7.6 2.2 923 8.7Nayadic-DNDE06/23/0338.0 10.00 6.50 44.10 9.30 53.40 11.30 165 60720 2.9 640 2.8 7.4 1.2 899 13.0Nayadic-DNDE08/18/0358.0 20.00 3.10 36.60 9.90 46.50 11.50 169 6252 1.752 1.7 7.5 1.0 879 16.6Nayadic-DNDE10/13/0343.0 6.00 11.00 19.00 13.00 32.00 10.70 138 17042 1.634 1.5 7.3 1.6 1074 12.9BOD5 is est.Nayadic-D NDE 10/27/0319.0 6.00 14.30 24.80 15.00 39.80 11.20 130 17016 1.212 1.1 7.2 0.6 1092 13.5Nayadic-DNDE10/27/0336.0 10.00 13.80 25.00 16.00 41.00 10.80 129 17020 1.314 1.1 7.2 0.8 1089 13.4QA DuplicateNayadic-D NDE 03/15/0465.0 17.00 27.00 19.50 32.00 51.50 10.90 170 20044 1.640 1.6 7.4 1.5 1181 7.8Nayadic-DNDE03/15/0482.0 21.00 27.00 19.40 31.00 50.40 11.10 172 20044 1.650 1.7 7.4 1.4 1174 7.9QA DuplicateNayadic-D NDE 06/07/0433.0 3.00 11.00 17.50 12.00 29.50 9.87 110 646 0.84 0.6 7.4 2.1 651 13.6BOD5 is est.Nayadic-D NDE 06/07/0440.0 12.00 10.70 17.30 14.00 31.30 9.62 110 6418 1.312 1.1 7.4 1.5 650 13.6BOD5 is est.Nayadic-D NDE 09/27/0430.0 5.00 10.00 19.60 13.00 32.60 9.73 230 47540 2.7 400 2.6 7.7 1.4 819 15.4BOD5 is est.Nayadic-D STE 11/05/0127.0 40.00 48.00 0.08 60.00 60.08 8.98 298 81 2.50 13,000 4.1 8,400 3.9 7.2 1.3 837 15.8oil & grease <5Nayadic-D STE 11/26/0146.0 80.00 52.00 2.28 64.00 66.28 9.06 308 60 6.00 84,000 4.9 100,000 5.0 8.0 2.7 879 11.8BOD5 is estimateNayadic-D STE 01/14/02150.0 54.00 40.00 10.80 55.00 65.80 10.20 201 76 2.50 3,400 3.5 2,200 3.3 7.8 3.4 762 10.1Oil and Grease <5Nayadic-D STE 02/11/02180.0 63.00 20.00 17.80 31.00 48.80 10.10 144 86 2.50 1,600 3.2 1,200 3.1 7.6 2.8 815 10.3Oil & Grease <5Nayadic-D STE 03/11/0270.0 17.00 12.00 31.00 22.00 53.00 11.70 66 88 2.50 2,400 3.4 2,800 3.4 7.0 3.7 710 9.7Oil & Grease <5Nayadic-D STE 04/08/0289.0 61.00 11.50 22.80 26.00 48.80 10.70 196 72 2.50 60,000 4.8 48,000 4.7 7.0 2.7 807 13.8O&G <5Nayadic-D STE 05/06/02180.0 130.00 6.50 27.20 20.00 47.20 13.00 190 57 8.00 50,000 4.7 28,000 4.4 7.4 2.7 903 13.4Nayadic-DSTE06/11/0287.0 30.00 1.00 27.60 17.00 44.60 15.20 195 60 7.00 80,000 4.958 1.8 8.2 1.8 842 15.7Nayadic-DSTE07/15/02450.0 380.00 24.00 9.03 55.00 64.03 17.90 300 60 2.50 1.1E+06 6.0 920,000 6.0 7.5 0.9 838 19.6O&G <5Nayadic-D STE 08/21/0288.0 63.00 1.60 16.30 11.00 27.30 13.70 205 63 49.00 24,000 4.4 32,000 4.5 7.5 2.3 771 19.6Nayadic-DSTE09/16/02180.0 72.00 1.26 16.70 26.00 42.70 17.30 229 58 2.50 180,000 5.3 110,000 5.0 7.3 3.3 793 17.8BOD5 is est., O&G<5Nayadic-D STE 10/09/0292.0 75.00 0.74 8.51 9.90 18.41 13.70 241 56 2.50 30,000 4.5 28,000 4.4 7.0 2.5 776 17.3BOD5 is estimate; Oil & grease <5Nayadic-D STE 12/09/02290.0 50.00 71.00 0.03 94.00 94.03 17.40 541 67 75.00 8,000 3.9 5,400 3.7 8.7 0.6 1408 9.6Nayadic-DSTE02/19/03430.0 420.00 34.00 0.01 86.00 86.01 15.60 481 73 96.00 4,800 3.7 2,600 3.4 8.5 1.1 1140 10.2Nayadic-DSTE04/23/03240.0 61.00 44.00 0.02 57.00 57.02 11.20 477 51 52.00 18,400 4.3 20,000 4.3 7.6 1.3 1087 13.2Nayadic-DSTE06/23/03350.0 35.00 67.00 0.01 79.00 79.01 12.70 471 62 37.00 650,000 5.8 630,000 5.8 7.6 1.1 1199 15.9Nayadic-DSTE08/18/03210.0 74.00 57.00 2.05 64.00 66.05 12.90 495 66 25.00 110,000 5.0 78,000 4.9 8.3 0.1 1209 18.0O&G is est.Nayadic-D STE 10/13/03160.0 79.00 51.00 0.01 60.00 60.01 11.20 326 160 34.00 58,000 4.8 30,000 4.5 7.4 1.1 1255 15.1Nayadic-DSTE10/27/03230.0 150.00 62.00 0.01 78.00 78.01 11.70 350 170 43.00 74,000 4.9 18,000 4.3 7.3 1.0 1341 16.0Nayadic-DSTE03/15/04160.0 130.00 57.00 0.02 71.00 71.02 10.80 331 18054,000 4.7 54,000 4.7 7.9 1.2 1277 12.4Nayadic-DSTE06/07/04100.0 76.00 41.00 0.01 53.00 53.01 10.40 290 7424,000 4.4 22,000 4.3 7.8 1.0 836 17.8Nayadic-DSTE09/27/04220.0 110.00 57.00 0.02 67.00 67.02 10.90 440 4813,400 4.1 14,800 4.2 8.3 0.8 1049 16.8Nayadic-MMW Drain 2126 12/04/010.5 18.00 0.02 9.12 0.20 9.32 0.1048 576.5 5.1 400 9.8 8.39BOD5 <1.0 - TKN is estimateNayadic-M MW Drain 2126 12/11/012 0.32 0.3 6.4 5.2 502 9.6 8.54Bacteria Re-SampleNayadic-M MW Drain 2126 12/11/012 0.32 0.3 6.4 5.2 502 9.6QA Duplicate; bacteria re-sampleNayadic-M MW Drain 2126 01/15/021.7 3.00 0.00 26.10 0.30 26.40 0.0638 682 0.32 0.3 6.4 4.7 556 8.2 8.09Nayadic-MMW Drain 2126 01/15/021.7 4.00 0.00 26.10 0.30 26.40 0.0638 712 0.32 0.3 6.4 4.7 556 8.2QA duplicateNayadic-M MW Drain 2126 02/12/020.5 5.00 0.00 34.40 0.50 34.90 0.0541 642 0.32 0.3 6.5 7.6 605 7.2 8.04BOD5 <1Nayadic-M MW Drain 2126 02/12/020.50.00 35.00 0.40 35.40 0.1041 642 0.32 0.3 6.5 7.6 605 7.2QA Duplicate; BOD <1.0Nayadic-M MW Drain 2126 03/12/020.5 4.00 0.00 36.20 0.30 36.50 0.1041 662 0.32 0.3 6.5 9.9 568 6.7 8.41 BOD5 <1.0Nayadic-M MW Drain 2126 03/12/020.5 1.00 0.00 36.60 0.20 36.80 0.1041 662 0.32 0.3 6.5 9.9 568 6.7QA duplicate; BOD5 <1Nayadic-M MW Drain 2126 04/09/020.5 3.00 0.02 28.00 0.40 28.40 0.0532 662 0.32 0.3 6.5 7.2 525 6.5 6.42BOD5 <1.0Nayadic-M MW Drain 2126 05/07/020.5 3.00 0.01 14.30 0.10 14.4044 371 0.01 0.0 6.4 5.6 361 6.7 10.19 NH4 <0.02; BOD <1; TKN <0.2Nayadic-M MW Drain 2126 05/07/020.5 10.00 0.01 14.20 0.10 14.3044 361 0.01 0.0 6.4 6.6 361 6.7 NH4 <0.02; BOD <1; QA duplicateNayadic-M MW Drain 2126 06/11/021.00 0.01 6.41 0.40 6.8143 291 0.01 0.0 6.6 5.1 240 8.3 10.09 NH4 <0.02Nayadic-M MW Drain 2126 07/16/020.5 2.00 0.34 4.32 0.20 4.5242 171 0.01 0.0 6.8 5.2 169 9.9 10.05BOD5<1.0Nayadic-M MW Drain 2126 08/13/020.5 2.00 0.01 2.81 0.10 2.9146 161 0.01 0.0 6.8 6.2 159 11.9 10.07 TKN <0.2 est., BOD5 <1, NH4 <0.02Nayadic-M MW Drain 2126 09/10/020.5 6.00 0.06 1.01 0.10 1.1146 141 0.01 0.0 6.6 5.1 135 11.5 10.12BOD5<1.0, TKN<0.2Nayadic-M MW Drain 2126 10/07/020.5 2.00 0.04 0.89 0.10 0.9950 121 0.01 0.0 6.4 4.8 140 11.2 8.51BOD5 <1; TKN <0.2Nayadic-M MW Drain 2126 11/06/020.5 2.00 0.01 0.93 0.10 1.0350 101 0.01 0.0 6.7 4.6 132 10.5 10.11BOD5 <1.0 NH4 <0.02, TKN <0.2Nayadic-M MW Drain 2126 12/02/020.5 4.00 0.01 1.10 0.10 1.2050 101 0.01 0.0 6.8 2.8 146 9.8 10.07BOD5 <1.0 NH4 <0.02, TKN <0.2Nayadic-M MW Drain 2126 01/13/030.5 3.00 0.02 3.35 3.70 7.0548 111 0.01 0.0 6.5 2.7 168 8.2 10.11BOD5 <1.0Nayadic-M MW Drain 2126 02/10/030.5 3.00 0.01 3.43 0.10 3.5348 101 0.01 0.0 6.7 3.6 167 7.4 10.11BOD5<1.0, NH4AsN <0.02, TKN <0.2Nayadic-M MW Drain 2126 03/12/030.5 0.50 0.02 3.92 0.10 4.0248 91 0.01 0.0 6.7 4.0 163 7.1 10.06BOD5<1.0, TSS<1, TKN <0.2Nayadic-M MW Drain 2126 04/08/030.5 0.50 0.02 6.79 0.10 6.8946 101 0.01 0.0 6.7 3.7 184 6.9 10.09BOD5<1.0, TSS <1, TKN <0.2Nayadic-M MW Drain 2126 05/06/030.5 3.00 0.01 4.59 0.10 4.6949 91 0.01 0.0 6.7 5.7 173 6.9 10.10BOD5<1.0 NH4 <0.02, TKN <0.2Nayadic-M MW Drain 2126 06/10/030.5 3.00 0.01 5.24 0.10 5.3446 91 0.01 0.0 6.7 4.9 167 7.7 10.07BOD5<1.0, NH4<0.02, TKN<0.2Nayadic-M MW Drain 2126 08/12/030.5 5.00 0.01 3.45 0.10 3.5544 111 0.01 0.0 6.6 4.5 156 9.7 10.22BOD5<1.0 NH4<0.02, TKN<0.2Nayadic-M MW Drain 2126 10/15/030.1 0.50 0.01 1.98 0.10 2.0850 151 0.01 0.0 6.5 3.4 166 10.4 10.09BOD5<0.1, TSS<1, NH4AsN<0.02, TKN<0.2Nayadic-M MW Drain 2126 10/15/030.1 1.00 0.01 1.96 0.10 2.0650 151 0.01 0.0QA Duplicate; BOD5<0.1, NH4AsN<0.02, TKN<0.2Nayadic-M MW Drain 2126 10/28/030.5 0.50 0.01 2.01 0.10 2.1150 161 0.01 0.0 6.5 3.7 171 10.9 10.04BOD5<1.0, TSS<1, NH4AsN<0.02, TKN<0.2Nayadic-M MW Drain 2126 05/24/040.03 3.26 0.10 3.36391 0.01 0.0 6.7 6.4 251 7.1 10.06TKN<0.2Appendix B: Innovative System Field Test DataPage B-42
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesNayadic-MMW Drain 2126 09/14/040.01 1.84 0.10 1.94291 0.01 0.0 6.6 6.0 199 10.4 10.09NH4<0.02, TKN<0.2Nayadic-M NDE 11/05/0118.0 16.00 50.00 0.00 53.00 53.00 6.70 276 9736,000 4.6 26,000 4.4 8.1 1.6 817 14.6Nayadic-MNDE11/05/0115.0 14.00 50.00 0.00 51.00 51.00 6.70 262 9744,000 4.6 26,000 4.4 8.1 1.6 817 14.6QA duplicateNayadic-M NDE 12/04/0136.0 51.00 7.90 29.60 15.00 44.60 6.8334 1202,200 3.3 2,600 3.4 6.9 2.0 707 8.0TKN is estimateNayadic-M NDE 01/15/0280.0 18.00 9.60 24.10 14.00 38.10 6.8542 833,200 3.5 1,600 3.2 7.0 1.4 206 6.4Nayadic-MNDE02/12/02150.0 25.00 15.00 16.40 18.00 34.40 5.0090 742,000 3.3 1,600 3.2 7.4 2.5 588 9.6Nayadic-MNDE03/12/0276.0 10.00 2.80 21.80 6.00 27.80 5.7042 931,700 3.2 1,800 3.3 7.2 2.3 660 12.5Nayadic-MNDE04/09/0232.0 14.00 13.80 13.80 17.00 30.80 5.0297 8525,000 4.4 22,000 4.3 7.2 1.1 630 12.8Nayadic-MNDE05/07/021.6 19.00 4.90 17.80 6.70 24.50 5.6378 150960 3.0 640 2.8 7.4 1.0 696 15.0 BOD5 is est.Nayadic-M NDE 06/11/0286.0 32.00 5.30 17.90 9.20 27.10 6.0968 91960 3.0 660 2.8 7.2 1.6 639 16.1Nayadic-MNDE07/16/0246.0 39.00 3.80 31.90 8.60 40.50 7.47 150 539,600 4.0 10,000 4.0 7.4 1.0 683 21.0Nayadic-MNDE08/14/0240.0 31.00 4.00 15.80 8.60 24.40 7.02 231 43160,000 5.2 140,000 5.1 7.5 0.8 773 21.8QA Duplicate; TKN is est.Nayadic-M NDE 08/14/0239.0 42.00 4.00 15.90 9.10 25.00 7.08 232 43170,000 5.2 140,000 5.1 7.5 0.8 773 21.8TKN is est.Nayadic-M NDE 09/10/02140.0 96.00 2.50 17.80 5.40 23.20 6.91 202 351,100 3.0 1,100 3.0 7.6 1.0 659 16.5Nayadic-MNDE11/06/0236.0 15.00 1.90 22.60 3.60 26.20 6.45 158 3232 1.532 1.5 7.4 2.2 624 9.4BOD5 is est.Nayadic-M NDE 12/02/0285.0 42.00 22.00 4.80 31.00 35.80 7.91 230 39320,000 5.5 360,000 5.6 7.7 2.3 707 6.8Nayadic-MNDE01/13/03110.0 65.00 60.00 0.01 68.00 68.01 9.88 385 383.8E+06 6.6 3.6E+06 6.6 7.1 0.6 990 6.0QA Duplicate; pH is est.Nayadic-M NDE 01/13/03120.0 57.00 59.00 0.01 76.00 76.01 9.98 385 404.6E+06 6.7 4.2E+06 6.6 7.5 0.7 1011 6.2pH is est.Nayadic-M NDE 02/10/0388.0 59.00 55.00 0.02 73.00 73.02 9.82 404 4178,000 4.9 46,000 4.7 7.6 0.9 1020 4.1Nayadic-MNDE03/10/0335.0 6.00 42.00 0.98 100.00 100.98 7.28 330 362,000 3.3 4,000 3.6 8.5 1.8 866 5.2Nayadic-MNDE04/09/0311.0 25.00 36.00 1.82 48.00 49.82 6.58 301 3414 1.128 1.4 8.2 1.2 780 8.2Nayadic-MNDE06/11/0376.0 47.00 6.10 9.77 13.00 22.77 8.68 198 38100 2.0 100 2.0 7.4 1.3 627 15.9Nayadic-MNDE08/13/0314.0 7.00 0.55 24.20 2.20 26.40 9.13 124 424 0.66 0.8 7.4 1.5 644 19.5TKN is est.Nayadic-M NDE 10/15/0315.0 11.00 1.60 23.10 3.20 26.30 8.50 138 3836 1.620 1.3 7.5 1.9 630 14.2Nayadic-MNDE10/15/0313.0 11.00 1.90 23.20 3.30 26.50 8.51 138 3838 1.624 1.4 7.5 1.5 611 14.5QA DuplicateNayadic-M NDE 10/27/0328.0 9.00 2.80 22.00 5.10 27.10 8.82 153 3834 1.532 1.5 7.6 1.1 636 14.7Nayadic-MNDE05/24/0472.0 11.00 11.00 13.50 12.00 25.50 8.42 180 332 0.32 0.3 7.3 2.6 631 14.0Nayadic-MNDE09/13/0422.0 18.00 3.70 2.44 3.80 6.24 8.06 240 232 0.32 0.3 7.5 1.6 584 15.5Nayadic-MNDE09/13/0417.0 26.00 3.60 2.44 3.50 5.94 7.94 230 232 0.32 0.3 7.6 1.5 568 16.0Nayadic-MSTE11/05/0187.0 200.00 45.00 0.04 60.00 60.04 9.08 252 110 9.00 90,000 5.0 70,000 4.8 7.9 2.1 814 16.7Nayadic-MSTE12/04/01380.0 260.00 40.00 0.00 56.00 56.00 6.70 226 92 244.00 170,000 5.2 770,000 5.9 7.2 1.2 718 14.7TKN is est.Nayadic-M STE 01/15/02180.0 55.00 46.00 0.00 58.00 58.00 6.87 238 79 25.00 480,000 5.7 100,000 5.0 7.2 0.7 730 13.4Nayadic-MSTE02/12/02270.0 71.00 40.00 0.00 56.00 56.00 6.90 200 63 23.00 1.9E+06 6.3 1,500,000 6.2 6.8 1.1 658 14.4Nayadic-MSTE03/12/02210.0 71.00 39.00 0.00 50.00 50.00 6.40 244 120 39.00 4.1E+07 7.6 3.1E+07 7.5 7.4 1.0 983 15.9Nayadic-MSTE04/09/02150.0 84.00 21.00 0.02 50.00 50.02 5.37 195 100 30.00 1.9E+08 8.3 1.9E+08 8.3 7.3 0.7 785 16.6Nayadic-MSTE05/07/02160.0 66.00 28.00 0.02 37.00 37.02 5.71 200 130 18.00 1.4E+07 7.1 1.2E+07 7.1 7.6 0.4 805 18.2Nayadic-MSTE06/11/02500.0 530.00 37.00 0.01 60.00 60.01 9.29 235 79 175.00 1.6E+06 6.2 1.2E+06 6.1 7.1 0.8 774 21.1Nayadic-MSTE07/16/02190.0 100.00 44.00 0.02 59.00 59.02 8.01 374 46 28.00 1.2E+08 8.1 9.4E+07 8.0 8.1 0.6 847 21.8Nayadic-MSTE08/14/02190.0 100.00 22.00 0.01 32.00 32.01 7.12 358 39 57.00 9.4E+06 7.0 1.1E+07 7.0 8.3 0.3 824 21.4TKN is est.Nayadic-M STE 09/10/0269.0 49.00 26.00 0.03 35.00 35.03 7.98 324 35 10.00 120,000 5.1 38,000 4.6 6.9 0.7 754 16.8Nayadic-MSTE11/06/02180.0 95.00 47.00 0.03 62.00 62.03 9.79 320 39 37.00 640,000 5.8 660,000 5.8 7.9 1.0 759 12.4Nayadic-MSTE12/02/02320.0 210.00 60.00 0.01 74.00 74.01 12.10 368 54 51.00 1.5E+06 6.2 1.2E+06 6.1 7.3 1.3 994 12.3Nayadic-MSTE01/13/03300.0 220.00 56.00 0.01 80.00 80.01 9.55 376 41 59.00 7.0E+07 7.8 6.2E+07 7.8 7.6 0.9 966 7.6pH is est.Nayadic-M STE 02/10/03170.0 23.00 57.00 0.01 70.00 70.01 7.33 404 39 15.00 80,000 4.9 20,000 4.3 7.0 1.4 1023 4.7Nayadic-MSTE03/10/0383.0 17.00 20.00 0.01 27.00 27.01 3.57 224 30 2.50 122,000 5.1 100,000 5.0 7.0 0.7 588 6.6O&G <5Nayadic-M STE 04/09/0344.0 22.00 8.70 0.02 34.00 34.02 4.13 217 28 2.50 1,500 3.2 1,500 3.2 7.1 0.7 493 7.7O&G <5Nayadic-M STE 06/11/03250.0 155.00 33.00 0.02 47.00 47.02 9.93 326 41 36.00 52,000 4.7 20,000 4.3 6.9 1.0 834 18.9Nayadic-MSTE08/13/03130.0 81.00 25.00 0.03 33.00 33.03 10.80 294 45 14.00 220,000 5.3 1,000 3.0 7.4 0.8 725 21.4Nayadic-MSTE10/15/0372.0 97.00 23.00 0.01 32.30 32.31 8.88 297 36 14.00 40,000 4.6 46,000 4.7 8.4 0.9 703 16.5Nayadic-MSTE10/27/03230.0 30.00 26.00 0.02 36.00 36.02 9.21 308 39 14.00 12,000 4.1 2,000 3.3 7.6 0.8 744 11.0BOD5 is est.Nayadic-M STE 05/24/04210.0 330.00 8.50 3.97 10.00 13.97 9.50 210 3013,200 4.1 10,800 4.0 8.2 1.1 564 16.2Nayadic-MSTE09/13/04210.0 460.00 14.50 0.05 31.00 31.05 10.50 310 25220,000 5.3 190,000 5.3 8.1 1.0 698 17.4NiteLess-LMW Drain 2173 11/15/010.03 0.5447.1 7.8 178 11.0 9.46Background/well dev'ment; No TKN reported.NiteLess-L MW Drain 2173 11/15/010.04 0.5247.1 7.8 178 11.0QA; Background/well dev'ment; No TKN reportedNiteLess-L MW Drain 2173 01/08/020.5 48.00 0.00 1.10 0.30 1.40 0.3072 71 0.01 0.0 7.0 6.4 198 9.3 8.25BOD5 <1.0NiteLess-L MW Drain 2173 01/08/020.5 42.00 0.02 1.10 0.30 1.40 0.3072 71 0.01 0.0 7.0 6.4 198 9.3 QA duplicate - BOD5 <1.0NiteLess-L MW Drain 2173 02/05/020.5 12.00 0.00 1.20 0.30 1.50 0.4076 91 0.01 0.0 6.8 6.5 215 8.4 8.58BOD5 <1NiteLess-L MW Drain 2173 03/04/020.5 4.00 0.00 1.40 0.30 1.70 0.3083 121 0.01 0.0 7.0 6.6 228 8.0 6.83 BOD5 <1.0NiteLess-L MW Drain 2173 04/02/020.5 3.00 0.00 1.90 0.20 2.10 0.3087 156.8 6.4 283 7.9 7.80 BOD5 <1.0NiteLess-L MW Drain 2173 04/09/022 0.32 0.3 6.8 7.1 282 7.6bacteria re-sampleNiteLess-L MW Drain 2173 04/30/020.5 2.00 0.01 2.19 0.40 2.5990 142 0.32 0.3 6.8 6.6 300 7.9 7.05BOD5 <1.0; NH4 <0.02NiteLess-L MW Drain 2173 06/04/020.5 3.00 0.03 2.69 3.30 5.9990 151 0.01 0.0 6.9 5.7 276 8.5 7.80 BOD5<1.0NiteLess-L MW Drain 2173 07/08/020.5 9.00 0.01 8.21 0.60 8.81110 162 0.32 0.3 6.8 6.9 326 9.8 8.68 BOD5<1.0, NH4 <0.02NiteLess-L MW Drain 2173 08/05/020.5 3.00 0.02 8.08 0.30 8.38105 152 0.32 0.3 6.9 7.9 333 10.3 11.10BOD5 <1Appendix B: Innovative System Field Test DataPage B-43
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesNiteLess-LMW Drain 2173 09/04/020.5 2.00 0.02 8.76 0.30 9.0698 142 0.32 0.3 6.7 6.2 318 12.0 11.08 BOD5<1.0NiteLess-L MW Drain 2173 10/02/020.5 3.00 0.01 13.00 0.50 13.50102 142 0.32 0.3 6.8 7.3 344 11.9 11.00NH4 < 0.02; BOD5 <1NiteLess-L MW Drain 2173 10/29/020.5 4.00 0.01 19.50 0.40 19.9097 182 0.32 0.3 6.8 6.6 382 11.5 11.02BOD5<1.0, NH4 <0.02NiteLess-L MW Drain 2173 11/19/020.5 2.00 0.01 21.50 0.10 21.6092 162 0.32 0.3 6.9 7.6 432 11.6 11.10BOD5 <1.0 NH4 <0.02, TKN <0.2NiteLess-L MW Drain 2173 02/05/030.5 1.00 0.01 31.00 0.30 31.3083 281 0.01 0.0 6.8 5.5 544 9.2 8.01BOD5<1.0, NH4<0.02NiteLess-L MW Drain 2173 02/05/030.5 0.50 0.01 30.90 0.40 31.3084 291 0.01 0.0QA Duplicate; BOD5<1.0, TSS <1, NH4<0.02NiteLess-L MW Drain 2173 04/01/030.5 5.00 0.01 35.90 0.10 36.0088 331 0.01 0.0 7.0 6.6 595 8.2 7.98BOD5<1.0, NH4 <0.02, TKN <0.2NiteLess-L MW Drain 2173 05/05/030.5 2.00 0.01 36.90 0.10 37.0090 351 0.01 0.0 6.6 6.3 603 8.1 8.19BOD5<1.0 NH4 <0.02, TKN <0.2NiteLess-L MW Drain 2173 06/04/030.5 0.50 0.01 34.00 0.10 34.1090 311 0.01 0.0 6.8 7.4 562 9.4 8.33BOD5<1.0, TSS <1, NH4<0.02, TKN<0.2NiteLess-L MW Drain 2173 08/05/030.5 0.50 0.01 25.50 0.10 25.6084 281 0.01 0.0 6.9 6.7 508 10.7 9.37BOD5<1.0, TSS<1 NH4<0.02, TKN<0.2NiteLess-L MW Drain 2173 08/05/030.5 0.50 0.01 25.60 0.10 25.7084 281 0.01 0.0QA Duplicate; BOD5<1.0, TSS<1 NH4<0.02, TKN<0.2NiteLess-L MW Drain 2173 09/30/030.5 2.00 0.03 25.80 0.30 26.1085 261 0.01 0.0 6.8 5.5 489 12.0 11.15BOD5<1NiteLess-L MW Drain 2173 10/28/030.5 0.50 0.01 34.10 0.10 34.2084 301 0.01 0.0 6.8 6.0 562 13.6 9.59BOD5<1.0, TSS<1, NH4AsN<0.02, TKN<0.2NiteLess-L NTE 01/08/0271.0 33.00 41.00 0.00 51.00 51.00 6.80 281 3374,000 4.9 30,000 4.5 7.6 0.8 687 11.7NiteLess-LNTE02/05/0245.0 17.00 49.00 0.00 62.00 62.00 12.20 320 3782,000 4.9 84,000 4.9 8.0 1.3 798 9.5NiteLess-LNTE03/05/0277.0 28.00 44.00 0.00 56.00 56.00 9.80 296 29100,000 5.0 72,000 4.9 7.9 1.2 716 12.1NiteLess-LNTE03/05/0284.0 34.00 44.00 0.00 57.00 57.00 9.80 300 28130,000 5.1 100,000 5.0 7.9 1.2 716 12.1 QA DuplicateNiteLess-L NTE 04/02/0253.0 33.00 50.00 0.00 62.00 62.00 9.20 362 299,600 4.0 11,000 4.0 8.2 1.1 899 12.0NiteLess-LNTE04/30/02680.0 55.00 36.00 0.02 60.00 60.02 8.56 275 28820,000 5.9 860,000 5.9 5.8 0.4 988 15.7NiteLess-LNTE06/04/02150.0 46.00 43.00 0.01 56.00 56.01 4.91 402 37820,000 5.9 980,000 6.0 7.4 0.4 940 19.6NiteLess-LNTE07/08/0258.0 26.00 21.00 0.03 27.00 27.03 5.13 312 3513,000 4.1 14,000 4.1 7.8 0.6 764 19.6NiteLess-LNTE07/08/0253.0 24.00 21.00 0.04 28.00 28.04 5.19 311 3528,000 4.4 16,000 4.2 7.8 0.6 764 19.6QA duplicate,NiteLess-L NTE 08/06/02170.0 56.00 35.00 1.93 46.00 47.93 8.58 262 36680,000 5.8 660,000 5.8 8.5 0.7 720 24.3NiteLess-LNTE09/03/0230.0 9.00 25.00 0.03 65.00 65.03 6.04 274 368,200 3.9 4,200 3.6 7.9 1.1 738 21.7NiteLess-LNTE10/02/0257.0 25.00 23.00 15.20 34.00 49.20 7.43 238 4820,000 4.3 3,800 3.6 8.2 0.9 807 19.7 10.73NiteLess-LNTE10/28/0283.0 51.00 50.00 0.03 61.00 61.03 9.51 411 53300,000 5.5 92,000 5.0 7.7 0.8 994 16.2NiteLess-LNTE11/18/02370.0 41.00 67.00 0.01 80.00 80.01 7.98 389 573.7E+06 6.6 2.5E+06 6.4 8.0 0.9 1069 16.8NiteLess-LNTE02/03/03160.0 67.00 17.00 0.01 27.00 27.01 6.59 278 3574,000 4.9 42,000 4.6 7.7 1.4 682 13.8BOD5 is est.NiteLess-L NTE 04/01/03120.0 54.00 18.00 4.41 27.00 31.41 6.40 242 3380,000 4.9 42,000 4.6 7.3 1.2 670 13.0NiteLess-LNTE06/04/0387.0 30.00 35.00 0.01 43.00 43.01 4.80 247 20170,000 5.2 140,000 5.1 8.0 0.6 595 17.1NiteLess-LNTE08/06/03130.0 100.00 52.00 0.02 61.00 61.02 6.83 414 34100,000 5.0 82,000 4.9 7.5 0.1 960 20.4QA DuplicateNiteLess-L NTE 08/06/03140.0 110.00 53.00 0.02 61.00 61.02 6.73 415 32120,000 5.1 90,000 5.0 7.5 0.1 960 20.8D.O. <0.1NiteLess-L NTE 09/29/03160.0 66.00 61.00 0.01 68.00 68.01 10.10 360 54110,000 5.0 280,000 5.4 7.9 0.6 964 18.7NiteLess-LSTE01/08/02340.0 58.00 78.00 0.00 102.00 102.00 6.70 405 43 65.00 6.3E+06 6.8 2.6E+06 6.4 7.8 0.7 897 12.6NiteLess-LSTE02/05/02280.0 143.00 71.00 0.06 107.00 107.06 14.90 382 44 27.00 720,000 5.9 740,000 5.9 8.3 2.3 862 10.9NiteLess-LSTE03/05/02450.0 80.00 96.00 0.00 140.00 140.00 22.70 471 43 40.00 940,000 6.0 1.0E+06 6.0 7.7 2.4 1037 12.4 BOD5 >450NiteLess-L STE 04/02/02310.0 52.00 90.00 0.10 120.00 120.10 19.20 452 33 9.00 150,000 5.2 150,000 5.2 7.3 2.0 1064 13.0NiteLess-LSTE04/30/02350.0 130.00 77.00 0.03 96.00 96.03 25.10 488 40 23.00 3.9E+07 7.6 4.4E+07 7.6 7.4 1.7 1236 15.6 NH4 orig. reported as .77-lab says should be 77NiteLess-L STE 06/04/02630.0 63.00 120.00 0.03 130.00 130.03 18.10 652 26 15.00 3.6E+07 7.6 3.9E+07 7.6 7.6 0.1 1482 23.9NiteLess-LSTE07/08/02830.0 500.00 132.00 0.08 6.60 6.68 15.00 626 54 63.00 1.0E+06 6.0 940,000 6.0 7.0 0.4 1611 25.7 BOD5 is est., TKN is estimateNiteLess-L STE 08/06/02330.0 94.00 87.00 0.33 100.00 100.33 9.79 462 46 22.00 1.0E+07 7.0 9.4E+07 8.0 8.0 1.6 1109 27.4NiteLess-LSTE09/03/02510.0 40.00 160.00 0.10 180.00 180.10 18.40 595 68 34.00 800,000 5.9 920,000 6.0 7.2 1.2 1643 25.8NiteLess-LSTE10/02/02260.0 180.00 37.00 20.10 67.00 87.10 9.45 352 63 6.00 5.0E+06 6.7 2.6E+06 6.4 7.7 0.9 1083 25.4TSS is est.NiteLess-L STE 10/28/02400.0 150.00 22.00 0.07 53.00 53.07 7.67 369 34 91.00 2.1E+07 7.3 7.6E+06 6.9 7.3 1.5 454 24.8TSS is est.NiteLess-L STE 11/18/02240.0 97.00 32.00 0.02 80.00 80.02 5.63 200 32 86.00 6.0E+06 6.8 1.1E+08 8.0 8.6 1.6 454 20.3NiteLess-LSTE02/03/03480.0 430.00 72.00 0.02 82.00 82.02 11.80 442 52 83.00 60,000 4.8 20,000 4.3 7.4 1.4 1129 14.7NiteLess-LSTE04/01/03570.0 87.00 111.00 0.02 130.00 130.02 16.20 609 62 93.00 1.5E+06 6.2 1,120,000 6.0 6.8 1.0 1582 15.4NiteLess-LSTE06/04/03205.0 278.00 37.00 0.01 48.00 48.01 6.33 254 22 98.00 520,000 5.7 400,000 5.6 7.9 0.9 587 20.9NiteLess-LSTE08/06/03190.0 400.00 54.00 0.03 79.00 79.03 9.54 390 41580,000 5.8 420,000 5.6 7.5 0.2 876 23.4O&G void - too much sediment to perform analysis.NiteLess-L STE 09/29/03190.0 115.00 37.00 0.01 44.00 44.01 5.92 210 28 13.00 86,000 4.9 74,000 4.9 8.2 0.7 529 23.0O&G est.NiteLess-P MW Drain 2134 12/21/010.01 5.44166.5 7.1 192 7.4 9.53well development; NH4 <0.02; No TKN reported.NiteLess-P MW Drain 2134 12/21/010.01 5.43166.5 7.1 192 7.4QA Duplicate; well development; No TKN reported.NiteLess-P MW Drain 2134 02/19/020.5 7.00 0.00 9.50 0.40 9.90 0.1026 71 0.01 0.0 6.4 9.4 191 6.7 9.27BOD5 <1NiteLess-P MW Drain 2134 03/19/020.5 10.00 0.10 9.80 0.30 10.10 0.1030 91 0.01 0.0 6.8 8.1 214 6.7 10.28BOD5 <1.0NiteLess-P MW Drain 2134 04/15/020.5 0.50 0.01 8.06 0.10 8.16 0.0734 91 0.01 0.0 7.2 9.6 187 6.4 10.22NH4 <0.02; BOD <1; TKN <0.2; TSS <1NiteLess-P MW Drain 2134 05/14/020.5 9.00 0.01 6.97 0.10 7.0736 141 0.01 0.0 6.6 8.6 202 6.9 10.23TKN <0.2, BOD5<1.0, NH4 <0.02NiteLess-P MW Drain 2134 06/19/020.5 2.00 0.01 7.01 0.10 7.1142 221 0.01 0.0 6.6 11.6 222 7.1 10.22TKN <0.2, BOD5<1.0, NH4 <0.02NiteLess-P MW Drain 2134 06/19/022.00 0.02 6.91 0.10 7.0142 221 0.01 0.0 6.6 11.6 222 7.1QA duplcate, TKN <0.2NiteLess-P MW Drain 2134 07/15/020.5 4.00 0.01 17.20 0.10 17.3042 271 0.01 0.0 7.0 9.0 305 8.6 10.18TKN <0.2, N<0.02, BOD5<1.0NiteLess-P MW Drain 2134 08/20/020.5 2.00 0.01 11.70 0.30 12.0042 621 0.01 0.0 6.7 6.9 352 9.6 9.22BOD5 <1, NH4 <0.02NiteLess-P MW Drain 2134 09/18/020.5 2.00 0.01 8.67 0.10 8.7738 831 0.01 0.0 6.6 7.8 384 10.2 9.48BOD5<1.0, NH4 <0.02, TKN<0.2NiteLess-P MW Drain 2134 10/15/020.5 1.00 0.01 8.70 0.10 8.8038 741 0.01 0.0 6.5 7.1 372 10.4 9.58BOD5<1.0, NH4 <0.02, TKN <0.2NiteLess-P MW Drain 2134 11/06/020.5 3.00 0.02 9.16 0.10 9.2637 631 0.01 0.0 6.6 7.6 350 10.0 10.18BOD5 <1.0, TKN <0.2NiteLess-P MW Drain 2134 11/06/020.5 7.00 0.02 9.04 0.10 9.1437 611 0.01 0.0QA Duplicate; BOD5 <1.0, TKN <0.2Appendix B: Innovative System Field Test DataPage B-44
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesNiteLess-PMW Drain 2134 12/10/021.2 2.00 0.01 9.77 0.10 9.8738 296.7 6.0 476 8.7 9.86NH4 <0.02, BOD5 is est., TKN <0.2NiteLess-P MW Drain 2134 12/17/022 0.32 0.3 6.3 4.3 483 8.7Bacteria re-sampleNiteLess-P MW Drain 2134 01/14/030.5 1.00 0.01 11.00 0.10 11.1038 942 0.32 0.3 6.6 5.0 478 8.3 9.55 BOD5<1.0, NH4<0.02, TKN<0.2NiteLess-P MW Drain 2134 01/14/032 0.32 0.3QA Duplicate - bacteria onlyNiteLess-P MW Drain 2134 02/10/030.5 4.00 0.01 15.90 0.10 16.0054 452 0.32 0.3 6.7 7.0 398 7.4 10.11BOD5<1.0, NH4AsN <0.02, TKN <0.2NiteLess-P MW Drain 2134 02/10/031.3 4.00 0.01 15.90 0.40 16.3054 452 0.32 0.3QA Duplicate; BOD5 is est., NH4AsN <0.02NiteLess-P MW Drain 2134 03/12/030.5 1.00 0.01 11.10 0.10 11.2047 722 0.32 0.3 6.6 6.7 426 7.0 10.21BOD5<1.0, NH4AsN <0.02, TKN <0.2NiteLess-P MW Drain 2134 03/12/030.5 0.50 0.01 11.20 0.10 11.3047 732 0.32 0.3QA Duplicate; BOD <1.0, TSS<1, NH4<0.02, TKN <0.2NiteLess-P MW Drain 2134 05/20/030.5 1.00 0.01 6.66 0.10 6.7640 622 0.32 0.3 6.7 9.6 336 7.3 8.78BOD5<1.0, NH4<0.02, TKN<0.2NiteLess-P MW Drain 2134 05/20/032 0.32 0.3QA Duplicate for bacteria onlyNiteLess-P MW Drain 2134 07/29/030.5 0.50 0.01 11.60 0.10 11.7074 302 0.32 0.3 6.5 8.8 346 11.0 10.11BOD5<1.0, TSS<1 NH4<0.02, TKN<0.2NiteLess-P MW Drain 2134 08/25/030.5 2.00 0.01 7.22 0.10 7.3280 326.5 6.7 330 11.0 9.41BOD5<1.0, NH4AsN<0.02, TKN<0.2NiteLess-P MW Drain 2134 08/25/030.5 2.00 0.01 7.17 0.10 7.2782 32QA Duplicate; BOD5<1.0, NH4AsN<0.02, TKN<0.2NiteLess-P MW Drain 2134 08/27/031 0.01 0.0 6.5 6.0 336 11.9Bacteria Re-sampleNiteLess-P MW Drain 2134 09/24/030.5 1.00 0.01 3.93 0.30 4.2386 292 0.32 0.3 6.5 5.9 304 13.1 9.56BOD5 <1.0, NH4AsN<0.02NiteLess-P MW Drain 2134 09/24/030.5 0.50 0.01 3.90 0.10 4.0086 292 0.32 0.3QA; BOD5 <1.0, TSS<1, NH4<0.02, TKN<0.2NiteLess-P MW Drain 2134 11/03/030.5 0.50 0.01 3.41 0.10 3.5179 242 0.32 0.3 6.4 6.7 265 11.3 9.85BOD5<1.0, TSS<1, NH4AsN<0.02, TKN<0.2NiteLess-P MW Drain 2134 11/03/030.5 0.50 0.01 3.40 0.10 3.5079 242 0.32 0.3QA Duplicate; BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2NiteLess-P NTE 02/20/0271.0 67.00 65.00 0.00 76.00 76.00 9.00 345 352,800 3.4 2,800 3.4 8.1 0.9 900 8.3QA DuplicateNiteLess-P NTE 02/20/0272.0 60.00 65.00 0.00 74.00 74.00 9.13 350 3930,000 4.5 26,000 4.4 8.1 0.9 900 8.3NiteLess-PNTE03/18/0252.0 58.00 61.00 0.00 73.00 73.00 8.70 332 31400 2.6 800 2.9 8.1 0.7 862 8.2NiteLess-PNTE04/16/0236.0 38.00 62.00 0.01 76.00 76.01 9.84 338 41120,000 5.1 110,000 5.0 7.9 1.4 940 10.5NiteLess-PNTE04/16/0234.0 40.00 64.00 0.01 77.00 77.01 10.00 335 40600,000 5.8 620,000 5.8 7.9 1.4 940 10.5QA DuplicateNiteLess-P NTE 05/14/0268.0 50.00 62.00 0.03 79.00 79.03 11.40 372 3212,000 4.1 9,200 4.0 7.6 1.1 976 12.2NiteLess-PNTE06/19/0254.00 58.00 0.07 77.00 77.07 11.50 304 4210 1.010 1.0 7.4 0.8 818 15.7NiteLess-PNTE07/15/0251.0 25.00 26.00 2.04 36.00 38.04 8.15 216 381,000 3.0 740 2.9 7.7 0.6 579 21.0NiteLess-PNTE08/20/02600.0 180.00 87.00 0.06 100.00 100.06 20.40 488 40190,000 5.3 170,000 5.2 6.7 0.8 1340 19.0NiteLess-PNTE09/17/0294.0 61.00 10.20 15.40 21.00 36.40 10.20 128 3717,000 4.2 14,000 4.1 7.4 1.2 575 18.3BOD5, pH is est.NiteLess-P NTE 10/14/02250.0 74.00 74.00 0.06 93.00 93.06 15.70 450 5113,000 4.1 13,000 4.1 7.2 0.7 1024 13.0Chloride is est.NiteLess-P NTE 11/06/0278.0 31.00 6.30 33.50 14.00 47.50 9.5985 4740 1.620 1.3 7.1 0.9 662 11.1BOD5 is est.NiteLess-P NTE 12/11/02210.0 100.00 34.00 0.02 46.00 46.02 15.10 344 538,200 3.9 5,000 3.7 7.2 1.2 944 9.6NiteLess-PNTE01/13/0388.0 65.00 26.00 0.02 39.00 39.02 12.20 264 425,600 3.7 5,000 3.7 7.5 1.0 747 8.9pH is est.NiteLess-P NTE 03/10/03220.0 62.00 18.00 2.66 32.00 34.66 11.10 224 4021,000 4.3 20,000 4.3 7.6 0.8 686 9.1NiteLess-PNTE05/21/03270.0 70.00 57.00 0.04 65.00 65.04 12.70 341 3780,000 4.9 40,000 4.6 7.3 0.3 685 14.1NiteLess-PNTE07/28/03280.0 55.00 68.00 0.07 87.00 87.07 17.30 396 4270,000 4.8 60,000 4.8 7.0 0.9 1117 20.3NiteLess-PNTE09/22/03290.0 50.00 45.00 0.02 66.00 66.02 11.80 330 44440,000 5.6 500,000 5.7 7.1 0.5 918 17.9NiteLess-PNTE11/03/03390.0 76.00 48.00 0.02 90.00 90.02 16.40 445 582.3E+06 6.4 1.8E+06 6.3 6.9 1.4 1220 12.0NiteLess-PSTE02/20/02260.0 31.00 110.00 0.00 130.00 130.00 10.40 598 47 12.00 1,800 3.3 2,000 3.3 8.1 0.6 1502 7.9NiteLess-PSTE03/18/022100.0 1556.00 100.00 0.00 160.00 160.00 52.90 532 4636,000 4.6 40,000 4.6 8.0 1.2 1214 10.3BOD5 is estimate.NiteLess-P STE 04/16/02210.0 25.00 105.00 0.03 120.00 120.03 18.40 538 52 26.00 54,000 4.7 44,000 4.6 8.3 1.2 1440 10.6NiteLess-PSTE05/14/02240.0 45.00 131.00 0.04 170.00 170.04 25.10 650 56 10.00 78,000 4.9 86,000 4.9 8.1 0.8 1672 13.8NiteLess-PSTE06/19/02190.0 25.00 83.00 0.05 120.00 120.05420 39 43.00 1,000 3.0 1,000 3.0 6.8 1.1 1060 17.2NiteLess-PSTE07/15/02290.0 25.00 78.00 0.06 110.00 110.06 15.20 375 45 32.00 6,800 3.8 6,400 3.8 7.7 0.3 959 22.7NiteLess-PSTE08/20/02370.0 220.00 14.30 0.06 41.00 41.06 8.74 114 21 67.00 160,000 5.2 130,000 5.1 6.9 1.0 327 21.1NiteLess-PSTE09/17/02550.0 190.00 94.00 0.08 110.00 110.08 21.50 404 66 76.00 260,000 5.4 400,000 5.6 6.7 1.4 1009 19.1TSS, pH is est.NiteLess-P STE 10/14/02900.0 100.00 96.00 0.04 120.00 120.04 21.40 492 56 497.00 130,000 5.1 130,000 5.1 6.6 0.8 1207 16.4Chloride is est.NiteLess-P STE 11/06/02450.0 130.00 105.00 0.05 120.00 120.05 20.10 508 62 30.00 8,200 3.9 3,000 3.5 7.0 0.8 1292 14.3NiteLess-PSTE12/11/02540.0 110.00 93.00 0.03 120.00 120.03 20.70 513 58 42.00 58,000 4.8 52,000 4.7 7.0 0.9 1436 13.3NiteLess-PSTE01/13/03410.0 230.00 47.00 0.30 90.00 90.30 17.30 240 40 113.00 44,000 4.6 32,000 4.5 7.3 1.5 558 13.4pH is est.NiteLess-P STE 03/10/03680.0 91.00 81.00 0.06 110.00 110.06 23.20 469 56 28.00 15,800 4.2 12,000 4.1 6.7 0.4 1321 12.1NiteLess-PSTE05/21/03810.0 1500.00 55.00 0.04 200.00 200.04 56.70 192 56 166.00 66,000 4.8 84,000 4.9 7.4 0.8 360 16.8NiteLess-PSTE07/28/03440.0 280.00 54.00 0.07 130.00 130.07 47.50 381 38 209.00 120,000 5.1 100,000 5.0 6.9 0.5 1029 22.2NiteLess-PSTE09/22/03430.0 520.00 71.00 0.01 110.00 110.01 24.60 125 48 516.00 1.1E+06 6.0 1.7E+06 6.2 7.7 1.6 300 21.8NiteLess-PSTE11/03/03All tests cancelled; Sample site cloggedNiteLess-TMW Drain 2141 12/17/010.5 22.00 0.04 31.80 0.40 32.20 0.1598 342 0.32 0.3 7.4 8.1 540 7.6 7.48BOD5 <1.0NiteLess-T MW Drain 2141 01/28/020.5 14.00 0.00 34.50 0.50 35.00 0.1095 231 0.01 0.0 6.7 5.8 520 6.8 6.44NH4 <0.02, BOD5 <1NiteLess-T MW Drain 2141 02/26/020.5 4.00 0.00 46.20 0.40 46.60 0.1086 271 0.01 0.0 6.7 6.0 671 6.5 6.09BOD5 <1NiteLess-T MW Drain 2141 02/26/020.5 3.00 0.00 46.80 0.40 47.20 0.1087 261 0.01 0.0 6.7 6.0 671 6.5QA Duplicate; BOD <1NiteLess-T MW Drain 2141 03/27/021.4 4.00 0.00 43.30 0.10 43.40 0.1090 281 0.01 0.0 6.7 9.4 646 6.3 5.52TKN <0.2, BOD5 is estimate.NiteLess-T MW Drain 2141 03/27/021.1 4.00 0.00 43.40 0.30 43.70 0.1092 281 0.01 0.0 6.7 9.4 646 6.3QA duplicate; BOD5 is estimateNiteLess-T MW Drain 2141 04/23/020.5 3.00 0.01 35.40 0.50 35.9097 261 0.01 0.0 6.5 6.3 584 6.9 5.24NH4 <0.02; BOD <1NiteLess-T MW Drain 2141 04/23/020.5 16.00 0.01 36.10 0.60 36.7098 271 0.01 0.0 6.5 6.3 584 6.9NH4 <0.02; BOD <1; QA duplicateNiteLess-T MW Drain 2141 05/22/020.5 4.00 0.01 36.50 0.40 36.9094 231 0.01 0.0 6.6 8.3 631 7.7 5.55BOD5<1.0 est., NH4 <0.02NiteLess-T MW Drain 2141 05/22/020.5 7.00 0.01 37.30 0.40 37.7094 241 0.01 0.0 6.6 8.3 631 7.7QA duplicate; BOD5<1.0 est., NH4 <0.02Appendix B: Innovative System Field Test DataPage B-45
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesNiteLess-TMW Drain 2141 06/25/020.5 5.00 0.01 39.30 1.00 40.30105 251 0.01 0.0 6.6 5.9 593 10.3 6.02NH4 <0.02, BOD < 1.0NiteLess-T MW Drain 2141 06/25/020.5 4.00 0.02 39.20 0.90 40.10106 251 0.01 0.0 6.6 5.9 593 10.3QA duplicate, BOD5<1.0NiteLess-T MW Drain 2141 07/29/020.5 3.00 0.01 28.20 0.50 28.70100 231 0.01 0.0 6.7 7.3 460 12.5 6.29TKN is est., NH4 <0.02, bod5 <1.0NiteLess-T MW Drain 2141 08/26/020.5 2.00 0.01 36.70 0.60 37.30101 231 0.01 0.0 6.6 5.4 539 12.7 6.31 BOD5 <1, NH4 <0.02NiteLess-T MW Drain 2141 09/25/020.5 2.00 0.01 61.00 0.20 61.2091 291 0.01 0.0 6.5 5.4 713 13.5 6.64NH4 <0.02; BOD <1NiteLess-T MW Drain 2141 10/21/020.5 3.00 0.01 45.10 0.40 45.5088 311 0.01 0.0 7.0 7.6 605 12.1 7.35BOD5<1.0, NH4 <0.02NiteLess-T MW Drain 2141 10/21/020.5 7.00 0.01 45.30 0.60 45.9088 311 0.01 0.0QA Duplicate; BOD5<1.0, NH4 <0.02NiteLess-T MW Drain 2141 11/12/020.5 5.00 0.01 43.20 0.30 43.5092 321 0.01 0.0 6.7 7.6 599 11.4 7.89NH4 <0.02, BOD5 <1.0NiteLess-T MW Drain 2141 01/28/030.5 6.00 0.01 49.20 0.10 49.3084 306.6 7.1 672 7.8 6.59BOD5 <1.0, NH4 <0.02, TKN <0.2NiteLess-T MW Drain 2141 02/04/032 0.32 0.3 6.6 6.9 601 7.5 6.04Bacteria re-sampleNiteLess-T MW Drain 2141 02/04/032 0.32 0.3QA DuplicateNiteLess-T MW Drain 2141 02/25/030.5 2.00 0.04 38.70 0.10 38.8084 342 0.32 0.3 6.6 7.1 603 6.9 6.45BOD5<1.0, TKN <0.2NiteLess-T MW Drain 2141 02/25/031.4 2.00 0.04 38.10 0.10 38.2084 332 0.32 0.3QA Duplicate; TKN <0.2NiteLess-T MW Drain 2141 03/25/030.5 2.00 0.01 36.50 0.10 36.6091 292 0.32 0.3 6.5 7.9 602 7.0 6.75BOD5<1.0, NH4AsN <0.02, TKN <0.2NiteLess-T MW Drain 2141 03/25/030.5 3.00 0.02 36.40 0.10 36.5093 282 0.32 0.3QA Duplicate; BOD5<1.0, TKN <0.2NiteLess-T MW Drain 2141 05/19/030.5 2.00 0.02 33.10 0.10 33.2093 276.3 5.5 560 7.9 6.04BOD5<1.0, TKN<0.2NiteLess-T MW Drain 2141 05/21/032 0.32 0.3 6.4 7.9 567 8.4Bacteria re-sampleNiteLess-T MW Drain 2141 07/29/030.5 4.00 0.01 40.00 0.10 40.10100 272 0.32 0.3 6.5 6.0 635 11.2 6.25NH4 est.<0.02 BOD5<1.0, TKN<0.2NiteLess-T MW Drain 2141 07/29/030.5 2.00 0.02 40.60 0.10 40.70101 272 0.32 0.3QA Duplicate; BOD5<1.0, TKN<0.2NiteLess-T MW Drain 2141 08/27/030.5 0.50 0.02 43.70 0.10 43.80101 261 0.01 0.0 6.5 6.1 639 12.6 6.45BOD5<1.0, TSS<1, TKN<0.2NiteLess-T MW Drain 2141 08/27/031 0.01 0.0QA Duplicate for bacteria onlyNiteLess-T MW Drain 2141 09/24/030.5 1.00 0.01 49.30 0.10 49.4099 252 0.32 0.3 6.5 4.5 696 13.9 6.66BOD5 <1.0, NH4AsN<0.02, TKN<0.2NiteLess-T MW Drain 2141 11/05/030.5 0.50 0.01 43.30 0.10 43.40102 282 0.32 0.3 7.1 7.4 651 10.8 7.59BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2NiteLess-T NTE 12/17/0134.0 32.00 61.00 0.00 73.00 73.00 10.20 493 377,400 3.9 5,600 3.7 8.1 0.9 562 9.5NiteLess-TNTE01/28/0273.0 51.00 67.00 0.00 85.00 85.00 13.10 425 4460,000 4.8 66,000 4.8 7.9 1.0 1100 8.9NiteLess-TNTE02/26/0266.0 41.00 56.00 0.00 71.00 71.00 11.90 382 3532,000 4.5 44,000 4.6 7.9 0.9 968 10.1NiteLess-TNTE03/27/0245.0 25.00 60.00 0.00 69.00 69.00 12.00 392 3418,000 4.3 21,000 4.3 7.9 6.0 1057 11.0NiteLess-TNTE04/23/0238.0 28.00 58.00 0.02 76.00 76.02 12.60 412 34520,000 5.7 420,000 5.6 7.8 0.3 1063 11.8NiteLess-TNTE05/21/0226.0 19.00 46.00 0.03 120.00 120.03 12.50 368 31110,000 5.0 90,000 5.0 7.8 0.5 1064 12.9BOD5 is est.NiteLess-T NTE 06/25/0287.0 20.00 58.00 0.03 68.00 68.03 13.00 362 38100,000 5.0 68,000 4.8 7.7 0.7 848 16.5NiteLess-TNTE07/30/02110.0 24.00 36.00 1.49 47.00 48.49 12.30 268 322.8E+06 6.4 2.6E+06 6.4 7.6 1.0 708 19.4QA DuplicateNiteLess-T NTE 07/30/02130.0 25.00 36.00 1.58 49.00 50.58 12.50 260 327.4E+06 6.9 7.6E+06 6.9 7.6 1.0 708 19.4NiteLess-TNTE08/26/0239.0 12.00 39.00 2.18 45.00 47.18 11.30 256 271,600 3.2 1,600 3.2 7.6 1.3 669 18.7NiteLess-TNTE09/24/0242.0 17.00 36.00 0.10 50.00 50.10 9.39 282 38110,000 5.0 110,000 5.0 7.9 0.7 731 18.0NiteLess-TNTE10/21/0291.0 14.00 39.00 2.76 50.00 52.76 8.78 270 3856,000 4.7 60,000 4.8 7.8 1.4 718 15.0BOD5 is est.NiteLess-T NTE 11/13/0270.0 8.00 23.00 19.70 31.00 50.70 9.66 150 374,000 3.6 1,700 3.2 7.4 1.5 634 11.1NiteLess-TNTE01/27/0374.0 38.00 43.00 0.02 61.00 61.02 7.84 298 30480,000 5.7 520,000 5.7 7.7 0.9 848 11.7NiteLess-TNTE01/27/0373.0 36.00 43.00 0.02 62.00 62.02 7.77 300 30860,000 5.9 500,000 5.7 7.7 1.1 856 11.3NiteLess-TNTE03/24/0372.0 40.00 43.00 0.02 52.00 52.02 9.38 290 2566,000 4.8 50,000 4.7 7.7 0.6 722 12.0NiteLess-TNTE03/24/0369.0 39.00 42.00 0.02 50.00 50.02 9.13 287 2472,000 4.9 58,000 4.8 7.8 0.6 729 11.4QA DuplicateNiteLess-T NTE 05/19/0356.0 34.00 45.00 0.02 56.00 56.02 8.65 294 29100,000 5.0 90,000 5.0 7.6 1.2 884 13.0NiteLess-TNTE05/19/0353.0 35.00 45.00 0.02 53.00 53.02 8.78 293 30100,000 5.0 110,000 5.0 7.6 0.9 759 13.1QA DuplicateNiteLess-T NTE 07/28/0355.0 49.00 55.00 0.01 70.00 70.01 9.90 365 251,400 3.1 3,200 3.5 7.2 0.5 855 18.8NiteLess-TNTE07/28/0348.0 50.00 58.00 0.01 66.00 66.01 9.80 361 252,600 3.4 3,600 3.6 7.2 0.5 850 19.9QA DuplicateNiteLess-T NTE 09/22/0374.0 49.00 50.00 0.01 58.00 58.01 10.90 356 2940,000 4.6 20,000 4.3 7.5 0.6 857 15.5NiteLess-TNTE11/05/03100.0 49.00 56.00 0.01 62.00 62.01 11.10 356 56920,000 6.0 660,000 5.8 7.2 0.9 956 10.3NiteLess-TSTE12/17/0122.0 130.00 63.00 0.03 89.00 89.03 12.50 476 402.8E+06 6.4 2.5E+06 6.4 7.9 2.2 878 10.3O&G bottle broke, test cancelledNiteLess-T STE 01/28/02230.0 150.00 57.00 0.05 85.00 85.05 16.10 442 43 13.00 900,000 6.0 820,000 5.9 8.6 1.4 988 10.1NiteLess-TSTE02/26/02260.0 165.00 79.00 0.06 98.00 98.06 15.90 402 34 13.00 2.0E+07 7.3 1.5E+07 7.2 7.7 1.2 964 8.6NiteLess-TSTE03/27/02200.0 98.00 64.00 0.10 77.00 77.10 15.80 364 35 18.00 620,000 5.8 200,000 5.3 7.8 1.0 1009 10.1NiteLess-TSTE04/23/0281.0 35.00 64.00 0.07 80.00 80.07 12.70 410 35 2.50 500,000 5.7 540,000 5.7 7.7 0.1 1072 15.1D.O. <0.1; O&G <5NiteLess-T STE 05/21/0282.0 69.00 45.00 0.36 94.00 94.36 13.20 372 26 17.00 7.2E+06 6.9 7.6E+06 6.9 7.7 0.8 914 14.9NiteLess-TSTE06/25/02240.0 110.00 59.00 0.24 96.00 96.24 17.50 438 41 13.00 5.6E+06 6.7 5.0E+06 6.7 7.1 1.1 830 18.0NiteLess-TSTE07/30/02770.0 760.00 65.00 1.08 120.00 121.08 17.10 495 42 21.00 1.7E+08 8.2 1.5E+08 8.2 7.1 1.7 846 19.8cond. is est.NiteLess-T STE 08/26/02190.0 200.00 36.00 1.20 70.00 71.20 11.50 256 26 2.50 1.9E+07 7.3 1.8E+07 7.3 7.4 2.4 446 23.0O&G <5, cond. is est.NiteLess-T STE 09/24/0241.0 130.00 41.00 2.17 61.00 63.17 10.70 270 36 6.00 1.3E+06 6.1 1.4E+06 6.1 7.7 1.0 677 19.1TSS is est.NiteLess-T STE 10/21/02180.0 100.00 38.00 5.18 62.00 67.18 11.30 262 38 7.00 3.7E+07 7.6 2.0E+07 7.3 7.8 1.7 627 18.2TSS is est.NiteLess-T STE 11/13/02290.0 64.00 34.00 3.55 53.00 56.55 11.70 163 39 2.50 110,000 5.0 48,000 4.7 7.0 2.8 632 13.8O&G <5NiteLess-T STE 01/27/03180.0 180.00 44.00 0.51 81.00 81.51 10.00 382 41 8.00 480,000 5.7 500,000 5.7 7.3 2.6 761 13.9cond. is est.NiteLess-T STE 03/24/03110.0 60.00 34.00 0.32 72.00 72.32 10.90 224 27 10.00 120,000 5.1 92,000 5.0 7.4 2.5 510 12.9NiteLess-TSTE05/19/0366.0 54.00 34.00 0.19 53.00 53.19 9.17 254 24 7.00 180,000 5.3 190,000 5.3 7.6 1.3 611 15.6NiteLess-TSTE07/28/03150.0 72.00 57.00 0.14 81.00 81.14 16.80 391 28 17.00 580,000 5.8 600,000 5.8 7.0 0.6 912 20.0NiteLess-TSTE09/22/03160.0 56.00 66.00 0.07 86.00 86.07 16.40 390 31 101.00 2.0E+06 6.3 1.2E+06 6.1 7.4 0.8 919 17.2NiteLess-TSTE11/05/03310.0 88.00 83.00 0.12 140.00 140.12 20.90 592 80 34.00 1.8E+06 6.3 1.7E+05 5.2 7.1 1.8 1186 12.4Appendix B: Innovative System Field Test DataPage B-46
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesNITREX-FMW Drain206612/26/001.0 57.00 0.02 0.11 0.10 0.21 0.1135 32 0.32 0.3 6.9 0.5 854 13.3 7.32TKN <0.2NITREX-F MW Drain206601/29/010.0 10.00 0.00 0.04 0.10 0.14 0.1035 32 0.32 0.3 7.1 5.6 40 5.7QA duplicateNITREX-F MW Drain206601/29/010.0 12.00 0.00 0.04 0.10 0.14 0.1038 32 0.32 0.3 7.1 5.6 40 5.7 7.57TKN <0.2NITREX-F MW Drain206602/27/010.0 28.00 0.00 0.03 0.10 0.13 0.1235 32 0.32 0.3 7.1 8.3 96 5.7 7.80TKN <0.2NITREX-F MW Drain206603/27/010.0 18.00 0.00 0.03 0.10 0.13 0.1030 12 0.32 0.3 6.8 7.5 69 5.2 7.66TKN <0.2NITREX-F MW Drain206604/24/010.0 30.00 0.00 0.04 0.10 0.14 0.1035 32 0.32 0.3 7.4 6.8 77 9.1 7.65TKN <0.2; alk. is estimate.NITREX-F MW Drain206605/22/010.0 6.00 0.00 0.05 0.10 0.15 0.1036 32 0.32 0.3 7.2 8.3 84 9.8 8.09TKN <0.2NITREX-F MW Drain 2211 05/09/020.03 0.27 0.10 0.37167.5 9.3 167 8.0 9.52Well Development; TKN <0.2NITREX-F MW Drain 2211 05/21/020.5 12.00 0.01 0.29 0.10 0.3940 71 0.01 0.0 7.7 3.7 155 8.7 9.51 TKN <0.2, BOD5<1.0, NH4 <0.02NITREX-F MW Drain 2211 06/24/020.5 4.00 0.02 0.39 0.10 0.4939 51 0.01 0.0 7.7 8.6 99 10.0 9.84TKN <0.2, BOD5<1.0NITREX-F MW Drain 2211 07/29/020.5 6.00 0.03 0.40 0.10 0.5036 71 0.01 0.0 7.7 8.0 96 9.8 10.11TKN <0.2, bod5 <1.0NITREX-F MW Drain 2211 09/23/020.5 5.00 0.01 0.43 0.10 0.5338 41 0.01 0.0 7.2 7.7 94 9.6 10.31NH4 < 0.02; BOD5 <1.0; TKN < 0.2NITREX-F MW Drain 2211 11/12/020.5 2.00 0.03 0.53 0.10 0.6340 41 0.01 0.0 7.5 8.1 95 8.6 10.54BOD5 <1.0, TKN <0.2, TSS is est.NITREX-F MW Drain 2211 12/16/020.5 4.00 0.01 0.64 0.10 0.7440 41 0.01 0.0 7.6 6.6 107 8.0 10.73BOD5<1.0, NH4<0.02, TKN<0.2NITREX-F MW Drain 2211 01/27/030.5 3.00 0.02 0.69 0.10 0.7940 51 0.01 0.0 7.4 8.5 104 7.5 10.66BOD5 <1.0, TKN <0.2NITREX-F MW Drain 2211 03/24/030.5 2.00 0.01 1.03 0.10 1.1340 71 0.01 0.0 7.3 8.1 113 7.8 10.66BOD5<1.0, NH4 <0.02, TKN <0.2NITREX-F MW Drain 2211 05/19/030.5 1.00 0.01 1.37 0.10 1.3740 71 0.01 0.0 7.1 6.9 116 7.3 10.57BOD5<1.0, NH4<0.02, TKN<0.2NITREX-F MW Drain 2211 06/23/030.5 3.00 0.01 1.31 0.10 1.4141 71 0.01 0.0 7.1 7.7 113 9.1 10.68BOD5<1.0 NH4<0.02, TKN<0.2NITREX-F MW Drain 2211 07/14/030.5 0.50 0.01 1.22 0.10 1.3240 71 0.01 0.0 7.2 8.3 112 8.8 10.75BOD5<1.0, TSS<1 NH4<0.02, TKN<0.2NITREX-F MW Drain 2211 09/22/030.5 1.00 0.01 1.33 0.10 1.4340 71 0.01 0.0 7.2 8.0 114 9.3 11.06BOD5 <1.0, NH4AsN<0.02, TKN<0.2NITREX-F MW Drain 2211 11/17/030.5 0.50 0.01 1.55 0.10 1.6540 81 0.01 0.0 6.9 6.7 122 9.3 11.23BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2NITREX-F NFEC 12/26/0076.0 6.00 0.05 0.01 1.40 1.41 4.06 282 62420 2.6 400 2.6 6.7 1.5 688 5.7NITREX-FNFEC01/29/0165.0 4.00 0.29 0.05 1.70 1.75 4.47 242 702 0.32 0.3 7.1 2.6 698 6.0NITREX-FNFEC02/27/0144.0 3.00 0.54 0.88 2.10 2.98 4.49 291 712 0.32 0.3 7.2 2.3 843 7.0NITREX-FNFEC03/26/0113.0 6.00 0.70 8.99 2.60 11.59 3.87 260 672,000 3.3 2,000 3.3 7.1 3.0 834 6.2NITREX-FNFEC04/23/016.6 4.00 0.36 37.00 1.90 38.90 3.78 154 7412 1.124 1.4 7.0 2.4 882 10.9QA duplicate;NITREX-F NFEC 04/23/016.4 3.00 0.36 37.40 1.90 39.30 3.70 139 7426 1.410 1.0 7.0 2.4 882 10.9NITREX-FNFEC05/21/017.4 2.00 0.18 2.39 2.20 4.59 2.57 277 732 0.32 0.3 7.0 1.7 780 12.5NITREX-FNFEC05/21/015.2 3.00 0.24 2.38 2.20 4.58 2.59 284 722 0.32 0.3 7.0 1.7 780 12.5QA duplicate reading;NITREX-F NFEC 06/25/01240.0 44.00 0.31 0.00 2.90 2.90 2.86 341 762 0.32 0.3 6.3 1.2 1022 13.8 BOD5 is >240NITREX-F NFEC 06/25/01390.0 13.00 0.33 0.00 3.00 3.00 3.24 344 7718 1.3 134 2.1 6.3 1.2 1022 13.8Duplicate QA reading;NITREX-F NFEP 12/26/0090.0 2.00 0.06 0.01 1.70 1.71 4.03 281 60420 2.6 300 2.5 6.7 1.2 706 5.9NITREX-FNFEP01/29/0165.0 3.00 0.31 0.05 1.70 1.75 4.41252 0.32 0.3 7.2 3.3 690 6.3NITREX-FNFEP02/27/0144.0 1.00 0.56 1.12 2.20 3.32 4.34 2892 0.32 0.3 7.1 1.6 1144 7.4NITREX-FNFEP03/26/0116.0 5.00 1.00 7.44 2.70 10.14 3.83 27320 1.320 1.3 7.4 2.3 867 8.2NITREX-FNFEP04/23/017.8 5.00 0.45 35.80 2.10 37.90 3.84 15044 1.648 1.7 7.0 1.3 863 9.2NITREX-FNFEP05/21/0112.0 2.00 0.47 2.72 2.30 5.02 2.60 2842 0.32 0.3 6.8 1.2 794 14.1NITREX-FNFEP06/25/01240.0 12.00 0.44 0.01 2.50 2.51 2.58 333 7820 1.382 1.9 6.3 1.8 617 15.0 BOD5 is >240NITREX-F NFEP 07/30/01200.0 4.00 0.18 0.01 2.00 2.01 1.62 243 7014 1.126 1.4 6.3 2.4 746 16.3NITREX-FNFEP08/27/01220.0 9.00 0.17 0.00 1.80 1.80 1.37 277 802 0.32 0.3 6.2 1.4 860 18.0 BOD5 is estimate.NITREX-F NFEP 09/24/01130.0 7.00 0.04 0.00 1.50 1.50 0.90 232 832 0.32 0.3 6.2 1.2 694 16.6NITREX-FNFEP10/22/0166.0 2.00 0.04 0.00 1.30 1.30 1.23 241 762 0.32 0.3 6.3 2.0 808 13.2NITREX-FNFEP11/19/0140.0 2.00 0.26 0.00 1.30 1.30 1.95 207 622 0.32 0.3 6.5 2.7 644 10.3NITREX-FNFEP01/29/0216.0 2.00 0.00 0.00 0.90 0.90 4.60 220 662 0.32 0.3 6.7 8.4 614 6.0N <0.02NITREX-F NFEP 03/25/0230.0 0.50 0.00 0.00 1.10 1.10 5.30 271 582 0.32 0.3 6.6 2.8 764 7.4TSS <1NITREX-F NFEP 05/20/0238.0 7.00 0.11 0.01 1.70 1.71 4.41 350 6420 1.32 0.3 6.5 3.2 920 10.5 BOD5 is est.NITREX-F NFEP 07/29/0259.0 15.00 0.67 0.01 2.00 2.01 7.20 415 762 0.32 0.3 6.4 2.1 473 16.6NITREX-FNFEP09/23/0213.0 4.00 0.17 0.01 2.20 2.21 5.34 348 1006.6 1.5 901 16.9E coli and fecal coliform VOIDNITREX-F NFEP 09/25/022 0.32 0.3 6.4 3.1 952 15.7Bacteria re-sampleNITREX-F NFEP 11/11/0218.0 3.00 0.03 0.00 1.10 1.10 4.65 270 872 0.32 0.3 6.8 1.9 735 11.1Nitrate Nitrite <0.005NITREX-F NFEP 01/27/035.7 4.00 0.11 2.75 1.40 4.15 6.12 256 652 0.32 0.3 6.8 2.2 832 7.9NITREX-FNFEP03/24/036.0 2.00 0.30 2.11 1.70 3.81 7.34 273 802 0.32 0.3 6.8 3.5 881 7.9NITREX-FNFEP05/19/0319.0 6.00 0.42 0.01 1.70 1.71 7.16 300 632 0.32 0.3 6.7 2.5 777 10.6NITREX-FNFEP07/14/038.9 2.00 0.23 0.00 1.80 1.80 7.87 264 562 0.32 0.3 6.3 2.4 695 18.2Nitrate<0.0050NITREX-F NFEP 09/22/038.1 2.00 0.53 0.00 1.80 1.80 5.27 280 492 0.32 0.3 6.5 1.9 704 16.0Nitrate/nitrite<0.005NITREX-F NFEP 09/22/039.6 2.00 0.55 0.00 1.80 1.80 5.43 282 502 0.32 0.3 6.6 2.0 700 16.2QA Duplicate; Nitrate/nitrite<0.005NITREX-F SFE 12/26/003.0 140.00 0.39 6.84 1.50 8.34 4.96 268 6317,000 4.2 12,000 4.1 6.8 3.5 301 6.5NITREX-FSFE01/29/013.0 35.00 0.31 34.90 1.20 36.10 4.96 1212 0.32 0.3 7.3 7.2 770 6.5NITREX-FSFE02/27/014.5 62.00 0.00 48.10 1.30 49.40 4.65 11446 1.717 1.2 6.8 5.5 920 7.0NITREX-FSFE03/26/010.0 33.00 0.03 57.10 0.90 58.00 4.308982 1.978 1.9 6.7 5.5 935 7.1NITREX-FSFE04/23/012.1 27.00 0.06 55.40 1.10 56.50 4.2953164 2.2 142 2.2 6.5 3.2 816 10.3NITREX-FSFE05/21/010.0 30.00 0.05 67.20 1.10 68.30 3.19272 0.32 0.3 6.4 3.2 878 13.4NITREX-FSFE06/25/011.1 28.00 0.05 76.70 1.00 77.70 2.4924 7430 1.512 1.1 6.5 4.3 998 14.7BOD5 is estimateNITREX-F SFE 07/30/013.0 140.00 0.05 62.10 1.20 63.30 2.2824 74108 2.0 112 2.0 6.3 4.9 840 16.8Appendix B: Innovative System Field Test DataPage B-47
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesNITREX-FSFE08/27/016.0 50.00 0.00 47.70 0.80 48.50 1.8719 8112 1.112 1.1 6.3 3.8 734 18.3BOD5 - toxic interferenceNITREX-F SFE 09/24/010.0 140.00 0.04 45.80 1.00 46.80 1.8516 8034 1.546 1.7 6.2 3.5 643 16.7NITREX-FSFE10/22/011.5 120.00 0.03 40.10 0.90 41.00 2.2615 752 0.32 0.3 6.4 3.0 650 13.7 BOD5 is estimateNITREX-F SFE 11/19/012.1 140.00 0.03 39.00 1.00 40.00 3.3423 6644 1.646 1.7 6.8 4.3 644 10.2BOD5 is estimate.NITREX-F SFE 01/29/021.2 83.00 0.00 36.90 1.00 37.90 5.9078 66240 2.4 240 2.4 6.7 5.4 622 3.1BOD5 is estimate; depletion requirement not met.NITREX-F SFE 03/25/021.6 94.00 0.00 63.80 0.10 63.90 6.0048 672 0.32 0.3 6.7 7.0 897 6.9BOD5 is est., TKN <0.2NITREX-F SFE 05/20/027.5 65.00 0.02 75.90 0.10 76.00 5.5430 632 0.32 0.3 6.5 4.3 938 11.4 TKN <0.2, BOD5 is est.NITREX-F SFE 07/29/020.5 24.00 0.04 58.60 0.70 59.30 5.1140 932 0.32 0.3 7.2 5.4 829 17.2TKN is est., bod5 <1.0NITREX-F SFE 09/23/020.5 43.00 0.03 71.10 1.30 72.40 5.6928 946.3 2.3 880 15.3E coli and fecal coliform VOID, BOD5 <1NITREX-F SFE 09/25/028 0.92 0.3 6.1 3.4 934 15.6Bacteria re-sampleNITREX-F SFE 11/11/023.4 35.00 0.02 56.60 1.30 57.90 6.2017 8494 2.060 1.8 8.6 4.2 811 10.6BOD5 is est.NITREX-F SFE 01/27/033.6 130.00 0.02 53.50 2.00 55.50 7.1674 694 0.62 0.3 6.5 4.1 897 6.4NITREX-FSFE03/24/033.2 60.00 0.03 70.20 2.10 72.30 8.4135 832 0.32 0.3 6.5 5.3 971 9.1NITREX-FSFE05/19/036.6 160.00 0.01 69.80 0.10 69.90 7.1622 56140 2.190 2.0 6.7 4.4 826 10.1NH4<0.02, TKN<0.2NITREX-F SFE 07/14/0311.0 140.00 0.04 46.80 1.20 48.00 7.3024 572 0.32 0.3 6.1 3.7 703 16.8NITREX-FSFE09/22/030.5 65.00 0.01 48.60 0.30 48.90 5.5924 462 0.32 0.3 6.3 3.1 732 15.9BOD5 <1.0, NH4AsN<0.02NITREX-F SFE 11/17/031.9 43.00 0.01 37.80 0.10 37.90 4.5522 392 0.34 0.6 6.8 7.0 583 9.3NH4<0.02, TKN<0.2NITREX-F STE 12/26/00270.0 42.00 24.00 0.02 70.00 70.02 11.70 298 71 60.00 1.2E+07 7.1 6.5E+06 6.8 7.4NITREX-FSTE01/29/01260.0 49.00 0.14 0.01 60.00 60.01 10.10 29216.00 160,000 5.2 98,000 5.0 8.1 1.0 823 12.3NITREX-FSTE02/27/01230.0 60.00 50.00 0.03 58.00 58.03 12.00 30420.00 240,000 5.4 220,000 5.3 8.3 0.9 911 12.7NITREX-FSTE03/26/01240.0 60.00 43.00 0.00 60.00 60.00 9.83 30842.00 5.2E+06 6.7 3.8E+06 6.6 8.3 1.1 894 14.2NITREX-FSTE04/23/01260.0 61.00 29.00 0.01 43.00 43.01 10.40 24238.00 4.0E+07 7.6 4.4E+07 7.6 7.8 0.3 747 18.2NITREX-FSTE05/21/01190.0 86.00 53.00 0.01 63.00 63.01 11.80 32155.00 2.1E+07 7.3 1.1E+07 7.0 8.1 0.3 932 18.9NITREX-FSTE06/25/01220.0 23.00 46.00 0.02 59.00 59.02 9.92 326 76 46.00 900,000 6.0 460,000 5.7 7.6 0.7 916 17.9NITREX-FSTE07/30/01270.0 82.00 59.00 0.14 72.00 72.14 13.10 354 87 27.00 2.1E+06 6.3 1.7E+06 6.2 7.4 1.0 1083 19.9NITREX-FSTE08/27/01320.0 110.00 52.00 0.02 66.00 66.02 11.40 361 78 40.00 5.0E+06 6.7 5.5E+06 6.7 6.9 0.5 991 21.0NITREX-FSTE09/24/01430.0 130.00 60.00 0.02 78.00 78.02 13.00 389 72 36.00 5.6E+06 6.7 6.4E+06 6.8 6.8 1.6 987 18.7NITREX-FSTE10/22/01420.0 84.00 64.00 0.00 71.00 71.00 12.70 372 675.2E+06 6.7 2.0E+06 6.3 6.7 0.6 1052 17.0NITREX-FSTE11/19/01380.0 75.00 63.00 0.00 71.00 71.00 12.80 362 692.9E+07 7.5 3.0E+07 7.5 7.0 0.8 1042 14.3NITREX-FSTE01/29/02410.0 126.00 56.00 0.00 75.00 75.00 15.20 332 644.2E+07 7.6 370 2.6 7.1 1.0 923 10.2NITREX-FSTE03/25/02440.0 78.00 66.00 0.00 81.00 81.00 14.80 400 62 63.00 8.0E+07 7.9 9.0E+07 8.0 7.0 0.8 1125 12.3NITREX-FSTE05/20/02320.0 72.00 71.00 0.06 82.00 82.06 18.40 300 61 57.00 7.7E+08 8.9 7.4E+08 8.9 6.9 0.5 1164 15.5 BOD5 is est.NITREX-F STE 07/29/02680.0 340.00 76.00 0.03 96.00 96.03 18.90 394 84 86.00 3.8E+08 8.6 3.7E+08 8.6 6.6 1.0 1173 20.4NITREX-FSTE09/23/02360.0 120.00 77.00 0.03 91.00 91.03 17.20 450 81 76.007.1 0.7 1099 16.8E coli and fecal coliform VOID; TSS est.NITREX-F STE 09/25/023.9E+08 8.6 2.9E+08 8.5 6.8 0.6 1140 16.9Bacteria re-sampleNITREX-F STE 11/11/02310.0 110.00 70.00 0.02 70.00 70.02 14.90 444 80 48.00 5.4E+08 8.7 2.0E+08 8.3 7.3 0.8 1092 13.2NITREX-FSTE01/27/03350.0 78.00 63.00 0.04 75.00 75.04 15.30 395 68 50.00 4.8E+07 7.7 1.9E+07 7.3 6.9 1.0 1095 11.1NITREX-FSTE03/24/03290.0 89.00 57.00 0.02 67.00 67.02 14.70 399 74 65.00 1.3E+07 7.1 1.1E+07 7.0 7.2 1.1 1082 13.3NITREX-FSTE05/19/03190.0 38.00 43.00 0.03 52.00 52.03 11.80 345 54 28.00 2.3E+07 7.4 2.1E+07 7.3 7.1 1.0 924 14.9NITREX-FSTE07/14/03370.0 120.00 59.00 0.22 71.00 71.22 16.60 411 48 34.00 2.7E+06 6.4 1.6E+06 6.2 6.7 0.9 1013 21.0NITREX-FSTE09/22/03250.0 240.00 40.00 0.01 55.00 55.01 11.20 359 40 63.00 5.0E+06 6.7 5.4E+06 6.7 6.9 1.1 853 16.9NITREX-FSTE11/17/03170.0 71.00 41.00 0.03 51.00 51.03 14.70 359 44 31.00 6.6E+06 6.8 3.7E+06 6.6 7.1 1.3 881 13.3NITREX-SMW Drain207012/26/001.0 7.00 0.03 2.55 0.40 2.95 0.2864 72 0.32 0.3Duplicate QA sampleNITREX-S MW Drain207012/26/001.0 6.00 0.03 2.55 0.30 2.85 0.2864 72 0.32 0.3 6.9 2.2 180 7.6 6.88NITREX-SMW Drain207001/29/010.0 7.00 0.02 2.85 0.10 2.95 0.2772 92 0.32 0.3 6.9 2.9 200 6.9 7.06TKN <0.2NITREX-S MW Drain207002/27/011.0 4.00 0.00 2.68 0.30 2.98 0.2763 82 0.32 0.3 6.7 4.2 191 6.8 7.00NITREX-SMW Drain207002/27/011.0 3.00 0.00 2.69 0.30 2.99 0.2764 82 0.32 0.3 6.7 4.2 191 6.8duplicate QA sampleNITREX-S MW Drain207003/27/010.0 5.00 0.03 2.44 0.30 2.74 0.3058 72 0.32 0.3 6.8 3.7 182 5.7 6.75NITREX-SMW Drain207004/24/010.0 2.00 0.02 2.61 0.30 2.91 0.2767 82 0.32 0.3 6.9 3.4 187 6.7 7.02alk. is estimate.NITREX-S MW Drain207004/24/010.0 2.00 0.00 2.63 0.30 2.93 0.2867 82 0.32 0.3 6.9 3.4 187 6.7QA duplicate; alk. is estimate.NITREX-S MW Drain207005/22/010.0 1.00 0.00 2.54 0.10 2.64 0.2765 82 0.32 0.3 6.7 3.2 192 7.4 7.21TKN <0.2NITREX-S MW Drain207005/22/010.0 0.00 0.00 2.55 0.30 2.85 0.2767 82 0.32 0.3 6.7 3.2 192 7.4QA DuplicateNITREX-S MW Drain207006/26/010.0 0.00 0.00 2.90 0.30 3.20 0.2766 92 0.32 0.3 6.5 4.4 198 7.8 7.90NITREX-SMW Drain207007/31/010.0 2.00 0.00 3.24 0.20 3.44 0.2967 91 0.01 0.0 6.9 4.2 208 8.5 8.22NITREX-SMW Drain207007/31/010.0 1.00 0.00 3.21 0.10 3.31 0.2967 91 0.01 0.0 6.9 4.2 208 8.5 8.22QA Duplicate; TKN <0.2NITREX-S MW Drain207008/28/010.5 1.00 0.00 3.78 0.20 3.98 0.2768 101 0.01 0.0 6.7 2.8 219 9.3 8.44BOD5 <1.0NITREX-S MW Drain207009/26/010.0 2.00 0.00 3.90 0.30 4.20 0.2867 101 0.01 0.0 6.6 2.7 200 9.3 8.74NITREX-SMW Drain207010/23/010.5 1.00 0.01 3.98 0.40 4.38 0.2866 101 0.01 0.0 6.7 2.0 214 9.8 8.76BOD is <1.0NITREX-S MW Drain207010/23/010.5 2.00 0.00 3.99 0.30 4.29 0.3067 101 0.01 0.0 6.7 2.0 214 9.8QA DuplicateNITREX-S MW Drain207011/19/010.0 1.00 0.00 3.85 0.30 4.15 0.3068 91 0.01 0.08.76NITREX-SMW Drain207011/19/010.0 0.00 0.00 3.85 0.30 4.15 0.3068 91 0.01 0.0 6.8QA DuplicateNITREX-S MW Drain207001/28/020.5 0.50 0.00 4.20 0.10 4.30 0.2666 111 0.01 0.0 6.8 2.2 228 8.0 8.55NH4 <.02, BOD5 <1.0, TKN <0.2, TSS <1NITREX-S MW Drain207001/28/020.5 0.50 0.00 4.20 0.20 4.40 0.3066 111 0.01 0.0 6.8 2.2 228 8.0QA Duplicate; BOD <1.0; TSS <1NITREX-S MW Drain207003/26/020.5 0.50 0.00 3.60 0.30 3.90 0.3062 101 0.01 0.0 6.9 2.3 217 7.5 7.61BOD5 <1.0, TSS <1Appendix B: Innovative System Field Test DataPage B-48
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesNITREX-SMW Drain207003/26/020.5 1.00 0.00 3.70 0.30 4.00 0.3062 101 0.01 0.0 6.9 2.3 217 7.5QA duplicate, BOD5 <1.0NITREX-S MW Drain207005/20/020.5 0.50 0.07 3.33 0.30 3.6360 91 0.01 0.0 6.9 9.0 214 7.6 7.92TSS <1, BOD5<1.0 est.NITREX-S MW Drain207006/25/020.5 1.00 0.01 3.66 0.30 3.9660 111 0.01 0.0 6.9 3.8 197 8.1 8.47BOD5<1.0, NH4 <0.02NITREX-S MW Drain207007/30/020.5 0.50 0.01 3.81 0.10 3.9160 101 0.01 0.0 6.9 2.3 201 8.7 8.88TKN <0.2, NH4 <0.02, bod5 <1.0, tss <1NITREX-S MW Drain207009/25/020.5 2.00 0.02 3.86 0.10 3.9662 101 0.01 0.0 6.8 2.0 201 9.7 9.20BOD5 <1.0; TKN <0.2NITREX-S MW Drain207011/13/020.5 2.00 0.02 3.90 0.30 4.2063 101 0.01 0.0 6.7 1.8 201 9.4 9.29BOD5 <1.0, TKN is est.NITREX-S MW Drain207012/17/020.5 0.50 0.01 3.74 0.10 3.8462 101 0.01 0.0 6.6 1.3 215 8.8 9.31BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2NITREX-S MW Drain207001/21/030.5 1.00 0.01 3.65 0.30 3.9563 111 0.01 0.0 6.7 1.6 217 8.3 9.23BOD5 <1.0, NH4 <0.02NITREX-S MW Drain207003/24/030.5 2.00 0.04 3.68 0.30 3.9864 101 0.01 0.0 6.8 1.7 214 7.7 9.13BOD5<1.0NITREX-S MW Drain207005/05/030.5 1.00 0.02 3.65 0.30 3.9564 101 0.01 0.0 6.9 2.5 211 7.1 9.18BOD5<1.0NITREX-S MW Drain207005/05/030.5 1.00 0.02 3.65 0.20 3.8563 101 0.01 0.0QA Duplicate; BOD5<1.0NITREX-S MW Drain207006/24/030.5 1.00 0.02 3.59 0.10 3.6964 101 0.01 0.0 6.7 1.9 215 7.6 9.39BOD5<1.0, TKN<0.2NITREX-S MW Drain207006/24/030.5 0.50 0.03 3.60 0.10 3.7064 101 0.01 0.0QA Duplicate; BOD5<1.0, TSS <1, TKN<0.2NITREX-S MW Drain207007/21/030.5 1.00 0.01 3.46 0.10 3.5664 101 0.01 0.0 6.8 1.8 213 8.4 9.58BOD5<1.0, NH4<0.02, TKN<0.2NITREX-S MW Drain207007/21/030.5 0.50 0.01 3.48 0.20 3.6864 101 0.01 0.0QA Duplicate; BOD5<1.0, TSS<1 NH4<0.02NITREX-S MW Drain207009/23/030.5 0.50 0.01 3.48 0.10 3.5866 101 0.01 0.0 6.8 2.6 216 10.1 9.95BOD5<1.0, TSS<1, TKN<0.2NITREX-S MW Drain207009/23/030.5 0.50 0.01 3.48 0.10 3.5866 101 0.01 0.0QA Duplicate; BOD5<1.0, TSS<1, TKN<0.2NITREX-S MW Drain207009/23/030.5 0.50 0.01 3.48 0.10 3.5866 101 0.01 0.0 6.8 2.6 216 10.1 9.95TKN<0.2, NH4AsN<0.02, TSS<1, BOD5<1NITREX-S MW Drain207011/19/030.5 0.50 0.04 3.76 0.10 3.8666 111 0.01 0.0 6.7 2.2 223 9.5 10.04BOD5<1.0, TSS<1, TKN<0.2NITREX-S MW Drain207011/19/030.5 0.50 0.02 3.75 0.10 3.8566 111 0.01 0.0QA Duplicate; BOD5<1.0, TSS<1, TKN<0.2NITREX-S NFEC 12/26/0054.0 16.00 1.70 0.06 4.50 4.56 6.01 231 421,400 3.1 860 2.9 7.2 1.8 554 7.0NITREX-SNFEC01/29/0122.0 12.00 1.10 5.79 3.20 8.99 5.63 191 472 0.34 0.6 7.4 3.3 590 6.4NITREX-SNFEC02/27/0114.0 3.00 0.71 8.67 2.70 11.37 4.58 171 472 0.32 0.3 7.3 3.4 572 5.8NITREX-SNFEC03/26/017.7 3.00 0.42 6.49 2.10 8.59 5.30 153 432,000 3.3 2,000 3.3 7.2 3.8 614 7.9NITREX-SNFEC04/23/016.0 4.00 0.10 15.80 1.70 17.50 5.67 183 392 0.32 0.3 7.3 2.4 650 10.1NITREX-SNFEC05/21/0142.0 12.00 0.28 0.21 1.70 1.91 4.98 238 442 0.32 0.3 7.0 2.1 641 14.4NITREX-SNFEC06/25/01170.0 4.00 0.03 0.00 1.50 1.50 5.95 244 382 0.32 0.3 6.6 2.9 670 16.2NITREX-SNFEP12/26/0063.0 4.00 2.10 0.02 3.90 3.92 6.37 232 401,400 3.1 420 2.6 7.1 2.2 569 7.1NITREX-SNFEP01/29/0121.0 7.00 1.40 7.00 3.00 10.00 5.70 1866 0.82 0.3 7.3 1.9 588 6.8NITREX-SNFEP02/27/0116.0 2.00 0.75 8.85 2.40 11.25 4.72 1702 0.32 0.3 6.9 2.5 262 4.5NITREX-SNFEP03/26/0111.0 1.00 0.73 6.17 2.10 8.27 5.41 18710 1.010 1.0 7.2 2.7 619 8.1NITREX-SNFEP04/23/017.2 4.00 0.18 15.60 1.80 17.40 5.74 1812 0.32 0.3 7.2 1.7 632 10.1NITREX-SNFEP05/21/0170.0 12.00 0.50 0.30 2.20 2.50 5.00 2432 0.32 0.3 6.8 1.7 582 14.5NITREX-SNFEP06/25/01160.0 3.00 0.15 0.00 1.50 1.50 5.93 248 382 0.32 0.3 6.6 1.7 679 16.6NITREX-SNFEP07/30/01190.0 7.00 0.29 0.00 1.60 1.60 5.50 287 402 0.32 0.3 6.4 2.2 754 18.4NITREX-SNFEP08/27/0179.0 8.00 0.19 0.01 1.50 1.51 2.52 268 372 0.32 0.3 6.8 2.6 669 21.2NITREX-SNFEP09/24/0137.0 5.00 0.04 0.00 0.80 0.80 2.31 259 362 0.32 0.3 6.6 1.6 634 18.4NITREX-SNFEP10/22/0141.0 2.00 0.10 0.00 0.90 0.90 2.96 282 392 0.32 0.3 6.6 2.5 684 13.0NITREX-SNFEP11/19/0110.0 2.00 0.07 0.10 0.70 0.80 3.30 202 5322 1.316 1.2 6.9 2.3 570 6.2NITREX-SNFEP01/28/029.8 2.00 0.06 0.40 0.80 1.20 4.40 224 406.8 2.3 490 6.0BACTERIA past holding timeNITREX-S NFEP 01/30/022 0.32 0.3 6.6 4.1 607 5.4re-sample due to shipping problemNITREX-S NFEP 03/25/023.3 2.00 0.05 0.20 0.90 1.10 4.30 237 332 0.32 0.3 7.0 4.7 653 7.0NITREX-SNFEP05/20/026.6 3.00 0.37 0.01 1.20 1.21 3.69 240 292 0.32 0.3 6.6 3.6 618 12.2BOD5 is est.NITREX-S NFEP 07/29/0221.0 3.000.01 1.40 1.41 3.40 360 442 0.32 0.3 6.4 2.0 837 20.0NH4 voidNITREX-S NFEP 09/23/0213.0 4.00 1.22 0.01 2.00 2.01 1.52 281 492 0.32 0.3 6.6 1.4 644 17.7NITREX-SNFEP11/11/024.9 2.00 0.93 0.01 1.90 1.91 0.98 235 412 0.32 0.3 6.8 2.4 549 10.2BOD5 is est.NITREX-S NFEP 11/11/029.0 1.00 0.96 0.01 1.80 1.81 1.03 235 422 0.32 0.3 6.9 2.6 546 10.1NITREX-SNFEP01/21/036.3 2.00 2.40 0.18 5.20 5.38 2.38 233 442 0.32 0.3 7.1 2.9 620 7.1NITREX-SNFEP03/24/032.5 3.00 3.60 4.13 4.60 8.73 2.72 228 452 0.32 0.3 7.2 4.5 638 8.4NITREX-SNFEP05/05/034.2 2.00 5.10 0.52 5.50 6.02 2.77 235 422 0.32 0.3 7.1 3.7 615 9.0NITREX-SNFEP07/21/030.5 3.00 7.90 0.00 9.30 9.30 3.04 302 564 0.62 0.3 6.8 2.9 777 19.8BOD5<1.0, Nitrate<0.0050NITREX-S NFEP 09/24/035.0 1.00 7.40 0.00 8.20 8.20 2.40 315 652 0.32 0.3 6.9 4.1 822 16.2Nitrate/nitrite<0.005NITREX-S NFEP 11/19/038.6 3.00 4.70 0.02 5.50 5.52 1.19 290 562 0.32 0.3 7.2 1.6 747 10.7NITREX-SSFE12/26/0017.0 500.00 3.00 33.40 4.90 38.30 6.84 125 374,800 3.7 3,600 3.6 7.4 4.2 596 8.1NITREX-SSFE01/29/0125.0 160.00 1.30 43.30 2.40 45.70 6.27182,100 3.3 1,200 3.1 6.6 5.8 593 7.2NITREX-SSFE02/27/016.2 110.00 0.25 40.20 1.30 41.50 5.17344 0.612 1.1 6.3 4.4 577 7.3NITREX-SSFE03/26/011.1 140.00 0.03 45.40 1.40 46.80 5.96204 0.62 0.3 6.7 6.0 634 8.8NITREX-SSFE04/23/011.8 190.00 0.03 52.90 1.30 54.20 6.163422 1.310 1.0 7.9 4.0 701 10.8NITREX-SSFE05/21/010.0 120.00 0.06 46.00 0.60 46.60 5.40322 0.32 0.3 6.7 3.2 620 15.1BOD5 is estimate.NITREX-S SFE 06/25/011.6 55.00 0.03 42.00 0.80 42.80 5.5020 366 0.82 0.3 6.8 4.4 574 17.1BOD5 is estimate.NITREX-S SFE 07/30/010.0 19.00 0.04 39.40 0.90 40.30 4.0619 3812 1.18 0.9 6.6 4.3 499 18.2NITREX-SSFE08/27/013.9 43.00 0.00 38.60 0.80 39.40 3.4419 382 0.32 0.3 6.5 4.4 544 20.7BOD5 depletion requirement not met.NITREX-S SFE 09/24/013.3 200.00 0.05 47.10 2.60 49.70 4.3215 342 0.32 0.3 6.6 3.5 549 18.4NITREX-SSFE10/22/017.2 750.00 0.06 47.30 2.20 49.50 4.4013 382 0.32 0.3 6.6 2.2 587 14.6Appendix B: Innovative System Field Test DataPage B-49
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesNITREX-SSFE11/19/0110.0 570.00 0.05 45.70 2.00 47.70 5.3922 372 0.32 0.3 6.9 4.1 609 10.4NITREX-SSFE01/28/027.8 239.00 0.00 43.30 2.70 46.00 5.9033 406.7 4.4 510 4.2BACTERIA sample past holding timeNITREX-S SFE 01/30/024 0.62 0.3 6.5 8.1 682 5.7re-sample due to shipment problem.NITREX-S SFE 03/25/028.7 532.00 0.00 51.20 0.90 52.10 6.8027 332 0.32 0.3 6.9 8.1 659 6.9NITREX-SSFE05/20/023.3 270.00 0.04 61.00 2.70 63.70 4.6011 302 0.32 0.3 6.5 4.2 675 13.3BOD5 is est.NITREX-S SFE 07/29/020.5 240.00 0.01 56.50 0.10 56.60 2.4416 492 0.32 0.3 7.1 3.5 661 19.6TKN <0.2, NH4 <0.02, bod5 <1.0NITREX-S SFE 09/23/020.5 88.00 0.05 55.00 0.30 55.30 2.219 5242 1.634 1.5 6.3 2.1 607 18.5BOD5 <1.0NITREX-S SFE 11/11/026.9 360.00 0.03 52.40 0.10 52.50 2.137 424 0.62 0.3 7.1 4.2 603 11.1TKN <0.2NITREX-S SFE 01/21/031.8 250.00 0.01 53.30 0.60 53.90 1.7316 422 0.32 0.3 7.2 4.9 667 7.7BOD5 is est., NH4 <0.02NITREX-S SFE 03/24/032.2 200.00 0.05 56.60 0.40 57.00 3.588 442 0.32 0.3 6.8 5.7 686 8.2BOD5 is est.NITREX-S SFE 05/05/031.1 130.00 0.01 61.40 0.10 61.50 3.538 422 0.32 0.3 6.8 5.0 682 9.5BOD5 is est. NH4 <0.02, TKN <0.2NITREX-S SFE 07/21/032.0 130.00 0.02 54.80 1.00 55.80 2.8410 592 0.32 0.3 6.5 4.7 723 19.9NITREX-SSFE09/24/032.0 86.00 0.02 56.30 0.10 56.40 2.617 6020 1.310 1.0 6.5 4.0 735 17.8BOD5 is est., TKN<0.2NITREX-S SFE 09/24/032.0 140.00 0.01 56.10 0.10 56.20 2.747 609,400 4.0 7,000 3.8 6.5 4.1 739 16.7QA Duplicate; NH4AsN<0.02, TKN<0.2NITREX-S SFE 11/19/031.5 130.00 0.05 58.00 1.80 59.80 2.434 552 0.32 0.3 7.7 5.5 736 11.5BOD5 is est.NITREX-S STE 12/26/00150.0 39.00 33.00 0.02 49.00 49.02 9.11 228 45 15.00 600,000 5.8 540,000 5.7 7.5 0.6 660 14.2NITREX-SSTE01/29/01160.0 19.00 42.00 0.01 56.00 56.01 11.00 2556.00 760,000 5.9 680,000 5.8 7.8 1.3 721 14.3NITREX-SSTE02/27/01170.0 23.00 42.00 0.01 47.00 47.01 13.70 26719.00 34,000 4.5 8,000 3.9 7.3 0.9 710 14.7NITREX-SSTE03/26/01290.0 99.00 49.00 0.01 57.00 57.01 12.80 29030.00 98,000 5.0 86,000 4.9 7.0 1.2 810 16.6NITREX-SSTE04/23/01280.0 60.00 43.00 0.02 52.00 52.02 10.10 28126.00 20,000 4.3 40,000 4.6 7.9 0.3 779 18.7NITREX-SSTE05/21/01290.0 150.00 49.00 0.01 64.00 64.01 12.70 32428.00 90,000 5.0 78,000 4.9 6.8 0.5 850 19.4NITREX-SSTE06/25/01260.0 53.00 38.00 0.01 48.00 48.01 10.70 289 35 19.00 130,000 5.1 140,000 5.1 7.0 0.9 738 21.0NITREX-SSTE07/30/01230.0 84.00 46.00 0.05 52.00 52.05 10.80 302 39 21.00 22,000 4.3 20,000 4.3 6.7 1.1 364 20.6NITREX-SSTE08/27/01480.0 95.00 49.00 0.02 63.00 63.02 12.20 324 39 20.00 130,000 5.1 130,000 5.1 6.8 0.8 830 22.2BOD5 toxic interferenceNITREX-S STE 09/24/01140.0 53.00 39.00 0.02 55.00 55.02 10.20 287 38 15.00 140,000 5.1 140,000 5.1 6.9 0.8 670 21.9NITREX-SSTE10/22/01160.0 72.00 54.00 0.00 59.00 59.00 11.40 327 35 15.00 260,000 5.4 260,000 5.4 6.8 0.9 806 16.7NITREX-SSTE11/19/01190.0 57.00 54.00 0.00 62.00 62.00 10.90 304 37 27.00 780,000 5.9 460,000 5.7 7.3 0.8 815 14.6NITREX-SSTE01/28/02230.0 62.00 55.00 0.00 70.00 70.00 12.00 321 42 14.00 940,000 6.0 820,000 5.9 7.1 2.4 852 9.3NITREX-SSTE03/25/02190.0 67.00 50.00 0.00 61.00 61.00 9.80 290 35 15.00 420,000 5.6 220,000 5.3 7.0 0.4 781 16.3NITREX-SSTE05/20/02190.0 66.00 52.00 0.02 54.00 54.02 9.03 255 30 17.00 620,000 5.8 420,000 5.6 6.7 0.7 712 18.9BOD5 is est.NITREX-S STE 07/29/02190.0 190.00 47.00 0.0211.90 302 46 280.00 170,000 5.2 150,000 5.2 6.6 0.8 792 21.0TKN voidNITREX-S STE 09/23/02140.0 90.00 52.00 0.02 62.00 62.02 11.00 305 48 14.00 82,000 4.9 80,000 4.9 6.8 0.2 783 20.7NITREX-SSTE11/11/02280.0 70.00 49.00 0.02 60.00 60.02 10.60 319 43 20.00 210,000 5.3 120,000 5.1 7.0 1.0 784 15.8NITREX-SSTE01/21/03140.0 90.00 44.00 0.02 58.00 58.02 11.60 306 43 18.00 180,000 5.3 160,000 5.2 6.9 0.9 834 15.6NITREX-SSTE03/24/03130.0 71.00 46.00 0.01 55.00 55.01 9.37 302 42 10.00 84,000 4.9 78,000 4.9 7.0 0.6 787 15.8NITREX-SSTE05/05/03130.0 84.00 45.00 0.02 51.00 51.02 9.71 309 45 16.00 70,000 4.8 48,000 4.7 7.1 0.9 803 16.2NITREX-SSTE07/21/03190.0 350.00 53.00 0.02 72.00 72.02 18.40 365 54180,000 5.3 82,000 4.9 7.0 0.5 936 22.8O&G voidNITREX-S STE 09/24/03210.0 160.00 53.00 0.03 69.00 69.03 12.60 369 59 39.00 1,600 3.2 1,000 3.0 7.4 0.7 989 21.4NITREX-SSTE11/19/03140.0 43.00 46.00 0.02 55.00 55.02 11.90 321 56 25.00 96,000 5.0 68,000 4.8 7.4 1.1 891 16.5Pressure-CLE10/23/020.5 2.00 0.28 0.84 0.80 1.64 0.22 136 271,500 3.2 760 2.9 7.4 6.6 381 8.1BOD5 <1.0Pressure-C LE 11/12/020.5 19.00 2.40 16.00 2.70 18.70 0.27 120 306 0.82 0.3 7.1 6.9 471 6.8BOD5 <1.0Pressure-C LE 12/18/021.1 2.00 0.73 70.10 1.30 71.40 0.263 328 0.96 0.8 6.3 12.0 736 3.3BOD5 est, TKN is est., pH is est.Pressure-C LE 01/13/030.5 4.00 0.03 64.900.3662 2852 1.742 1.6 7.4 5.4 755 3.7BOD5 <1.0, TKN void; pH is est.Pressure-C LE 02/05/030.5 2.00 0.03 49.00 0.70 49.70 0.2832 3224 1.422 1.3 7.1 10.8 578 3.5BOD5<1.0Pressure-C LE 03/03/033.1 2.00 0.03 35.20 0.10 35.30 0.2819 306 0.84 0.6 6.7 5.8 447 3.4BOD5 is est., TKN <0.2Pressure-C LE 03/31/031.8 8.00 0.04 38.90 0.10 39.00 0.3322 322 0.32 0.3 7.0 5.3 475 8.1BOD5 is est.Pressure-C LE 05/14/032.3 11.00 0.04 39.00 0.10 39.10 0.6118 286 0.84 0.6 7.0 6.5 471 10.1BOD5 is est., TKN <0.2Pressure-C LE 06/09/033.0 12.00 0.31 38.90 2.10 41.00 1.6124 2926 1.416 1.2 6.7 3.4 486 13.3Pressure-CLE07/07/037.3 28.00 0.69 42.90 2.30 45.20 1.519 317,000 3.8 6,400 3.8 6.5 1.6 535 15.5Pressure-CLE08/04/030.5 4.00 0.08 1.76 0.80 2.56 2.0621 30210 2.3 170 2.2 6.9 5.6 548 19.1BOD5<1.0Pressure-C LE 09/08/030.5 4.00 1.40 69.00 2.20 71.20 1.694 322 0.32 0.3 6.3 5.2 792 14.8TKN is est., BOD5<1Pressure-C LE 09/29/030.5 9.00 0.10 30.60 0.90 31.50 1.876 26150 2.266 1.8 6.5 5.0 430 15.2BOD5 <1.0Pressure-C LE 01/26/042.4 5.00 0.43 28.50 0.80 29.30 1.659 322 0.32 0.3 7.4 7.7 437 2.4Pressure-CLE04/12/04(LE) all tests cancelled; no flowPressure-C LE 07/14/04all tests cancelled; Frogs in lysimeter bucketPressure-C LE 10/18/04190.0 300.00 1.70 9.92 4.40 14.32 4.4628 375,800 3.8 5,600 3.7 7.1 2.5 134 8.8BOD5 is est.Pressure-C MW Drain 2038 03/06/010.0 4.00 0.00 0.01 0.20 0.21 0.1382 112 0.32 0.3 6.9 1.4 480 7.3 9.11Pressure-CMW Drain 2038 03/06/010.0 5.00 0.00 0.02 0.20 0.22 0.1382 112 0.32 0.3 6.9 1.4 480 7.3 QA duplicate reading,Pressure-C MW Drain 2038 04/03/010.0 4.00 0.04 0.01 0.20 0.21 0.1497 132 0.32 0.3 6.8 0.1 465 7.3 11.80Pressure-CMW Drain 2038 05/01/010.0 3.00 0.00 0.01 0.50 0.51 0.1495 152 0.32 0.3 6.8 1.3 399 7.0 9.51Pressure-CMW Drain 2038 05/01/010.0 4.00 0.00 0.01 0.30 0.31 0.1495 142 0.32 0.3 6.8 1.3 399 7.0 QA DuplicatePressure-C MW Drain 2038 06/05/010.0 5.00 0.03 0.03 0.20 0.23 0.1394 172 0.32 0.3 7.0 1.9 397 7.8 10.02Pressure-CMW Drain 2038 07/10/010.0 0.00 0.03 0.04 0.20 0.24 0.1496 201 0.01 0.0 6.9 0.6 372 8.8 10.30Pressure-CMW Drain 2038 08/07/010.0 0.00 0.02 0.00 0.01 0.01 0.1498 201 0.01 0.0 6.8 0.0 361 8.4 10.49TKN <0.2Appendix B: Innovative System Field Test DataPage B-50
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesPressure-CMW Drain 2038 09/05/010.0 5.00 0.00 0.02 0.10 0.12 0.1599 211 0.01 0.0 6.9 0.0 313 8.7 10.68TKN <0.1Pressure-C MW Drain 2038 10/02/011.2 4.00 0.02 0.04 0.20 0.24 0.15 100 201 0.01 0.0 6.7 0.2 350 9.1 10.85 BOD5 is estimate.Pressure-C MW Drain 2038 10/02/011.2 5.00 0.00 0.04 0.20 0.24 0.15 100 201 0.01 0.0 6.7 0.2 350 9.1QA duplicate; BOD5 is estimate.Pressure-C MW Drain 2038 10/30/010.0 6.00 0.00 0.060.1698 191 0.01 0.0 6.7 0.5 322 8.9 10.89TKN cancelled, samples were dumpedPressure-C MW Drain 2038 10/30/010.0 7.00 0.00 0.060.1698 201 0.01 0.0 6.7 0.5 322 8.9 TKN cancelled, samples were dumped QA DuplicatePressure-C MW Drain 2038 12/12/010.5 2.00 0.03 0.10 0.30 0.40 0.14 103 191 0.01 0.0 6.7 0.2 360 8.7 12.08TKN & TSS are estimatesPressure-C MW Drain 2038 12/12/010.5 0.50 0.00 0.10 0.30 0.40 0.14 102 181 0.01 0.0 6.7 0.2 360 8.7QA; TKN, BOD5, cond. & TSS are estimatesPressure-C MW Drain 2038 03/05/020.5 0.50 0.00 0.10 0.10 0.20 0.10 101 241 0.01 0.0 6.9 0.1 358 8.1 10.44 BOD5<1, TKN <.1, TSS <1Pressure-C MW Drain 2038 03/05/020.5 1.00 0.00 0.10 0.10 0.20 0.10 100 241 0.01 0.0 6.9 0.1 358 8.1QA Duplicate; BOD5 <1, TKN <.2Pressure-C MW Drain 2038 06/03/020.5 2.00 0.03 0.05 0.10 0.1595 251 0.01 0.0 7.0 1.4 314 7.4 10.56BOD <1; TKN<0.2Pressure-C MW Drain 2038 06/03/020.5 2.00 0.02 0.04 0.10 0.1496 271 0.01 0.0 7.0 1.4 314 7.4QA duplicate; BOD <1; TKN <0.2Pressure-C MW Drain 2038 07/09/020.5 6.00 0.02 0.05 0.10 0.15101 241 0.01 0.0 7.0 0.6 315 7.8 10.93 TKN <0.2, NH4 <0.02, bod5 <1.0Pressure-C MW Drain 2038 07/09/021.1 2.00 0.02 0.05 0.10 0.15100 251 0.01 0.0 7.0 0.6 315 7.8QA Duplicate; TKN <0.2, NH4 <0.02, bod5 is est.Pressure-C MW Drain 2038 08/06/020.5 2.00 0.01 0.02 0.10 0.1294 251 0.01 0.0 6.9 0.1 329 7.8 11.21TKN <0.2, NH4 <0.02, bod5 <1.0Pressure-C MW Drain 2038 08/06/021.4 0.50 0.01 0.02 0.10 0.1294 251 0.01 0.0 6.9 0.1 329 7.8QA; TKN <0.2, NH4 <0.02, BOD est., TSS <1Pressure-C MW Drain 2038 09/03/020.5 2.00 0.02 0.02 0.10 0.1294 211 0.01 0.0 6.8 2.0 324 8.3 11.40BOD5<1.0, TKN<0.2Pressure-C MW Drain 2038 10/22/020.5 3.00 0.01 0.01 0.10 0.11102 171 0.01 0.0 6.9 3.2 328 9.1 11.53BOD5<1.0, NH4 <0.02, TKN <0.2Pressure-C MW Drain 2038 10/22/020.5 1.00 0.01 0.01 0.10 0.11102 171 0.01 0.0QA Duplicate; BOD5<1.0, NH4 <0.02, TKN <0.2Pressure-C MW Drain 2038 11/13/020.5 1.00 0.01 0.04 0.20 0.24104 181 0.01 0.0 6.9 2.6 344 8.7 11.54NH4 <0.02, BOD5 <1.0Pressure-C MW Drain 2038 11/13/020.5 1.00 0.01 0.04 0.20 0.24104 181 0.01 0.0QA Duplicate; NH4 <0.02, BOD5 <1.0Pressure-C MW Drain 2038 12/16/020.5 2.00 0.01 0.04 0.10 0.14104 201 0.01 0.0 6.9 3.1 399 8.6 11.66BOD5<1.0, NH4<0.02, TKN<0.2Pressure-C MW Drain 2038 01/13/030.5 0.50 0.03 0.03 0.10 0.1399 271 0.01 0.0 6.7 1.3 379 8.4 11.53BOD5 <1.0, TSS <1, TKN <0.2; pH is est.Pressure-C MW Drain 2038 01/13/030.5 1.00 0.04 0.02 0.10 0.1298 271 0.01 0.0 7.0QA Duplicate; BOD5 <1.0, TKN <0.2Pressure-C MW Drain 2038 02/03/030.5 0.50 0.01 0.05 0.10 0.1590 361 0.01 0.0 6.9 2.0 355 8.3 11.44BOD5<1.0, TSS<1, NH4 <0.02, TKN <0.2Pressure-C MW Drain 2038 03/03/030.5 1.00 0.02 0.05 0.10 0.1587 361 0.01 0.0 6.9 3.5 355 8.0 11.38BOD5<1.0, TKN <0.2Pressure-C MW Drain 2038 03/31/031.2 0.50 0.01 0.06 0.10 0.1690 331 0.01 0.0 6.9 3.4 342 7.9 11.49BOD5 is est., TSS <1, NH4 <0.02, TKN <0.2Pressure-C MW Drain 2038 05/14/030.5 1.00 0.01 0.09 0.10 0.1986 291 0.01 0.0 6.7 0.2 348 8.1 11.53BOD5<1.0 NH4 <0.02, TKN <0.2Pressure-C MW Drain 2038 05/14/030.5 1.00 0.01 0.08 0.10 0.1885 291 0.01 0.0QA Duplicate; BOD5<1.0 NH4 <0.02, TKN <0.2Pressure-C MW Drain 2038 06/09/030.5 0.50 0.01 0.08 0.10 0.1884 311 0.01 0.0 7.2 5.4 347 8.2 11.76BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2Pressure-C MW Drain 2038 07/07/031.1 0.50 0.04 0.09 0.10 0.1990 311 0.01 0.0 7.0 4.7 353 9.9 11.79BOD5 is est., TSS<1, TKN<0.2Pressure-C MW Drain 2038 08/04/030.5 0.50 0.01 0.05 0.10 0.1597 301 0.01 0.0 7.0 7.8 357 9.0 12.09BOD5<1.0, TSS<1 NH4<0.02, TKN<0.2Pressure-C MW Drain 2038 09/08/030.5 0.50 0.01 0.02 0.10 0.1299 301 0.01 0.0 7.0 6.2 359 9.0 12.26TKN<0.2, NH4AsN<0.02, TSS<1, BOD5<1Pressure-C MW Drain 2038 09/29/030.5 1.00 0.02 0.03 1.20 1.23100 301 0.01 0.0 7.0 6.8 363 9.9 12.30BOD5 <1.0Pressure-C MW Drain 2038 01/26/040.01 0.37 0.10 0.47301 0.01 0.0 6.9 6.3 406 8.0 12.35NH4<0.02, TKN<0.2Pressure-C MW Drain 2038 01/26/040.01 0.32 0.10 0.42291 0.01 0.0QA Duplicate; NH4<0.02, TKN<0.2Pressure-C MW Drain 2038 04/12/040.01 0.65 0.10 0.75321 0.01 0.0 6.9 3.3 386 8.7 11.47NH4<0.02, TKN<0.2Pressure-C MW Drain 2038 07/12/040.01 0.56 0.10 0.66311 0.01 0.0 7.2 6.1 354 9.9 12.01NH4<0.02, TKN<0.2Pressure-C MW Drain 2038 10/18/040.01 0.19 0.10 0.29311 0.01 0.0 7.2 7.2 348 9.0 12.56NH4 <0.02, TKN<0.2Pressure-C STE 03/05/01280.0 93.00 37.00 0.00 46.00 46.00 5.94 172 37 54.00 320,000 5.5 260,000 5.4 6.9 0.2 533 16.4Pressure-CSTE04/02/01230.0 48.00 30.00 0.07 41.00 41.07 6.73 187 45 36.00 64,000 4.8 58,000 4.8 6.8 0.7 643 13.2Pressure-CSTE04/30/01210.0 54.00 41.00 0.03 53.00 53.03 6.86 192 27 24.00 110,000 5.0 100,000 5.0 7.1 0.8 501 16.5Pressure-CSTE06/04/01200.0 81.00 41.00 0.01 55.00 55.01 7.12 200 37 17.00 440,000 5.6 300,000 5.5 7.4 0.5 645 17.6Pressure-CSTE07/09/01310.0 55.00 38.00 0.03 43.00 43.03 8.75 200 36 38.00 74,000 4.9 66,000 4.8 6.7 1.1 611 20.0Pressure-CSTE08/06/01340.0 120.00 37.00 0.33 54.00 54.33 7.63 255 65 73.00 40,000 4.6 200,000 5.3 6.8 0.5 805 20.2Pressure-CSTE09/04/01160.0 54.00 32.00 0.02 42.00 42.02 6.52 170 35 21.00 160,000 5.2 130,000 5.1 6.9 0.6 539 20.9Pressure-CSTE10/01/01220.0 57.00 29.00 0.02 43.00 43.02 5.80 150 31 30.00 28,000 4.4 28,000 4.4 6.7 0.8 474 17.5Pressure-CSTE10/29/01250.0 56.00 40.00 0.00 50.00 50.00 7.30 198 31 33.00 70,000 4.8 72,000 4.9 6.7 0.8 574 15.4Pressure-CSTE03/04/02240.0 174.00 35.00 0.00 49.00 49.00 7.40 188 29 48.00 8,000 3.9 8,000 3.9 6.9 2.6 550 12.6Pressure-CSTE06/03/02230.0 78.00 30.00 0.02 41.00 41.02 6.66 164 28 33.00 1.1E+06 6.0 1.0E+06 6.0 7.0 0.5 500 20.1Pressure-CSTE07/09/02240.0 130.00 24.00 0.01 31.00 31.01 5.09 150 25 52.00 56,000 4.7 66,000 4.8 7.1 0.4 456 19.7Pressure-CSTE08/05/02210.0 81.00 37.00 0.02 51.00 51.02 6.07 190 26 42.00 52,000 4.742 1.6 7.0 0.9 433 18.9TSS is est.Pressure-C STE 10/23/02140.0 71.00 27.00 0.03 35.00 35.03 5.08 166 26 33.00 170,000 5.2 110,000 5.0 7.1 0.8 442 15.0Pressure-CSTE11/12/02110.0 47.00 25.00 0.01 36.00 36.01 6.10 150 31 27.00 1,800 3.3 1,200 3.1 6.9 0.9 446 14.3Pressure-CSTE12/18/02400.0 90.00 33.00 0.03 43.00 43.03 6.80 182 30 37.00 20,000 4.3 18,000 4.3 5.7 1.4 605 12.8BOD5 is est., pH is est.Pressure-C STE 01/13/03180.0 160.00 35.00 0.02 51.00 51.02 7.52 191 29 82.00 3.2E+06 6.5 2.6E+06 6.4 6.9 0.8 598 12.8pH is est.Pressure-C STE 02/05/03100.0 38.00 26.00 0.03 41.00 41.03 7.50 188 37 24.00 460,000 5.7 700,000 5.8 7.0 1.3 532 13.2Pressure-CSTE03/03/03180.0 78.00 44.00 0.03 54.00 54.03 7.57 220 30 31.00 170,000 5.2 190,000 5.3 6.9 1.1 628 12.7Pressure-CSTE03/31/03260.0 71.00 37.00 0.03 50.00 50.03 8.31 217 38 38.00 230,000 5.4 240,000 5.4 7.0 0.8 668 16.1Pressure-CSTE05/14/03280.0 93.00 34.00 0.04 41.00 41.04 8.18 167 25 80.00 580,000 5.8 600,000 5.8 6.9 0.4 515 18.0Pressure-CSTE06/09/03480.0 94.00 38.00 0.03 52.00 52.03 9.33 220 32 92.00 68,000 4.8 64,000 4.8 6.4 0.5 632 18.9Pressure-CSTE07/07/03410.0 200.00 37.00 0.01 51.00 51.01 10.90 214 28 72.00 78,000 4.9 74,000 4.9 6.3 0.3 606 20.1Pressure-CSTE08/04/03150.0 34.00 27.00 0.01 40.00 40.01 6.11 170 29 46.00 58,000 4.8 76,000 4.9 7.0 0.2 526 20.8Pressure-CSTE09/08/03220.0 49.00 42.00 0.02 48.00 48.02 8.50 236 33 29.00 70,000 4.8 62,000 4.8 6.9 0.7 688 18.8Pressure-CSTE09/29/03210.0 37.00 37.00 0.02 44.00 44.02 6.32 210 35 15.00 1.8E+06 6.3 1.9E+06 6.3 6.9 0.6 792 20.9O&G est.Appendix B: Innovative System Field Test DataPage B-51
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesPressure-CSTE01/26/04260.0 94.00 32.00 0.02 41.00 41.02 6.95 229 32 58.00 500,000 5.7 400,000 5.6 7.8 1.3 626 12.7Pressure-CSTE04/12/04all tests cancelled; no sample due to lack of flowPressure-CSTE07/14/04400.0 290.00 34.00 0.00 46.00 46.00 7.08 200 29 77.00 520,000 5.7 430,000 5.6 6.9 2.0 572 23.4nitrate<0.005Pressure-C STE 10/18/04310.0 110.00 35.00 0.01 53.00 53.01 8.93 230 34 42.00 290,000 5.5 290,000 5.5 6.5 0.4 550 17.4Pressure-LLE10/08/015.6 3.00 0.03 59.50 0.60 60.10 0.1117 412 0.32 0.3 6.6 4.9 679 10.2 BOD5 estimate, possible toxic interferencePressure-L LE 11/05/010.0 3.00 0.03 50.30 0.50 50.80 0.2117 462 0.32 0.3 7.3 5.2 585 7.3Pressure-LLE11/26/011.2 180.00 0.04 47.20 0.70 47.90 0.3613 4140 1.626 1.4 7.5 5.1 615 5.1BOD5 is estimatePressure-L LE 01/14/020.5 2.00 0.70 46.30 1.30 47.60 0.1045 462 0.32 0.3 7.0 6.7 617 2.9BOD <1Pressure-L LE 02/11/024.6 0.50 0.60 23.80 6.60 30.40 0.50 121 348 0.98 0.9 6.9 6.0 621 3.2TSS <1Pressure-L LE 03/11/025.4 3.00 11.00 17.30 12.00 29.30 0.10 167 30170 2.2 130 2.1 7.4 5.8 553 3.6Pressure-LLE04/08/029.7 18.00 9.60 36.70 10.00 46.70 1.0083 352 0.32 0.3 7.0 5.6 637 7.2Pressure-LLE05/06/024.2 11.00 1.50 45.50 2.30 47.80 0.1018 29100 2.0 100 2.0 7.0 5.3 597 8.1Pressure-LLE06/11/0273.00 0.06 56.40 0.40 56.80 0.352 352 0.34 0.6 6.8 4.5 590 11.6Pressure-LLE07/09/02140.00 0.12 38.40 0.10 38.50 0.2310 46640 2.8 740 2.9 7.2 4.8 564 16.6QA Duplicate; TKN <0.2, bod5 voidPressure-L LE 07/09/025.9 15.00 0.03 38.10 0.10 38.20 0.0910 52720 2.9 740 2.9 7.2 4.8 564 16.6TKN <0.2Pressure-L LE 08/12/026.3 26.00 0.12 30.40 1.50 31.90 0.9712 36100,000 5.0 81,000 4.9 6.8 7.8 417 15.0TKN is est.Pressure-L LE 10/09/020.5 2.00 0.03 26.90 0.70 27.60 1.8632 362 0.32 0.3 6.7 7.5 421 10.6BOD5 <1Pressure-L LE 12/04/022.4 5.00 0.03 42.50 0.10 42.60 0.5628 3568 1.836 1.6 7.3 9.7 589 4.5TKN <0.2Pressure-L LE 02/11/030.5 4.00 1.60 40.70 2.40 43.10 1.5962 402 0.34 0.6 7.1 8.1 603 3.2 BOD5<1.0Pressure-L LE 04/07/031.8 25.00 0.01 43.70 0.10 43.80 1.3122 34500 2.7 420 2.6 6.8 6.6 522 6.1BOD5 is est., NH4 <0.02, TKN <0.2Pressure-L LE 06/09/031.4 2.00 0.01 42.90 0.60 43.50 2.0722 3110 1.010 1.0 6.5 7.5 536 12.1BOD5 is est., NH4<0.02Pressure-L LE 08/11/032.2 30.00 0.03 31.90 0.10 32.00 1.6514 5010 1.018 1.3 6.6 4.2 560 16.6TKN<0.2Pressure-L LE 08/11/033.6 64.00 0.02 31.80 0.10 31.90 1.6414 50260 2.4 220 2.3 6.6 4.0 565 16.6TKN<0.2, QA duplicatePressure-L LE 10/06/030.5 2.00 0.02 17.60 1.10 18.70 2.8034 412 0.32 0.3 6.7 6.1 392 13.1BOD5 <1.0Pressure-L LE 01/26/041.6 2.00 0.01 24.20 0.50 24.70 3.3640 362 0.32 0.3 7.0 7.5 437 4.1BOD5 is est., NH4<0.02Pressure-L LE 04/27/040.5 0.50 0.03 25.40 0.60 26.00 4.3640 3456 1.754 1.7 6.8 6.6 472 9.3BOD5<1, TSS<1Pressure-L LE 07/14/040.5 6.00 0.03 27.20 0.10 27.30 3.6821 35780 2.9 620 2.8 6.6 5.8 454 16.0BOD5<1.0, TKN<0.2Pressure-L MW Drain 2090 11/28/011.0 0.00 0.03 0.07 0.10 0.17 0.1452 41 0.01 0.0 6.8 6.6 153 7.7 16.98 BOD5 is estimate; TKN <0.2Pressure-L MW Drain 2090 01/14/020.5 0.50 0.00 0.80 0.10 0.90 0.1052 61 0.01 0.0 7.1 7.6 161 8.1 16.95BOD <1.0; TKN <0.2; TSS <1Pressure-L MW Drain 2090 02/11/020.5 0.50 0.00 0.08 0.10 0.18 0.1555 41 0.01 0.0 7.1 7.7 150 8.2 17.03BOD5 <1; TKN <0.2; TSS <1Pressure-L MW Drain 2090 03/11/020.5 0.50 0.00 0.10 0.10 0.20 0.2058 41 0.01 0.0 6.9 8.3 164 8.5 17.00BOD5 <1.0, TKN <0.2; TSS <1Pressure-L MW Drain 2090 03/11/020.5 1.00 0.00 0.10 0.10 0.20 0.2057 41 0.01 0.0 6.9 8.3 164 8.5 QA Duplicate; BOD5 <1.0, TKN <0.2Pressure-L MW Drain 2090 04/08/021.2 0.50 0.00 0.10 0.10 0.20 0.2055 41 0.01 0.0 6.9 5.1 159 8.2 17.05 BOD5 is estimate, TKN <0.2, TSS <1Pressure-L MW Drain 2090 04/08/020.5 0.50 0.00 0.10 0.10 0.20 0.2054 41 0.01 0.0 6.9 5.1 159 8.2 QA duplicate; BOD5 <1.0, TKN <0.2; TSS <1Pressure-L MW Drain 2090 05/06/020.5 2.00 0.02 0.09 0.10 0.1948 41 0.01 0.0 6.9 6.3 163 8.5 17.05BOD5 <1.0, TKN <0.2Pressure-L MW Drain 2090 06/11/020.5 0.50 0.01 0.09 0.10 0.1954 41 0.01 0.0 7.0 5.8 144 8.0 17.03 NH4 <0.02; BOD <1; TKN <0.2; TSS <1Pressure-L MW Drain 2090 06/11/021.00 0.01 0.09 0.10 0.1954 41 0.01 0.0 7.0 5.8 144 8.0 QA Duplicate - TKN <0.2, NH4 <0.02Pressure-L MW Drain 2090 07/08/020.5 2.00 0.01 0.09 0.10 0.1958 51 0.01 0.0 7.0 6.2 138 9.1 17.18TKN <0.2, BOD5<1.0, NH4 <0.02Pressure-L MW Drain 2090 08/12/020.5 0.50 0.01 0.09 0.10 0.1956 41 0.01 0.0 7.0 6.8 146 8.6 17.07TKN <0.2 est., TSS <1, BOD5 <1, NH4 <0.02Pressure-L MW Drain 2090 09/09/020.5 2.00 0.01 0.10 0.20 0.3056 41 0.01 0.0 6.9 5.8 139 9.2 17.07BOD5<1.0, NH4 est. <0.02, Nitrate, TKN est.Pressure-L MW Drain 2090 09/11/020.01 0.10 0.10 0.206.9 6.2 143 9.1 17.03 NH4 <0.02, TKN<0.2Pressure-L MW Drain 2090 10/07/020.5 4.00 0.01 0.12 0.10 0.2258 41 0.01 0.0 7.1 7.3 137 9.4 16.95NH4 < 0.02; BOD5 <1; TKN < 0.2; chloride estimate.Pressure-L MW Drain 2090 12/03/020.5 2.00 0.01 0.21 0.10 0.3156 41 0.01 0.0 6.9 5.9 153 9.1 16.99BOD5 <1.0 NH4 <0.02, TKN <0.2Pressure-L MW Drain 2090 12/03/020.5 0.50 0.02 0.21 0.10 0.3156 41 0.01 0.0QA Duplicate; BOD5 <1.0, TSS<1, TKN <0.2Pressure-L MW Drain 2090 02/11/030.5 4.00 0.01 0.20 0.10 0.3054 46.8 7.9 156 9.5 17.01BOD5<1.0, NH4AsN <0.02, TKN <0.2Pressure-L MW Drain 2090 03/10/031.0 0.50 0.01 0.29 0.10 0.3956 41 0.01 0.0 7.0 7.4 154 9.3 17.03BOD5 is est., TSS<1, NH4AsN <0.02, TKN <0.2Pressure-L MW Drain 2090 03/10/030.5 1.00 0.01 0.29 0.10 0.3956 41 0.01 0.0QA Duplicate; BOD <1.0, NH4AsN <0.02, TKN <0.2Pressure-L MW Drain 2090 04/07/030.5 0.50 0.01 0.37 0.10 0.4758 41 0.01 0.0 7.0 7.8 152 8.9 16.60BOD5<1.0, TSS <1, NH4 <0.02, TKN <0.2Pressure-L MW Drain 2090 06/09/030.5 1.00 0.01 0.81 0.10 0.9159 41 0.01 0.0 7.5 8.4 148 9.8 16.97BOD5<1.0, NH4<0.02, TKN<0.2Pressure-L MW Drain 2090 08/11/030.5 0.50 0.02 1.03 0.10 1.0358 41 0.01 0.0 7.1 6.7 144 9.0 17.07BOD5<1.0, TSS<1, TKN<0.2Pressure-L MW Drain 2090 08/11/030.5 1.00 0.02 1.02 0.10 1.0258 41 0.01 0.0QA Duplicate; BOD5<1.0, TKN<0.2Pressure-L MW Drain 2090 09/24/030.5 0.50 0.01 1.68 0.10 1.7857 41 0.01 0.0 6.9 7.6 153 9.8 16.98BOD5 <1.0, TSS<1, NH4AsN<0.02, TKN<0.2Pressure-L MW Drain 2090 10/07/030.5 0.50 0.01 2.28 0.10 2.3837 51 0.01 0.0 6.9 8.4 163 9.8 16.98BOD5 <1.0, TSS<1, NH4AsN<0.02, TKN<0.2Pressure-L MW Drain 2090 01/26/040.01 1.40 0.10 1.5061 0.01 0.0 7.0 8.6 156 9.2 16.92NH4<0.02, TKN<0.2Pressure-L MW Drain 2090 04/26/040.01 1.67 0.10 1.7761 0.01 0.0 7.0 8.2 158 9.1 16.96TKN<0.2, NH4<0.02Pressure-L MW Drain 2090 07/12/040.01 4.50 0.10 4.6081 0.01 0.0 7.0 6.3 186 8.9 17.98NH4<0.02, TKN<0.2Pressure-L STE 10/08/01260.0 43.00 57.00 0.02 70.00 70.02 9.40 326 42 18.00 340,000 5.5 240,000 5.4 7.5 1.1 897 16.4Pressure-LSTE11/05/01210.0 56.00 57.00 0.03 57.00 57.03 8.85 316 33 20.00 130,000 5.1 120,000 5.1 7.5 1.1 734 15.1Pressure-LSTE11/26/01250.0 54.00 28.00 0.00 65.00 65.00 9.95 337 38 19.00 82,000 4.9 94,000 5.0 7.5 0.7 877 11.8Pressure-LSTE01/14/02270.0 140.00 58.00 0.00 68.00 68.00 10.80 325 42 30.00 300,000 5.5 160,000 5.2 7.3 1.0 810 13.0Pressure-LSTE02/11/02270.0 100.00 51.00 0.00 64.00 64.00 9.24 301 30 23.00 2.6E+06 6.4 2.7E+06 6.4 7.1 0.9 824 12.6Pressure-LSTE03/11/02160.0 39.00 43.00 0.00 65.00 65.00 8.60 270 28 16.00 88,000 4.9 74,000 4.9 7.4 0.7 672 13.4Pressure-LSTE04/08/02250.0 45.00 50.00 0.00 74.00 74.00 10.60 300 28 26.00 720,000 5.9 600,000 5.8 7.3 1.4 855 14.2Pressure-LSTE05/06/02280.0 39.00 48.00 0.03 60.00 60.03 9.81 265 26 26.00 5.8E+06 6.8 4.4E+06 6.6 7.1 0.7 566 BOD5 is est.Appendix B: Innovative System Field Test DataPage B-52
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesPressure-LSTE06/11/02290.0 64.00 48.00 0.02 62.00 62.02 9.92 290 27 20.00 44,000 4.6 46,000 4.7 6.9 0.7 709 19.2Pressure-LSTE07/09/02280.0 94.00 43.00 0.02 50.00 50.02 9.83 278 37 35.00 98,000 5.0 100,000 5.0 7.0 0.8 738 21.0Pressure-LSTE08/12/02250.0 76.00 42.00 0.02 59.00 59.02 9.09 270 33 28.00 20,000 4.3 20,000 4.3 6.9 0.5 313 20.3TKN, cond. are est.Pressure-L STE 10/09/02260.0 74.00 51.00 0.02 56.00 56.02 9.89 292 40 28.00 1,000 3.0 1,000 3.0 7.0 1.1 723 18.2E Coli and fecal coli are <2000; TSS is est.Pressure-L STE 12/04/02210.0 56.00 51.00 0.01 62.00 62.01 8.48 300 40 34.00 92,000 5.0 80,000 4.9 7.1 1.3 840 15.4Pressure-LSTE02/11/03200.0 77.00 58.00 0.01 65.00 65.01 10.70 317 41 23.00 87,000 4.9 50,000 4.7 7.2 1.3 875 13.5Pressure-LSTE04/07/03280.0 54.00 46.00 0.02 58.00 58.02 8.51 294 35 34.00 102,000 5.0 92,000 5.0 7.1 1.0 770 15.4Pressure-LSTE06/09/03260.0 106.00 56.00 0.02 64.00 64.02 13.40 325 41 53.00 620,000 5.8 720,000 5.9 6.9 0.4 879 20.8Pressure-LSTE08/11/03330.0 140.00 53.00 0.02 66.00 66.02 12.60 312 61 42.00 200,000 5.3 160,000 5.2 6.8 0.6 918 20.9Pressure-LSTE10/06/03320.0 230.00 45.00 0.02 54.00 54.02 11.80 304 46 39.00 82,000 4.9 84,000 4.9 6.7 1.0 820 15.7Pressure-LSTE01/26/04250.0 68.00 47.00 0.02 54.00 54.02 12.00 276 32 67.00 70,000 4.8 62,000 4.8 6.9 1.3 736 11.7Pressure-LSTE04/27/04220.0 65.00 39.00 0.02 53.00 53.02 9.18 256 48 49.00 460,000 5.7 420,000 5.6 6.9 0.8 717 17.4Pressure-LSTE07/14/04300.0 310.00 52.00 0.03 70.00 70.03 12.40 320 37 62.00 720,000 5.9 600,000 5.8 6.8 0.4 831 22.8Pressure-RMW Drain 2082 03/21/010.0 7.00 0.00 4.88 0.10 4.98 0.1132 72 0.32 0.3 6.3 8.5 158 7.6 20.41TKN <0.2Pressure-R MW Drain 2082 03/21/010.0 4.00 0.00 4.85 0.10 4.95 0.1235 72 0.32 0.3 6.3 8.5 158 7.6QA duplicate; TKN <0.2Pressure-R MW Drain 2082 04/17/010.0 0.00 0.00 4.64 0.10 4.74 0.1038 82 0.32 0.3 7.0 6.5 156 10.5 20.49TKN <0.2Pressure-R MW Drain 2082 05/15/010.0 2.00 0.04 4.68 0.10 4.78 0.1138 82 0.32 0.3 6.8 5.8 157 8.6 20.60TKN <0.2Pressure-R MW Drain 2082 06/20/010.00.00 4.63 0.10 4.73 0.1338 72 0.32 0.3 6.8 7.2 148 8.9 21.10TKN <0.2Pressure-R MW Drain 2082 07/24/010.0 4.00 0.00 4.91 0.10 5.01 0.1138 81 0.01 0.0 6.8 8.5 159 8.7 21.35TKN <0.2Pressure-R MW Drain 2082 08/21/010.0 1.00 0.00 5.03 0.10 5.13 0.1138 87.2 9.7 162 9.0 21.39TKN <0.2Pressure-R MW Drain 2082 09/19/010.0 2.00 0.00 5.09 0.20 5.29 0.1121 81 0.01 0.0 7.2 7.8 144 8.4 21.57Pressure-RMW Drain 2082 10/17/010.0 2.00 0.00 5.30 0.10 5.40 0.1138 81 0.01 0.0 6.7 8.0 149 7.5 21.69TKN <0.2Pressure-R MW Drain 2082 10/17/010.0 2.00 0.00 5.30 0.10 5.40 0.1139 81 0.01 0.0 6.7 8.0 149 7.5QA Duplicate; TKN <0.2Pressure-R MW Drain 2082 11/14/010.0 2.00 0.00 5.31 0.10 5.41 0.1138 81 0.01 0.0 7.0 6.0 150 8.2 21.76TKN <0.2Pressure-R MW Drain 2082 11/14/010.0 2.00 0.00 5.29 0.10 5.39 0.1138 81 0.01 0.0 7.0 6.0 150 8.2QA Duplicate; TKN <0.2Pressure-R MW Drain 2082 12/12/010.5 2.00 0.00 5.50 0.10 5.60 0.1038 91 0.01 0.0 7.0 7.4 169 7.3 21.82TKN, alk. & TSS are estimates; TKN <0.2Pressure-R MW Drain 2082 03/19/020.5 3.00 0.00 5.50 0.10 5.60 0.1037 91 0.01 0.0 7.2 7.2 171 7.6 22.05BOD5 <1.0, TKN <0.2Pressure-R MW Drain 2082 06/18/020.50 0.01 4.73 0.10 4.8337 81 0.01 0.0 7.0 6.2 153 8.7 22.24TKN <0.2, TSS <1, BOD5 void, NH4 <0.02Pressure-R MW Drain 2082 06/18/020.50 0.01 4.72 0.10 4.8237 81 0.01 0.0 7.0 6.2 153 8.7QA Duplicate - TKN <0.2, TSS <1, NH4 <0.02Pressure-R MW Drain 2082 07/09/020.5 0.50 0.02 4.66 0.10 4.7638 91 0.01 0.0 7.4 7.9 146 12.5 22.28TKN <0.2, NH4 <0.02, bod5 <1.0, tss <1Pressure-R MW Drain 2082 09/17/020.5 0.50 0.01 4.14 0.20 4.3440 81 0.01 0.0 7.3 8.1 149 9.3 22.64BOD5<1.0, TSS<1, NH4 <0.02, pH is est.Pressure-R MW Drain 2082 11/05/020.5 1.00 0.02 5.02 0.20 5.2242 101 0.01 0.0 7.3 8.3 172 10.6 22.55BOD5 <1.0Pressure-R MW Drain 2082 12/10/020.5 2.00 0.01 5.85 0.30 6.1541 111 0.01 0.0 7.2 7.6 200 6.8 22.76NH4 <0.02, BOD5 <1.0Pressure-R MW Drain 2082 01/13/030.5 0.50 0.01 6.39 0.10 6.4940 111 0.01 0.0 6.9 8.8 194 7.8 22.75BOD5 <1.0, TSS <1, NH4 <0.02, TKN <0.2; pH is est.Pressure-R MW Drain 2082 03/17/030.5 2.00 0.03 6.18 0.10 6.2841 101 0.01 0.0 7.3 9.1 200 9.3 22.89BOD5<1.0, TKN <0.2Pressure-R MW Drain 2082 05/13/031.7 2.00 0.03 6.30 0.10 6.4040 101 0.01 0.0 7.1 5.0 179 14.3 22.92TKN <0.2Pressure-R MW Drain 2082 06/18/030.03 6.56 0.10 6.66101 0.01 0.0 7.0 3.9 261 19.0 23.00TKN<0.2Pressure-R MW Drain 2082 07/28/03Dry; depth >23.06'; no samplesPressure-R MW Drain 2082 09/09/03all tests cancelled, DRY, depth >23.05Pressure-R STE 03/19/01240.0 60.00 53.00 0.01 71.00 71.01 8.67 314 46 32.00 75,000 4.9 63,000 4.8 8.3 0.9 884 12.0Pressure-RSTE04/16/01220.0 86.00 51.00 0.00 63.00 63.00 8.32 331 42 28.00 670,000 5.8 450,000 5.7 8.4 0.7 925 11.4Pressure-RSTE05/14/01320.0 110.00 49.00 0.01 58.00 58.01 7.34 321 46 33.00 68,000 4.8 84,000 4.9 8.0 0.6 842 13.9Pressure-RSTE06/18/01280.0 54.00 61.00 0.00 71.00 71.00 8.72 388 50 33.00 1.5E+06 6.2 520,000 5.7 7.6 1.2 993 17.5Pressure-RSTE07/23/01270.0 53.00 52.00 0.01 59.00 59.01 8.80 377 42 19.00 190,000 5.3 78,000 4.9 7.5 1.1 968 18.2Pressure-RSTE08/20/01330.0 71.00 46.00 0.02 64.00 64.02 8.29 363 40 37.00 1.3E+06 6.1 1.0E+06 6.0 7.2 0.6 913 19.5Pressure-RSTE09/17/01510.0 80.00 52.00 0.01 73.00 73.01 11.40 390 42 31.00 210,000 5.3 170,000 5.2 6.6 1.2 1085 18.4Pressure-RSTE10/15/01250.0 66.00 34.00 0.01 52.00 52.01 7.72 332 39 25.00 520,000 5.7 200,000 5.3 7.0 0.5 820 14.2Pressure-RSTE11/13/01350.0 74.00 62.00 0.01 69.00 69.01 9.06 365 39180,000 5.3 120,000 5.1 6.8 1.0 883 12.5Pressure-RSTE03/18/02240.0 107.00 69.00 0.00 87.00 87.00 13.20 378 48 33.00 82,000 4.9 40,000 4.6 6.9 0.9 1081 9.3BOD5 >240Pressure-R STE 06/17/02550.0 94.00 66.00 0.03 74.00 74.03 11.10 300 31 46.00 1,300 3.1 580 2.8 6.5 0.8 811 18.3Pressure-RSTE07/09/02570.0 140.00 71.00 0.01 79.00 79.01 12.50 325 34 160.00 780,000 5.9 620,000 5.8 6.5 0.3 929 20.7Pressure-RSTE09/18/02420.0 99.00 64.00 0.01 77.00 77.01 12.80 352 41 51.00 4,000 3.6 2,800 3.4 6.5 0.4 930 18.3 TSS is est.Pressure-R STE 11/05/02480.0 210.00 69.00 0.01 83.00 83.01 13.70 368 56 44.00 62,000 4.8 40,000 4.6 6.7 0.5 930 13.0Pressure-RSTE01/15/03430.0 120.00 44.00 0.01 83.00 83.01 12.60 355 56 44.00 520,000 5.7 440,000 5.6 6.8 0.8 1028 8.9Pressure-RSTE03/17/03420.0 100.00 63.00 0.02 75.00 75.02 11.60 365 46 46.00 62,000 4.8 54,000 4.7 6.8 0.4 964 11.5Pressure-RSTE05/12/03490.0 76.00 54.00 0.02 74.00 74.02 11.70 295 369.7E+06 7.0 6.4E+06 6.8 6.5 0.7 898 19.9O&G voidPressure-R STE 07/28/03200.0 100.00 42.00 0.01 59.00 59.01 8.19 287 28 73.00 1,800 3.3 1,600 3.2 6.5 0.8 726 22.7Pressure-RSTE09/10/03240.0 37.00 36.00 0.01 45.00 45.01 5.79 225 29 43.00 700,000 5.8 560,000 5.7 6.6 0.7 618 20.8Puraflo-FMW Drain 2149 12/04/010.5 2.00 0.02 0.26 0.10 0.36 0.20 198 61 0.01 0.0 7.0 5.0 181 7.6 14.85BOD5 <1.0, TKN is estimate <.2Puraflo-F MW Drain 2149 01/14/020.5 0.50 0.00 0.20 0.10 0.30 0.2076 61 0.01 0.0 7.0 5.4 172 7.8 14.83BOD <1.0; TKN <0.2; TSS <1.0Puraflo-F MW Drain 2149 02/11/020.5 0.50 0.00 0.20 0.10 0.30 0.2073 61 0.01 0.0 6.9 5.5 170 7.7 14.90BOD5 <1, TKN <0.2; TSS <1Puraflo-F MW Drain 2149 03/13/021.2 0.50 0.00 0.10 0.10 0.20 0.2069 61 0.01 0.0 6.9 5.1 162 7.7 14.93 BOD5 is estimate; TKN <.2, TSS <1Puraflo-F MW Drain 2149 04/16/020.5 0.50 0.01 0.14 0.10 0.24 0.1865 71 0.01 0.0 6.8 4.9 171 7.3 14.95TSS <1; NH4 <0.02; BOD <1; TKN <0.2Puraflo-F MW Drain 2149 05/13/020.5 0.50 0.02 0.17 0.10 0.2766 81 0.01 0.0 7.0 4.8 164 7.4 14.90 TKN <0.2, TSS <1, BOD5<1.0Appendix B: Innovative System Field Test DataPage B-53
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesPuraflo-FMW Drain 2149 05/13/020.5 0.50 0.01 0.17 0.10 0.2766 71 0.01 0.0 7.0 4.8 164 7.4QA duplicate, TSS <1, BOD<1.0, NH4 <0.02; TKN<0.2Puraflo-F MW Drain 2149 06/17/021.00 0.01 0.18 0.10 0.2867 71 0.01 0.0 6.9 6.1 162 7.8 14.91TKN <0.2, NH4 <0.02Puraflo-F MW Drain 2149 07/22/020.5 3.00 0.03 0.18 0.10 0.2870 81 0.01 0.0 7.1 7.6 158 8.3 14.92TKN <0.2, BOD5<1.0Puraflo-F MW Drain 2149 08/19/020.5 2.00 0.01 0.13 0.10 0.2371 71 0.01 0.0 6.9 5.5 167 8.9 14.89TKN <0.2, BOD5 <1, NH4 <0.02Puraflo-F MW Drain 2149 09/16/020.5 0.50 0.01 0.09 0.10 0.1974 71 0.01 0.0 6.8 3.9 159 8.9 14.93BOD5<1.0, TSS<1, NH4 <0.02, TKN<0.2Puraflo-F MW Drain 2149 09/16/021.6 0.50 0.01 0.09 0.10 0.1974 71 0.01 0.0 6.8 3.9 159 8.9QA Duplicate; TSS<1, NH4 <0.02, TKN<0.2Puraflo-F MW Drain 2149 10/14/020.5 1.00 0.02 0.08 0.10 0.1878 61 0.01 0.0 7.0 5.1 163 9.6 14.98BOD5<1.0, TKN <0.2, Chloride is est.Puraflo-F MW Drain 2149 11/04/020.5 1.00 0.02 0.11 0.10 0.2178 61 0.01 0.0 7.1 5.1 162 9.2 14.89BOD5 <1.0, TKN <0.2Puraflo-F MW Drain 2149 11/04/020.5 0.50 0.01 0.11 0.10 0.2179 61 0.01 0.0QA Duplicate; BOD<1.0, TSS<1 NH4 <0.02, TKN <0.2Puraflo-F MW Drain 2149 01/27/030.5 0.50 0.01 0.52 0.10 0.6275 61 0.01 0.0 6.9 6.3 170 8.6 14.95BOD5 <1.0, TSS <1, NH4 <0.02, TKN <0.2Puraflo-F MW Drain 2149 02/18/030.5 0.50 0.04 3.32 0.20 3.5273 81 0.01 0.0 6.9 5.8 197 8.3 14.93BOD5<1.0, TSS<1Puraflo-F MW Drain 2149 02/18/030.5 0.50 0.04 3.30 0.20 3.5074 81 0.01 0.0QA Duplicate; BOD5<1.0, TSS<1Puraflo-F MW Drain 2149 03/18/030.5 0.50 0.01 1.50 0.10 1.6074 71 0.01 0.0 7.0 7.1 179 8.5 14.98BOD5<1.0, TSS<1, NH4AsN <0.02, TKN <0.2Puraflo-F MW Drain 2149 05/19/030.5 0.50 0.01 1.22 0.10 1.3274 71 0.01 0.0 6.7 6.5 176 7.9 14.90 BOD5<1.0, TSS <1, NH4<0.02, TKN<0.2Puraflo-F MW Drain 2149 05/19/030.5 0.50 0.01 1.22 0.10 1.3274 71 0.01 0.0 6.7 6.5 176 7.9QA Duplicate; BOD<1.0, TSS <1, NH4<0.02, TKN<0.2Puraflo-F MW Drain 2149 07/21/030.5 0.50 0.03 0.36 0.10 0.4676 71 0.01 0.0 6.9 7.1 169 8.6 14.92BOD5<1.0, TSS<1, TKN<0.2Puraflo-F MW Drain 2149 08/18/030.5 0.50 0.02 0.49 0.10 0.5980 61 0.01 0.0 6.9 6.9 179 10.3 14.86BOD5<1.0, TSS<1, TKN<0.2Puraflo-F MW Drain 2149 09/15/030.5 0.50 0.04 0.38 0.10 0.4882 66.9 7.4 178 9.1 14.87TKN<0.2, TSS<1, BOD5<1Puraflo-F MW Drain 2149 09/17/032 0.32 0.3 6.8 7.9 178 8.9Bacteria Re-samplePuraflo-F MW Drain 2149 09/17/032 0.32 0.3QA DuplicatePuraflo-F MW Drain 2149 11/17/030.5 0.50 0.01 3.80 0.10 3.9082 82 0.32 0.3 6.8 8.7 213 9.6 14.87BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2Puraflo-F MW Drain 2149 03/01/040.01 3.98 0.10 4.0892 0.32 0.3 6.8 7.3 201 8.3 14.84TKN<0.2, NH4AsN<0.02Puraflo-F MW Drain 2149 06/21/040.01 1.46 0.10 1.5672 0.32 0.3 7.0 3.5 181 8.4 12.76NH4<0.02, TKN<0.2Puraflo-F MW Drain 2149 09/27/040.01 0.56 0.10 0.6691 0.01 0.0 6.8 6.8 182 9.4 14.83NH4 <0.02, TKN<0.2Puraflo-F MW Drain 2149 09/27/040.01 0.55 0.10 0.6591 0.01 0.0QA Duplicate; NH4 <0.02, TKN<0.2Puraflo-F MW Drain 2149 12/06/040.01 8.50 0.10 8.60131 0.01 0.0 6.7 6.9 268 9.3 14.85TKN<0.2, NH4<0.02Puraflo-F PFE 12/10/0114.00 31.80 17.00 48.80 4.50383,200 3.5 1,200 3.1 6.7 5.1 158 5.6TKN is est.Puraflo-F PFE 01/14/023.6 0.50 0.69 34.70 2.40 37.10 6.2013 527,800 3.9 5,200 3.7 6.1 4.2 530 4.8TSS <1.0Puraflo-F PFE 02/11/021.8 2.00 0.20 41.40 1.90 43.30 7.1023 47600 2.8 200 2.3 6.3 3.7 646 4.7BOD5 depletion requirement not met (estimate)Puraflo-F PFE 03/11/021.5 1.00 0.20 28.80 1.80 30.60 5.1016 29400 2.6 600 2.8 5.9 2.7 389 7.7Puraflo-FPFE04/15/020.5 2.00 0.09 30.70 3.30 34.00 7.3217 37210 2.3 210 2.3 6.5 6.6 491 9.0 BOD5 <1.0Puraflo-F PFE 05/13/021.3 4.00 0.10 37.00 2.50 39.50 7.7024 47400 2.6 140 2.1 6.6 4.3 602 12.0 BOD5 is est.Puraflo-F PFE 06/18/021.7 0.50 0.09 49.00 3.10 52.10 10.20 18 34230,000 5.4 140,000 5.1 5.6 1.5 566 18.6TSS <1Puraflo-F PFE 07/24/023.4 3.00 0.14 26.50 2.30 28.80 6.5524 426,200 3.8 4,400 3.6 5.7 2.3 424 21.0Puraflo-FPFE08/21/023.2 4.00 0.19 34.60 2.40 37.00 7.5620 39200 2.3 200 2.3 6.3 4.1 479 17.4BOD5 is est.Puraflo-F PFE 09/16/023.4 4.00 0.34 36.00 2.00 38.00 6.4016 36140 2.160 1.8 6.0 4.2 471 17.4BOD5 is est.Puraflo-F PFE 10/16/021.1 1.00 0.05 29.90 3.10 33.00 5.7920 39340 2.5 260 2.4 6.2 6.4 429 19.4BOD5 is est.Puraflo-F PFE 11/04/022.2 3.00 0.06 41.30 1.80 43.10 7.5412 4656 1.750 1.7 6.5 6.6 552 2.6BOD5 is est.Puraflo-F PFE 01/27/035.7 2.00 0.28 55.30 1.70 57.00 9.076 40230 2.4 170 2.2 5.6 0.9 646 7.6BOD5 is est.Puraflo-F PFE 03/17/031.9 2.00 0.16 49.50 1.30 50.80 9.338 4316 1.216 1.2 6.0 1.4 620 7.2BOD5 is est.Puraflo-F PFE 05/19/031.6 3.00 0.44 49.10 1.80 50.90 8.768 3937,000 4.6 30,000 4.5 5.7 1.8 589 13.9BOD5 is est.Puraflo-F PFE 07/21/032.7 4.00 0.08 49.80 2.10 51.90 8.973 39120 2.1 240 2.4 5.8 3.7 622 18.6Puraflo-FPFE09/15/032.8 11.00 0.52 51.70 1.50 53.20 10.401 50200 2.32 0.3 5.3 3.4 674 17.3alk. <1Puraflo-F PFE 11/17/030.5 0.50 0.61 47.9010.301 54960 3.0 500 2.7 6.2 3.8 640 10.5BOD5<1.0, TSS<1, Alk<1, TKN voidPuraflo-F PFE 03/01/047.2 5.00 3.40 24.80 5.40 30.20 9.006 6740 1.640 1.6 5.9 2.5 333 5.6Puraflo-FPFE06/21/043.6 15.00 0.82 43.40 2.30 45.70 9.701 4292 2.030 1.5 5.4 1.5 510 16.6alk.<1Puraflo-F PFE 09/27/041.4 3.00 1.50 48.90 2.60 51.50 9.981 55360 2.6 300 2.5 4.8 2.1 655 15.6BOD5 is est., alk.<1Puraflo-F PFE 12/06/047.7 18.00 5.50 41.70 11.00 52.70 9.232 517,300 3.9 2,600 3.4 5.0 2.9 627 7.5Puraflo-FSTE12/10/01140.0 30.00 36.00 0.02 54.00 54.02 5.20 270 36 20.00 300,000 5.5 180,000 5.3 8.7 0.7 711 11.6TKN is est.Puraflo-F STE 01/14/02140.0 27.00 39.00 0.00 50.00 50.00 7.20 299 53 22.00 850,000 5.9 380,000 5.6 8.7 1.0 729 10.0Puraflo-FSTE02/11/02180.0 50.00 26.00 0.00 48.00 48.00 7.80 265 46 22.00 630,000 5.8 560,000 5.7 8.1 1.0 803 11.3Puraflo-FSTE03/11/02120.0 37.00 25.00 0.00 36.00 36.00 6.10 215 30 18.00 1.5E+07 7.2 1.5E+07 7.2 7.9 0.8 526 12.2Puraflo-FSTE04/15/02140.0 41.00 34.00 0.02 53.00 53.02 8.62 270 40 18.00 880,000 5.9 820,000 5.9 8.1 0.2 759 15.0Puraflo-FSTE05/13/02160.0 70.00 45.00 0.02 71.00 71.02 11.40 300 45 17.00 1.0E+08 8.0 7.8E+07 7.9 7.5 0.9 886 17.0Puraflo-FSTE06/18/02240.0 69.00 49.00 0.02 62.00 62.02 11.10 295 34 32.00 400 2.6 200 2.3 7.3 0.2 384 20.7Puraflo-FSTE07/24/02230.0 43.00 37.00 0.01 46.00 46.01 6.70 283 37 37.00 680,000 5.8 700,000 5.8 7.3 0.4 705 20.9Puraflo-FSTE08/21/02210.0 56.00 38.00 0.01 52.00 52.01 7.88 266 38 18.00 1.5E+06 6.2 1.7E+06 6.2 7.1 0.9 708 20.2Puraflo-FSTE09/16/02160.0 36.00 37.00 0.01 44.00 44.01 7.10 247 35 30.00 720,000 5.9 580,000 5.8 7.3 1.1 637 19.8Puraflo-FSTE10/16/02200.0 54.00 37.00 0.02 45.00 45.02 6.90 264 38 24.00 1.3E+06 6.1 1.0E+06 6.0 7.1 0.7 365 16.5Puraflo-FSTE11/04/02180.0 38.00 46.00 0.02 51.00 51.02 8.81 314 48 26.00 800,000 5.9 520,000 5.7 7.4 1.1 761 12.6Puraflo-FSTE01/27/03160.0 62.00 13.40 0.03 64.00 64.03 9.59 324 42 26.00 1.2E+06 6.1 1.1E+06 6.0 7.5 0.6 831 13.0Puraflo-FSTE03/17/03180.0 61.00 37.00 0.02 53.00 53.02 9.36 316 43 22.00 360,000 5.6 400,000 5.6 7.5 0.8 802 13.3Puraflo-FSTE05/19/03240.0 130.00 45.00 0.02 56.00 56.02 9.71 310 42 28.00 2.4E+06 6.4 2.6E+06 6.4 7.3 0.5 797 16.0Puraflo-FSTE07/21/03160.0 58.00 42.00 0.01 51.00 51.01 9.17 328 40 21.00 160,000 5.2 170,000 5.2 7.3 0.5 796 22.0Appendix B: Innovative System Field Test DataPage B-54
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesPuraflo-FSTE09/15/0398.0 58.00 45.00 0.02 47.00 47.02 9.98 311 50 14.00 78,000 4.9 12,000 4.1 7.4 0.7 809 19.0Puraflo-FSTE11/17/03230.0 130.00 42.00 0.06 56.00 56.06 12.60 330 57 27.00 1.2E+06 6.1 380,000 5.6 7.1 1.0 860 15.2Puraflo-FSTE03/01/04400.0 110.00 45.00 0.01 58.00 58.01 10.00 296 65130,000 5.1 96,000 5.0 7.1 0.5 827 10.7Puraflo-FSTE06/21/04150.0 33.00 41.00 0.01 53.00 53.01 9.87 286 452.8E+06 6.4 200,000 5.3 6.9 0.7 753 21.1Puraflo-FSTE12/06/04230.0 130.00 52.00 0.11 66.00 66.11 10.00 310 498.8E+06 6.9 540,000 5.7 7.0 1.9 835 12.8Puraflo-MMW Drain 2189 08/28/02DRY to bottom of well screenPuraflo-MMW Drain 2189 09/25/02Water level > 11.80; DRY to bottom of well screenPuraflo-MMW Drain 2189 10/21/02Depth >12.21Puraflo-MMW Drain 2189 11/13/02Dry; Depth >11.80Puraflo-MMW Drain 2189 01/28/03Dry; Depth >12.21Puraflo-MMW Drain 2189 02/25/03depth >12.22Puraflo-MMW Drain 2189 03/19/03depth >12.23Puraflo-MMW Drain 2189 05/21/03depth >12.19Puraflo-MMW Drain 2189 07/28/03Dry; depth >12.23'; no samplesPuraflo-MMW Drain 2189 08/27/03BOD5 cancelled, depth >12.21Puraflo-MMW Drain 2189 09/22/03DRY, depth >12.23, all tests cancelledPuraflo-MMW Drain 2189 11/03/03DRY; depth >12.17Puraflo-MMW Drain 2189 03/29/04Dry; depth>12.15Puraflo-MMW Drain 2189 06/21/04Dry, depth>12.22Puraflo-MMW Drain 2189 09/14/04tests cancelled, DRY; depth>12.21'Puraflo-MPFE12/10/0132.00 6.40 35.00 41.40 7.506706.2 5.7 2406 4.3 TKN is est.Puraflo-M PFE 01/29/027.2 10.00 35.00 0.60 55.00 55.60 7.60 245 690100 2.0 100 2.0 7.3 6.9 1033 1.2Puraflo-MPFE02/26/0214.0 3.00 40.00 9.90 44.00 53.90 7.80 270 58032 1.530 1.5 7.4 4.9 2555 2.9Puraflo-MPFE03/27/025.1 3.00 27.00 37.30 27.00 64.30 7.70 148 6202 0.38 0.9 7.1 4.5 2671 6.2 BOD5 is estimatePuraflo-M PFE 04/23/023.6 1.00 9.40 58.00 14.00 72.00 9.7895 59022 1.318 1.3 6.9 4.9 2703 9.4Puraflo-MPFE05/21/021.6 4.00 1.16 50.00 5.10 55.10 8.3990 400110 2.085 1.9 7.1 5.5 2088 9.9Puraflo-MPFE06/24/021.2 8.00 0.01 56.70 6.00 62.70 9.0988 2108,600 3.9 7,800 3.9 6.7 6.0 1069 16.4NH4 <0.02; BOD est.Puraflo-M PFE 07/30/022.1 3.00 0.51 42.00 5.50 47.50 8.0490 18046 1.740 1.6 6.6 3.5 1017 17.2bod5 is est.Puraflo-M PFE 08/26/022.4 6.00 0.33 37.90 1.40 39.30 8.9680 18042 1.644 1.6 6.5 4.7 944 15.3 BOD5 is est.Puraflo-M PFE 09/24/021.3 5.00 0.11 54.50 8.40 62.90 11.10 82 11016 1.28 0.9 6.6 4.6 925 13.4Puraflo-MPFE10/21/020.5 3.00 0.08 47.30 4.60 51.90 8.2064 856 0.824 1.4 6.3 3.2 752 12.3BOD5<1.0Puraflo-M PFE 11/13/021.6 3.00 0.32 39.90 3.80 43.70 6.7266 894 0.612 1.1 6.7 6.4 712 6.7BOD5 is est.Puraflo-M PFE 01/29/030.5 0.50 0.20 45.00 2.40 47.40 7.2176 782 0.32 0.3 6.9 5.8 800 4.6BOD5 <1.0, TSS <1Puraflo-M PFE 03/19/031.9 2.00 0.19 48.60 3.50 52.10 7.6670 7240 1.648 1.7 6.8 6.0 808 5.0BOD5 is est.Puraflo-M PFE 05/21/032.6 2.00 0.37 25.50 2.50 28.00 6.76 120 981,400 3.1 1,200 3.1 6.4 2.0 797 13.8Puraflo-MPFE07/28/030.5 1.00 0.08 40.50 2.70 43.20 9.5967 9020 1.310 1.0 6.2 1.7 808 21.9BOD5<1.0Puraflo-M PFE 09/22/031.0 3.00 0.17 31.70 2.20 33.90 6.97 106 4038 1.642 1.6 6.6 3.1 611 14.7BOD5 is est.Puraflo-M PFE 11/03/032.6 3.00 0.06 26.20 2.20 28.40 6.1186 90720 2.9 560 2.7 6.6 4.0 705 8.5BOD5 is est.Puraflo-M PFE 03/29/043.9 2.00 0.53 43.40 2.80 46.20 11.70 174 140500 2.7 160 2.2 6.5 2.2 1186 9.6Puraflo-MPFE06/21/040.5 0.50 0.30 40.90 4.10 45.00 13.20 190 130110 2.080 1.9 6.5 1.9 1126 17.0BOD5<1.0, TSS<1Puraflo-M PFE 09/13/041.5 1.00 0.04 53.60 1.50 55.10 15.50 60 15016 1.214 1.1 6.1 2.7 1091 15.7BOD5 is est.Puraflo-M STE 12/10/01170.0 49.00 54.00 0.00 68.00 68.00 10.00 450 720 28.00 2,400 3.4 1,600 3.2 8.6 1.1 2940 8.0TKN is est.Puraflo-M STE 01/29/02180.0 27.00 39.00 0.00 60.00 60.00 8.90 406 730 18.00 1,800 3.3 1,000 3.0 8.2 1.1 1420 8.7Puraflo-MSTE02/26/02140.0 28.00 61.00 0.00 60.00 60.00 9.20 419 580 27.00 4,200 3.6 3,000 3.5 8.3 1.2 2651 6.9Puraflo-MSTE03/27/02110.0 18.00 51.00 0.00 54.00 54.00 10.80 438 740 23.00 2,200 3.3 1,600 3.2 7.5 0.8 3218 7.5Puraflo-MSTE04/23/02210.0 25.00 53.00 0.02 64.00 64.02 11.20 438 700 16.00 2,800 3.4 3,600 3.6 7.7 1.0 3245 9.7Puraflo-MSTE05/21/02160.0 25.00 24.00 0.03 56.00 56.03 8.66 362 320 19.00 98,000 5.0 62,000 4.8 7.8 0.6 1919 11.0Puraflo-MSTE06/24/02110.0 31.00 0.47 0.01 23.00 23.06 9.41 370 200 12.00 9,400 4.0 9,200 4.0 7.7 0.5 1365 16.0QA duplicatePuraflo-M STE 06/24/02120.0 31.00 0.45 0.06 23.00 23.06 9.68 370 200 10.00 12,000 4.1 14,000 4.1 7.7 0.5 1365 16.0Puraflo-MSTE07/30/02170.0 22.00 48.00 0.01 54.00 54.01 9.64 384 160 25.00 220 2.3 180 2.3 7.1 0.4 1249 16.8Puraflo-MSTE08/26/02420.0 96.00 61.00 0.02 74.00 74.02 14.80 462 180 14.00 9,400 4.0 6,800 3.8 6.9 0.4 1426 15.7Puraflo-MSTE09/24/02190.0 50.00 55.00 0.03 68.00 68.03 12.00 474 964,800 3.7 5,600 3.7 7.4 0.4 1193 15.4Puraflo-MSTE10/21/0298.0 42.00 43.00 0.02 50.00 50.02 9.48 402 100 13.00 5,000 3.7 4,000 3.6 7.2 0.7 991 12.3Puraflo-MSTE11/13/02150.0 45.00 40.00 0.01 46.00 46.01 8.38 384 91 22.00 1,400 3.1 1,400 3.1 7.3 2.0 984 9.7Puraflo-MSTE01/29/03140.0 32.00 42.00 0.02 50.00 50.02 8.46 421 88 15.00 10,000 4.0 8,000 3.9 7.6 1.0 1112 7.9Puraflo-MSTE03/19/0396.0 29.00 40.00 0.02 51.00 51.02 8.03 410 74 14.00 6,400 3.8 5,800 3.8 7.7 0.9 1050 7.0Puraflo-MSTE05/21/03340.0 45.00 34.00 0.01 46.00 46.01 7.71 338 100 91.00 120,000 5.1 96,000 5.0 7.1 0.4 1028 13.5Puraflo-MSTE07/28/03130.0 93.00 28.00 0.02 38.00 38.02 8.19 320 91 66.00 3,400 3.5 2,200 3.3 7.2 0.8 952 19.1Puraflo-MSTE09/22/03110.0 50.00 30.00 0.00 38.00 38.00 7.63 325 32 37.00 800,000 5.9 800,000 5.9 7.4 0.7 753 16.2Nitrate/nitrite<0.005Puraflo-M STE 11/03/0390.0 46.00 24.00 0.00 32.00 32.00 6.50 300 93 23.00 500,000 5.7 480,000 5.7 6.7 1.4 897 11.2Nitrate <0.050Puraflo-M STE 03/29/04220.0 72.00 0.96 0.00 58.00 58.00 12.40 586 14010,000 4.0 2,000 3.3 8.1 1.5 1250 12.4nitrate<0.005Puraflo-M STE 06/21/04190.0 53.00 31.00 0.01 46.00 46.01 11.10 350 13066,000 4.8 42,000 4.6 7.2 0.3 1152 20.1Puraflo-MSTE09/13/04210.0 63.00 52.00 0.01 64.00 64.01 17.70 430 1407,200 3.9 9,000 4.0 7.3 0.9 1330 17.3Puraflo-SMW Drain 2221 05/01/020.5 7.00 0.01 0.60 0.10 0.7054 56.8 3.5 156 7.1 10.57TKN <0.2; BOD5 <1.0; NH4 <0.02Appendix B: Innovative System Field Test DataPage B-55
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesPuraflo-SMW Drain 2221 05/01/020.5 6.00 0.01 0.59 0.10 0.6954 56.8 3.5 156 7.1TKN <0.2; BOD5 <1.0; NH4 <0.02; QA duplicatePuraflo-S MW Drain 2221 05/07/022 0.32 0.3 6.9 4.4 176 7.0 9.66Bacteria re-samplePuraflo-S MW Drain 2221 06/04/021.3 4.00 0.01 0.76 0.10 0.8650 92 0.32 0.3 7.0 2.9 165 7.2 10.55NH4 <0.02; BOD is est.; TKN <0.2Puraflo-S MW Drain 2221 07/08/020.5 5.00 0.01 2.48 0.30 2.7858 152 0.34 0.6 6.8 2.9 189 7.3 11.12BOD5<1.0, NH4 <0.02Puraflo-S MW Drain 2221 07/08/020.5 4.00 0.01 2.45 0.30 2.7558 158 0.94 0.6 6.8 2.9 189 7.3QA duplicate, BOD5<1.0, NH4 <0.02Puraflo-S MW Drain 2221 08/05/020.5 3.00 0.03 9.18 0.50 9.6858 242 0.32 0.3 6.8 2.9 288 7.8 11.18BOD5 <1Puraflo-S MW Drain 2221 08/05/021.1 3.00 0.03 9.20 0.50 9.7058 242 0.32 0.3 6.8 2.9 288 7.8QA Duplicate; BOD5 is est.Puraflo-S MW Drain 2221 09/04/023.7 3.00 0.02 29.40 0.60 30.0052 322 0.32 0.3 6.6 1.7 464 9.1 11.31Puraflo-SMW Drain 2221 10/02/020.5 0.50 0.04 25.00 0.50 25.5054 252 0.32 0.3QA Duplicate; BOD5 <1; TSS <1Puraflo-S MW Drain 2221 10/02/020.5 0.50 0.03 24.60 0.50 25.1053 256.7 2.4 383 9.0 11.54Bacteria samples leaked in transit. BOD5 <1; TSS <1Puraflo-S MW Drain 2221 10/29/020.5 4.00 0.01 28.70 0.40 29.1054 282 0.32 0.3 6.7 2.3 416 9.3 11.77BOD5<1.0, NH4 <0.02Puraflo-S MW Drain 2221 10/29/020.5 4.00 0.01 29.40 0.30 29.7054 282 0.32 0.3QA Duplicate; BOD5<1.0, NH4 <0.02Puraflo-S MW Drain 2221 11/19/020.5 0.50 0.01 32.90 0.10 33.0052 342 0.32 0.3 6.7 2.6 516 9.5 11.52BOD5 <1.0, TSS<1 NH4 <0.02, TKN <0.2Puraflo-S MW Drain 2221 01/07/030.5 2.00 0.01 19.80 0.10 19.9057 322 0.32 0.3 6.5 0.2 442 8.9 10.99BOD5<1.0, NH4<0.02, TKN<0.2Puraflo-S MW Drain 2221 01/07/032 0.32 0.3QA DuplicatePuraflo-S MW Drain 2221 02/04/030.5 2.00 0.01 38.40 0.60 39.0047 492 0.32 0.3 6.5 0.8 607 8.6 10.03BOD5<1.0, NH4<0.02Puraflo-S MW Drain 2221 04/01/030.5 0.50 0.01 39.10 0.10 39.2050 342 0.32 0.3 6.8 2.1 544 8.2 9.96BOD5<1.0, TSS <1, NH4 <0.02, TKN <0.2Puraflo-S MW Drain 2221 04/01/030.5 1.00 0.01 39.80 0.10 39.9051 342 0.32 0.3QA Duplicate; BOD5<1.0, NH4 <0.02, TKN <0.2Puraflo-S MW Drain 2221 04/28/030.5 4.00 0.01 53.80 0.80 54.6046 462 0.32 0.3 6.5 3.4 719 7.9 10.19BOD5<1.0 NH4 <0.02Puraflo-S MW Drain 2221 06/04/030.5 3.00 0.01 57.40 0.10 57.5047 446.5 2.8 693 8.8 10.33BOD5<1.0, NH4<0.02, TKN<0.2Puraflo-S MW Drain 2221 06/11/032 0.32 0.3 6.6 2.7 708 8.4Bacteria re-samplePuraflo-S MW Drain 2221 08/04/030.5 3.00 0.01 41.60 0.30 41.9049 382 0.32 0.3 6.7 2.9 600 10.3 11.38BOD5<1.0 NH4<0.02Puraflo-S MW Drain 2221 09/30/030.5 2.00 0.01 50.60 0.50 51.1050 452 0.32 0.3 6.5 2.3 707 10.3 11.74NH4AsN<0.02, BOD5<1Puraflo-S MW Drain 2221 10/28/030.5 0.50 0.01 48.40 0.10 48.5052 392 0.32 0.3 6.6 3.3 595 10.8 11.92BOD5<1.0, TSS<1, NH4AsN<0.02, TKN<0.2Puraflo-S MW Drain 2221 10/28/030.5 0.50 0.01 47.30 0.10 47.4052 392 0.32 0.3QA Duplicate; BOD<1.0, TSS<1, NH4<0.02, TKN<0.2Puraflo-S MW Drain 2221 01/12/040.01 52.70 0.10 52.80482 0.32 0.3 6.5 2.0 713 9.6 11.07NH4<0.02, TKN<0.2Puraflo-S MW Drain 2221 01/12/040.02 53.10 0.10 53.20482 0.32 0.3QA Duplicate for bacteria; TKN<0.2Puraflo-S MW Drain 2221 03/01/040.02 45.00 0.50 45.50422 0.32 0.3 6.6 1.2 638 9.1 10.51Puraflo-SMW Drain 2221 05/24/040.01 61.00 0.10 61.10462 0.32 0.3 6.6 4.1 733 8.8 9.74NH4 <0.02, TKN<0.2Puraflo-S MW Drain 2221 10/04/040.01 62.10 0.10 62.20531 0.01 0.0 6.5 2.1 802 10.7 11.38NH4 <0.02, TKN<0.2Puraflo-S MW Drain 2221 12/07/040.01 60.00 0.10 60.10551 0.01 0.0 6.6 2.1 807 10.1 11.52TKN<0.2, NH4<0.02Puraflo-S PFE 04/02/021.2 0.50 0.00 0.05 1.00 1.05 0.308 132 0.34 0.6 7.1 10.9 140 2.4BOD5 is estimate, TSS <1.0Puraflo-S PFE 04/30/0224.0 18.00 4.70 0.05 8.70 8.75 11.801 4242,000 4.6 46,000 4.7 5.4 5.7 299 9.3Nitrate/nitrite is est.;QA duplicate; alk. <1Puraflo-S PFE 04/30/0224.0 15.00 4.70 0.04 8.30 8.34 11.801 4550,000 4.7 22,000 4.3 5.4 5.7 299 9.3Nitrate/nitrite is est.; alk. <1Puraflo-S PFE 06/04/0219.0 10.00 25.00 1.75 31.00 32.75 16.40 105 44140,000 5.1 88,000 4.9 6.3 3.8 468 14.6Puraflo-SPFE07/08/0216.0 6.00 38.00 162.00 50.00 212.00 18.80 12 4116,000 4.2 14,000 4.1 5.8 1.8 1444 17.4Puraflo-SPFE08/06/026.8 6.00 1.40 80.20 4.40 84.60 19.704 5713,000 4.1 9,000 4.0 5.4 1.6 811 15.9Puraflo-SPFE09/04/021.4 2.00 0.30 57.70 3.10 60.80 19.308 72500 2.7 100 2.0 6.0 4.2 735 12.0BOD5 is est.Puraflo-S PFE 10/02/0216.0 16.00 0.23 60.40 7.00 67.40 22.40 13 7060,000 4.8 52,000 4.7 5.6 1.9 777 15.1Puraflo-SPFE10/28/022.9 5.00 0.49 86.70 4.50 91.20 24.80 26 7310 1.010 1.0 6.6 4.2 1069 5.2BOD5 is est.Puraflo-S PFE 11/18/022.7 2.00 0.58 61.50 3.80 65.30 22.90 43 57140 2.184 1.9 6.3 4.4 872 7.1BOD5 is est.Puraflo-S PFE 01/06/033.1 4.00 0.14 58.70 3.20 61.90 19.00 45 52130 2.1 100 2.0 6.4 5.0 808 4.5BOD5 is est.Puraflo-S PFE 02/03/031.8 2.00 0.12 50.50 2.50 53.00 18.40 42 52190 2.3 160 2.2 6.4 4.1 733 6.5BOD5 is est.Puraflo-S PFE 04/01/031.3 2.00 0.23 61.20 2.50 63.70 21.00 51 4658 1.874 1.9 6.0 3.7 832 7.6Puraflo-SPFE06/04/030.5 0.50 0.10 81.10 0.90 82.00 22.30 22 4370 1.846 1.7 5.9 3.1 925 14.2BOD5<1.0, TSS <1Puraflo-S PFE 08/06/032.6 3.00 0.26 56.70 3.00 59.70 21.30 20 501,500 3.2 1,900 3.3 5.7 2.2 805 22.3BOD5 is est.Puraflo-S PFE 09/29/030.5 2.00 0.36 49.20 1.60 50.80 20.70 11 521,600 3.2 800 2.9 5.5 2.1 708 17.9BOD5 <1.0Puraflo-S PFE 01/12/040.5 1.00 0.58 57.80 0.80 58.60 21.20 11 51560 2.7 320 2.5 5.4 3.9 746 6.2BOD5<1.0Puraflo-S PFE 03/01/047.2 2.00 0.55 53.90 1.30 55.20 18.00 15 421,000 3.0 800 2.9 5.6 3.6 692 8.7Puraflo-SPFE05/24/041.5 4.00 0.12 64.00 1.10 65.10 18.708 5920 1.360 1.8 6.0 4.7 808 10.3Puraflo-SPFE10/04/042.0 2.00 0.15 67.20 0.30 67.50 24.007 69820 2.9 520 2.7 5.9 5.3 884 9.3BOD5 is est.Puraflo-S PFE 12/06/041.2 3.00 0.10 59.80 1.30 61.10 22.304 5912 1.112 1.1 5.0 2.9 627 7.5Phosphate, TKN, NH4, nitrate, BOD5 is est.Puraflo-S STE 04/02/0251.0 27.00 12.40 0.00 17.00 17.00 2.80 145 12 2.50 2,400 3.4 1,600 3.2 9.6 1.2 326 5.6Oil & Grease <5Puraflo-S STE 04/30/02190.0 28.00 54.00 0.02 72.00 72.02 15.20 308 42 12.00 500,000 5.7 1.0E+06 6.0 8.4 0.5 930 12.6Puraflo-SSTE06/04/02180.0 32.00 42.00 0.04 44.00 44.04 7.70 230 40 18.00 260,000 5.4 220,000 5.3 7.2 0.6 668 15.1Puraflo-SSTE07/08/02130.0 35.00 55.00 0.09 65.00 65.09 16.40 372 10 10.00 44,000 4.6 31,000 4.5 7.9 0.1 919 16.6Puraflo-SSTE08/06/02180.0 48.00 54.00 0.03 65.00 65.03 20.90 400 58 15.00 7.4E+06 6.9 6.2E+06 6.8 7.9 0.4 1015 19.8Puraflo-SSTE09/04/02300.0 53.00 82.00 0.03 85.00 85.03 20.90 522 82 29.00 1.9E+06 6.3 1.6E+06 6.2 7.9 0.6 1301 17.4Puraflo-SSTE10/02/02220.0 54.00 53.00 0.07 70.00 70.07 22.50 476 651.9E+07 7.3 6.4E+06 6.8 7.5 0.7 1146 16.4Puraflo-SSTE10/28/02330.0 80.00 76.00 0.03 100.00 100.03 28.20 604 74 349.00 86,000 4.9 40,000 4.6 7.3 0.8 1463 13.8Puraflo-SSTE11/18/02200.0 56.00 61.00 0.02 81.00 81.02 25.00 558 56 14.00 1.8E+07 7.3 9.0E+06 7.0 7.7 0.9 1376 11.6Puraflo-SSTE01/06/03170.0 100.00 52.00 0.02 76.00 76.02 21.70 438 53 18.00 210,000 5.3 120,000 5.1 7.3 1.2 1101 9.0Puraflo-SSTE02/03/03110.0 67.00 48.00 0.02 62.00 62.02 19.80 432 54 22.00 720,000 5.9 440,000 5.6 7.8 0.9 1081 10.3Puraflo-SSTE04/01/03130.0 75.00 58.00 0.03 74.00 74.03 22.60 461 51 14.00 64,000 4.81 0.0 7.5 0.9 1121 11.0Appendix B: Innovative System Field Test DataPage B-56
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesPuraflo-SSTE06/04/03150.0 69.00 57.00 0.03 74.00 74.03 23.30 445 48 18.00 160,000 5.2 138,000 5.1 7.3 0.5 1110 17.3Puraflo-SSTE08/06/03210.0 54.00 62.00 0.03 72.00 72.03 18.80 448 52 28.00 1.1E+06 6.0 1.0E+06 6.0 7.2 0.2 1124 21.0Puraflo-SSTE09/29/03120.0 34.00 52.00 0.01 57.00 57.01 20.80 420 47 31.00 2.6E+06 6.4 520,000 5.7 7.1 0.6 1032 19.9O&G est.Puraflo-S STE 01/12/04230.0 25.00 51.00 0.03 60.00 60.03 21.00 431 4698,000 5.0 24,000 4.4 7.3 1.4 1028 11.1Puraflo-SSTE03/01/0455.0 37.00 50.00 0.01 67.00 67.01 19.00 442 4632,000 4.5 28,000 4.4 7.5 1.1 1057 10.2Puraflo-SSTE05/24/04110.0 41.00 66.00 0.02 69.00 69.02 19.00 500 67230,000 5.4 208,000 5.3 7.1 0.8 1244 9.6Puraflo-SSTE10/04/0452.0 48.00 63.00 0.02 73.00 73.02 23.50 530 70310,000 5.5 350,000 5.5 7.0 1.1 1344 17.5Puraflo-SSTE12/06/0444.0 33.00 63.00 0.01 73.00 73.01 22.50 460 5894,000 5.0 72,000 4.9 7.0 1.9 835 12.8RX-30-H2LE02/13/010.07 14.70 1.60 16.30 7.505594 2.04 0.6 6.5 8.3 241 1.0RX-30-H2LE03/12/010.07 16.60 1.60 18.20 6.503754 1.746 1.7 6.4 5.5 419 2.6RX-30-H2LE04/09/010.08 12.20 1.70 13.90 8.36467.7 4.7 421 5.6RX-30-H2LE05/07/010.06 10.60 1.90 12.50 9.467.3 6.1 542 9.3 Insufficient flow to collect all needed samples.RX-30-H2 LE 06/11/010.09 10.50 1.60 12.10 8.937.5 5.7 218 12.6Insuff. flow for all samples. Collected over 12-days.RX-30-H2 LE 07/16/010.06 9.69 1.60 11.29 9.377.2 6.1 543 15.0Collected over 10 days; insuff. flow for all samples.RX-30-H2 LE 05/06/021.8 39.00 0.09 7.92 1.20 9.12 7.70 111 5035,000 4.5 25,000 4.4 7.4 5.2 613 9.5 BOD5 is est.RX-30-H2 LE 03/10/03Analysis cancelled; no lysimeter effluentRX-30-H2 LE 05/12/03All tests cancelled or NR; no flow to sampleRX-30-H2 LE 09/08/03all tests cancelled; no flowRX-30-H2 MW Drain 2204 11/02/990.0 0.00 0.06 5.11 0.20 5.31 0.0746NDND6.9 2.9 302 10.3No record of water level measurement.RX-30-H2 MW Drain 2204 01/05/001.0 1.00 0.02 9.07 0.40 9.47 0.0650NDND7.0 5.4 372 8.3No record of water level measurement.RX-30-H2 MW Drain 2204 03/01/000.0 1.00 0.07 23.10 0.80 23.90 0.0662NDND6.8 6.6 500can't find data sheet.RX-30-H2 MW Drain 2204 05/04/000.0 0.00 0.00 5.12 0.30 5.42 0.0875 12NDND6.7 3.3 311 7.9not in data files.RX-30-H2 MW Drain 2204 07/10/000.0 0.00 0.00 18.30 0.30 18.60 0.1075 186003006.3 4.2 429 10.0not in data files.RX-30-H2 MW Drain 2204 09/06/00Dry to bottom of screen, no samplesRX-30-H2 MW Drain 2204 11/15/008.04Unable to sample; insufficient rechargeRX-30-H2 MW Drain 2204 03/13/010.0 0.00 0.02 15.70 0.40 16.10 0.0649 39NDND6.9 3.5 405 6.2 7.22RX-30-H2MW Drain 2204 04/10/010.0 0.00 0.00 12.10 0.80 12.90 0.0654 34NDND7.0 5.1 384 6.3 6.98RX-30-H2MW Drain 2204 04/10/010.0 0.00 0.00 12.10 0.80 12.90 0.0653 34NDND7.0 5.1 384 6.3 QA dupl.RX-30-H2 MW Drain 2204 05/08/010.0 0.00 0.00 10.90 0.40 11.30 0.0643 35NDND6.6 4.6 358 7.2 6.98RX-30-H2MW Drain 2204 06/12/010.0 0.00 0.00 7.25 0.30 7.55 0.0748 23NDND6.8 5.8 310 8.2 7.69RX-30-H2MW Drain 2204 06/12/010.0 0.00 0.00 7.24 0.40 7.64 0.0748 23NDND6.8 5.8 310 8.2QA duplicateRX-30-H2 MW Drain 2204 07/17/010.0 0.00 0.00 10.80 0.30 11.10 0.0746 25NDND6.6 7.7 335 9.7 7.91RX-30-H2MW Drain 2204 07/17/010.0 0.00 0.00 10.70 0.30 11.00 0.0746 25NDND6.6 7.7 335 9.7 7.91QA duplicateRX-30-H2 MW Drain 2204 08/14/010.0 0.00 0.00 8.09 0.30 8.39 0.0747 27NDND6.6 6.8 315 10.4 8.09RX-30-H2MW Drain 2204 08/14/010.0 0.00 0.00 8.08 0.40 8.48 0.0747 28NDND6.6 6.8 315 10.4 8.09QA DuplicateRX-30-H2 MW Drain 2204 09/11/010.0 0.00 0.00 8.09 0.40 8.49 0.0741 346.6 6.5 339 11.9 8.22RX-30-H2MW Drain 2204 09/18/01NDND6.4 6.1 310 12.3Bacteria Re-SampleRX-30-H2 MW Drain 2204 10/09/010.0 0.00 0.00 6.10 0.30 6.40 0.0840 32NDND6.5 7.5 276 10.9 8.40RX-30-H2MW Drain 2204 10/09/010.0 0.00 0.00 6.10 0.30 6.40 0.0840 32NDND6.5 7.5 276 10.9QA DuplicateRX-30-H2 MW Drain 2204 01/14/020.5 0.50 0.00 4.60 0.40 5.00 0.1038 46NDND6.7 7.6 372 7.8 11.80BOD <1; TSS <1RX-30-H2 MW Drain 2204 03/12/020.5 0.50 0.00 6.90 0.50 7.40 0.1038 58NDND6.7 8.3 434 6.5 7.00BOD5 <1.0; TSS <1RX-30-H2 MW Drain 2204 05/07/021.8 1.00 0.01 7.74 0.50 8.2445 41NDND6.8 9.6 389 7.3 6.66NH4 <0.02RX-30-H2 MW Drain 2204 06/11/020.5 0.50 0.01 6.92 0.50 7.4246 38NDND6.8 8.1 317 8.7 7.06TSS <1, BOD5<1.0, NH4 <0.02RX-30-H2 MW Drain 2204 07/15/020.5 0.50 0.02 5.07 0.40 5.4750 31NDND6.8 7.1 274 9.2 7.49TSS <1, BOD5<1.0RX-30-H2 MW Drain 2204 07/15/020.5 0.50 0.01 5.07 0.50 5.5750 31NDND6.8 7.1 274 9.2QA duplicate, TSS <1, NH4 <0.02, BOD5<1.0RX-30-H2 MW Drain 2204 09/10/020.5 0.50 0.03 5.94 0.40 6.3444 28NDND6.6 4.9 250 11.0 8.09BOD5<1.0, TSS<1RX-30-H2 MW Drain 2204 11/05/020.5 0.50 0.03 6.75 0.40 7.1550 36NDND6.4 7.8 295 10.8 8.38BOD5 <1.0, TSS<1RX-30-H2 MW Drain 2204 12/02/020.5 0.50 0.01 6.71 0.40 7.1142 31NDND6.7 6.6 301 9.5 8.45 BOD5 <1.0, TSS<1 NH4 <0.02RX-30-H2 MW Drain 2204 12/02/020.5 0.50 0.01 6.69 0.40 7.0942 31NDNDQA Duplicate; BOD5 <1.0, TSS<1 NH4 <0.02RX-30-H2 MW Drain 2204 01/13/030.5 0.50 0.03 5.64 0.50 6.1440 38NDND6.5 7.4 311 7.7 8.10BOD5 <1.0, TSS <1RX-30-H2 MW Drain 2204 03/11/030.5 0.50 0.03 6.92 0.70 7.6260 59NDND6.7 6.8 429 6.8 7.61BOD5<1.0, TSS<1RX-30-H2 MW Drain 2204 05/13/030.5 0.50 0.01 4.94 0.10 5.0444 27NDND6.5 7.4 258 6.7 7.19BOD5<1.0, TSS <1 NH4 <0.02, TKN <0.2RX-30-H2 MW Drain 2204 05/13/030.5 0.50 0.02 4.91 0.10 5.0144 27NDNDQA Duplicate; BOD5<1.0, TSS <1, TKN <0.2RX-30-H2 MW Drain 2204 06/10/030.5 0.50 0.01 4.71 0.30 5.0144 20NDND6.9 7.6 221 7.3 7.32BOD5<1.0, TSS<1, NH4<0.02RX-30-H2 MW Drain 2204 06/10/030.5 0.50 0.01 4.72 0.20 4.9244 21NDNDQA Duplicate; BOD5<1.0, TSS<1, NH4<0.02RX-30-H2 MW Drain 2204 07/15/030.5 0.50 0.01 4.50 0.10 4.6042 14NDND6.7 8.3 196 8.7 7.73BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2RX-30-H2 MW Drain 2204 07/15/030.5 0.50 0.01 4.49 0.20 4.6942 15NDNDQA Duplicate; BOD5<1.0, TSS<1, NH4<0.02RX-30-H2 MW Drain 2204 09/10/031.1 0.50 0.01 4.96 0.10 5.0644 14NDND6.6 6.6 197 10.3 8.27BOD5 is est., TKN<0.2, NH4AsN<0.02, TSS<1RX-30-H2 MW Drain 2204 09/10/030.5 0.50 0.01 4.96 0.10 5.0645 14NDNDQA Duplicate; TKN<0.2, NH4<0.02, TSS<1, BOD5<1RX-30-H2 STE 11/02/9967.0 16.00 55.00 0.01 58.00 58.01 7.72 260880,000 5.9 800,000 5.9 8.2 0.0 804 16.2RX-30-H2STE01/05/0042.0 3.00 54.00 0.00 69.00 69.00 10.40 3353.20 8.7E+06 6.9 440,000 5.6 8.1 0.5 972 13.1RX-30-H2STE03/01/0029.0 18.00 60.00 0.00 64.00 64.00 9.74 2627.7E+06 6.9 240,000 5.4 8.1 0.6 400 13.1can't find data sheet.RX-30-H2 STE 05/04/0077.0 95.00 24.00 18.20 33.00 51.20 14.21 103 516.0E+06 6.8 600,000 5.8 7.6 1.5 730 14.3Nitrification has started /not in data files.RX-30-H2 STE 07/10/0037.0 90.00 6.50 7.00 14.00 21.00 11.90 143 42 8.00 20,000 4.3 40,000 4.6 7.0 1.2 618 20.0not in data files.Appendix B: Innovative System Field Test DataPage B-57
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesRX-30-H2STE09/06/0030.0 14.00 4.90 0.01 10.00 10.01 12.70 136 505.2E+06 6.7 40,000 4.6 7.2 0.2 565 19.2RX-30-H2STE11/15/0036.0 75.00 6.90 8.79 14.00 22.79 8.8077 531.9E+06 6.3 1.1E+06 6.0 7.3 1.3 474 12.8RX-30-H2STE12/12/007.0 28.00 3.10 11.30 7.10 18.40 7.2645 379.4E+06 7.0 8.4E+06 6.9 7.0 2.0 417 10.1RX-30-H2STE01/16/0137.0 25.00 7.80 11.00 15.00 26.00 8.53 1002.50 600,000 5.8 400,000 5.6 7.3 1.3 590 12.5 Oil and Grease <5.RX-30-H2 STE 02/13/0127.0 20.00 5.00 7.29 10.00 17.29 7.29703.0E+07 7.5 3.2E+07 7.5 7.4 1.3 408 11.0RX-30-H2STE03/12/0130.0 14.00 7.00 8.94 13.00 21.94 8.40751.3E+06 6.1 820,000 5.9 7.0 1.2 463 11.8RX-30-H2STE04/09/0151.0 43.00 7.50 1.28 13.00 14.28 8.60 1189.00 5.4E+06 6.7 640,000 5.8 7.3 0.6 425 13.2RX-30-H2STE05/07/0140.0 43.00 9.60 0.04 18.00 18.04 10.60 1735.00 6.0E+07 7.8 300,000 5.5 7.4 0.8 500 15.4RX-30-H2STE06/11/0149.0 57.00 7.10 0.01 15.00 15.01 8.92 165 37 6.00 1.8E+06 6.3 280,000 5.4 7.3 0.5 514 18.5RX-30-H2STE07/16/0126.0 28.00 6.20 0.02 12.00 12.02 10.60 131 40 2.50 4.4E+06 6.6 1.3E+06 6.1 7.2 1.0 472 20.1oil & grease <5RX-30-H2 STE 08/13/0126.0 28.00 8.30 1.34 13.00 14.34 11.20 115 42 2.50 6.6E+06 6.8 3.4E+06 6.5 7.2 0.9 542 20.2oil & grease <5RX-30-H2 STE 09/10/0122.0 10.00 8.40 0.00 12.00 12.00 10.90 128 41 2.50 900,000 6.0 160,000 5.2 7.4 0.9 500 19.0oil & grease <5RX-30-H2 STE 10/08/0133.0 25.00 7.70 6.06 14.00 20.06 9.53 117 38 5.00 1.6E+06 6.2 280,000 5.4 7.2 1.1 479 16.0RX-30-H2STE01/14/02680.0 1100.00 8.90 0.20 21.00 21.20 11.60 129 46 10.00 2.7E+07 7.4 7.4E+06 6.9 7.3 0.8 419 14.4RX-30-H2STE03/12/0271.0 8.00 9.90 0.20 17.00 17.20 8.00 169 43 2.50 5.4E+07 7.7 4.9E+07 7.7 7.3 1.2 562 11.6RX-30-H2STE05/06/0243.0 28.00 12.80 0.01 18.00 18.01 8.48 143 44 5.00 1.1E+06 6.0 1.0E+06 6.0 7.5 0.5 560 16.9RX-30-H2STE07/15/0263.0 21.00 18.00 0.01 30.00 30.01 11.00 154 44 7.00 1.1E+06 6.0 1.0E+06 6.0 7.1 0.4 536RX-30-H2STE09/10/0247.0 52.00 16.00 0.01 21.00 21.01 8.28 128 34 8.00 1.7E+07 7.2 1.1E+07 7.0 7.5 0.7 424 16.6RX-30-H2STE11/06/0249.0 38.00 12.30 0.02 16.00 16.02 7.23 118 36 7.00 8.4E+06 6.9 7.8E+06 6.9 7.3 1.0 391 14.6RX-30-H2STE01/13/0361.0 36.00 16.00 0.07 29.00 29.07 8.75 186 30 12.00 3.3E+08 8.5 2.9E+08 8.5 7.3 1.1 537 12.4pH is est.RX-30-H2 STE 03/10/03140.0 63.00 30.00 0.02 43.00 43.02 7.91 202 38 12.00 3.1E+08 8.5 6.0E+07 7.8 7.1 0.7 586 13.5RX-30-H2STE05/12/03110.0 47.00 18.00 0.01 26.00 26.01 7.57 144 33 17.00 1.1E+07 7.0 4.8E+06 6.7 7.4 2.8 441 14.9RX-30-H2STE07/16/0342.0 26.00 12.70 0.02 23.00 23.02 10.50 136 39 7.00 1.4E+08 8.1 2.8E+06 6.4 7.2 0.8 483 21.1RX-30-H2STE09/08/03190.0 50.00 15.00 0.01 19.00 19.01 8.08 126 34 21.00 1.4E+06 6.1 1.2E+06 6.1 7.1 0.9 434 19.9RX-30-H2TFEC11/15/005.0 3.00 1.70 14.20 3.90 18.10 7.4044 5876,000 4.9 51,000 4.7 7.1 2.6 454 10.9RX-30-H2TFEC12/12/002.0 1.00 0.47 15.00 2.60 17.60 6.9328 3754,000 4.7 50,000 4.7 6.7 4.1 414 8.6RX-30-H2TFEC01/16/018.0 11.00 2.80 16.70 7.20 23.90 8.5060 7320,000 4.3 67,000 4.8 7.2 3.1 606 9.6RX-30-H2TFEC02/13/017.0 6.00 2.80 9.88 4.90 14.78 6.9052 3890,000 5.0 66,000 4.8 7.2 4.1 238 4.1RX-30-H2TFEC03/12/018.4 5.00 3.40 14.90 5.90 20.80 8.3743 48130,000 5.1 100,000 5.0 7.0 3.2 459 10.2duplicate;RX-30-H2 TFEC 03/12/018.3 6.00 3.40 14.90 5.80 20.70 7.9344 47210,000 5.3 130,000 5.1 7.0 3.2 459 10.2RX-30-H2TFEC04/09/0111.0 8.00 0.10 5.28 7.70 12.98 8.4985 38170,000 5.2 10,000 4.0 7.3 2.1 402 11.1RX-30-H2TFEC05/07/017.2 9.00 4.80 3.14 7.60 10.74 10.30 142 39880,000 5.9 30,000 4.5 7.4 2.1 508 13.9RX-30-H2TFEC06/11/0117.0 26.00 2.90 2.17 6.60 8.77 8.31 132 3896,000 5.0 24,000 4.4 7.4 2.2 490 16.9QA duplicateRX-30-H2 TFEC 06/11/0113.0 16.00 2.80 2.12 6.20 8.32 8.64 133 37280,000 5.4 20,000 4.3 7.4 2.2 490 16.9RX-30-H2TFEP11/02/9921.0 1.00 58.00 0.00 61.00 61.00 7.76 26820,000 4.3 20,000 4.3 8.3 2.9 851 14.6RX-30-H2TFEP01/05/004.0 4.00 59.00 0.00 67.00 67.00 10.80 34078,000 4.9 4,000 3.6 8.5 6.9 1008 11.6RX-30-H2TFEP03/01/008.0 6.00 62.00 0.02 64.00 64.02 9.68 280380,000 5.6 60,000 4.8 8.1 4.3 900 10.5can't find data sheet.RX-30-H2 TFEP 05/04/0021.0 150.00 18.00 23.70 23.00 46.70 14.14 98 501.6E+06 6.2 80,000 4.9 7.3 5.5 715 13.3not in data files.RX-30-H2 TFEP 07/10/003.0 4.00 1.90 14.60 5.40 20.00 14.00 98 445.6E+06 6.7 5.3E+06 6.7 6.8 3.2 601 19.0not in data files.RX-30-H2 TFEP 09/06/0051.0 260.00 1.00 4.96 14.00 18.96 15.80 118 50400,000 5.6 200,000 5.3 7.3 2.5 561 19.1RX-30-H2TFEP11/15/0020.0 4.00 2.10 14.90 4.60 19.50 7.5039 49 3.00 200,000 5.3 160,000 5.2 7.2 3.3 461 11.2RX-30-H2TFEP12/12/002.0 4.00 0.66 15.30 3.70 19.00 7.0832 37420,000 5.6 380,000 5.6 6.9 5.2 381 9.3RX-30-H2TFEP01/16/017.0 6.00 3.00 17.40 7.00 24.40 8.5856270,000 5.4 110,000 5.0 7.2 3.8 680 9.3RX-30-H2TFEP02/13/018.0 5.00 2.20 11.60 4.50 16.10 7.0946114,000 5.1 98,000 5.0 7.4 6.5 380 6.3RX-30-H2TFEP03/12/0112.0 8.00 3.90 14.30 7.10 21.40 8.3046170,000 5.2 120,000 5.1 7.0 5.0 455 9.1RX-30-H2TFEP04/09/0115.0 10.00 3.90 5.83 9.00 14.83 8.5582800,000 5.9 68,000 4.8 7.2 3.1 410 11.0RX-30-H2TFEP05/07/0113.0 13.00 5.10 4.57 8.60 13.17 10.70 1447.0E+06 6.8 60,000 4.8 7.4 3.0 494 14.5RX-30-H2TFEP06/11/018.8 12.00 3.10 2.27 6.10 8.37 8.67 132 37460,000 5.7 120,000 5.1 7.6 3.0 488 16.4RX-30-H2TFEP07/16/0110.0 10.00 2.30 4.40 5.00 9.40 10.50 94 3916,000 4.2 5,600 3.7 7.2 3.8 452 19.2RX-30-H2TFEP08/13/0123.0 16.00 6.00 5.92 7.90 13.82 11.70 80 41120,000 5.1 12,000 4.1 7.1 3.6 467 20.1RX-30-H2TFEP09/10/017.8 7.00 4.00 3.85 6.40 10.25 11.40 94 4128,000 4.4 5,000 3.7 7.3 3.4 501 18.1 QA DuplicateRX-30-H2 TFEP 09/10/016.6 6.00 3.10 4.53 5.60 10.13 11.60 88 5044,000 4.6 8,000 3.9 7.3 3.4 501 18.1RX-30-H2TFEP10/08/0115.0 12.00 3.20 6.18 7.80 13.98 9.6072 39150,000 5.2 26,000 4.4 7.1 3.3 436 15.4RX-30-H2TFEP01/14/0214.0 11.00 4.50 3.90 7.40 11.30 9.4081 48700,000 5.8 320,000 5.5 7.3 3.1 421 11.5RX-30-H2TFEP03/12/0231.0 14.00 2.20 3.30 8.60 11.90 7.80 132 452.1E+06 6.3 1.9E+06 6.3 7.6 3.8 554 10.0RX-30-H2TFEP05/06/0239.0 26.00 1.70 0.79 12.00 12.79 8.93 123 48580,000 5.8 520,000 5.7 7.7 3.5 555 14.2RX-30-H2TFEP07/15/0250.0 51.00 9.00 1.22 17.00 18.22 10.50 114 46480,000 5.7 540,000 5.7 7.2 1.7 440 20.8RX-30-H2TFEP09/10/0264.0 26.00 7.40 2.63 11.00 13.63 8.5788 362.0E+06 6.3 420,000 5.6 7.5 2.6 399 16.4RX-30-H2TFEP11/06/0243.0 37.00 7.50 2.38 13.00 15.38 7.9786 38740,000 5.9 600,000 5.8 7.4 4.3 377 11.9RX-30-H2TFEP01/13/0343.0 30.00 12.00 1.95 19.00 20.95 8.48 145 322.0E+07 7.3 5.0E+06 6.7 7.6 3.9 501 10.7pH is est.RX-30-H2 TFEP 03/10/0342.0 22.00 19.00 3.73 25.00 28.73 7.98 144 443.1E+07 7.5 6.4E+06 6.8 7.4 2.3 552 11.7RX-30-H2TFEP05/12/0341.0 27.00 9.60 0.65 16.00 16.65 8.22 120 291.7E+06 6.2 1.0E+06 6.0 7.1 0.7 500 17.6QA DuplicateRX-30-H2 TFEP 05/12/0340.0 31.00 9.00 0.63 15.00 15.63 8.12 124 321.7E+06 6.2 1.1E+06 6.0 7.4 2.7 445 15.0RX-30-H2TFEP07/16/0329.0 17.00 5.90 3.32 9.20 12.52 9.9792 381.7E+06 6.2 200,000 5.3 7.4 3.2 450 19.6Appendix B: Innovative System Field Test DataPage B-58
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesRX-30-H2TFEP09/08/039.6 7.00 6.40 2.64 9.00 11.64 8.6882 4037,000 4.6 32,000 4.5 7.6 3.0 398 16.4QA DuplicateRX-30-H2 TFEP 09/08/036.9 3.00 3.90 3.97 5.50 9.47 8.7280 4046,000 4.7 22,000 4.3 7.8 3.1 399 16.2RX-30-MLE02/13/0120 1.320 1.3insufficient flow to get field parametersRX-30-M LE 03/26/016.70 25.90 9.80 35.70 12.90unable to collect all samples due to low flow.RX-30-M LE 04/16/019.60 38.40 12.00 50.40 10.906.3 4.6 585 4.6RX-30-MLE05/14/010.13 38.00 2.40 40.40 14.30572 0.32 0.3 6.6 3.6 613 8.3NO3 < 38.0 mg/L., sample collected over 11 daysRX-30-M LE 06/18/010.11 41.50 3.60 45.10 14.70595.9 6.3 700 10.3RX-30-MLE07/23/010.06 30.60 2.60 33.20 11.70536.8 6.3 626 12.6RX-30-MLE08/20/010.06 27.30 1.70 29.00 13.10556.7 5.3 608 13.4RX-30-MLE10/15/0118.00 14.70 26.00 40.70 9.3669360 2.6 340 2.5 7.3 2.6 706 7.7RX-30-MLE12/10/010.00 19.90 1.50 21.40 11.405142 1.634 1.5 6.9 9.7 509 2.9TKN is estimate.RX-30-M LE 02/19/022.4 2.00 0.10 30.50 1.90 32.40 12.10 16 52360 2.6 340 2.5 6.3 8.7 552 1.8BOD is estimate.RX-30-M LE 04/15/020.11 11.50 3.30 14.80 10.607.2 6.5 516 5.4RX-30-MLE06/17/020.04 13.80 1.60 15.40 11.40482 0.32 0.3 7.1 4.8 464 11.6RX-30-MLE08/20/021.5 3.00 0.04 7.83 1.40 9.23 12.10 112 438 0.96 0.8 7.2 6.6 392 13.3BOD5 is est.RX-30-M LE 10/14/023.3 1.00 0.05 7.33 2.20 9.53 12.80 140 51220 2.3 250 2.4 7.4 5.7 542 7.4BOD5 is est., Chloride is est.RX-30-M LE 12/09/021.8 1.00 0.04 12.60 1.60 14.20 12.10 120 6114 1.18 0.9 7.5 6.7 633 2.4BOD5 is est.RX-30-M LE 02/18/030.39 20.00 2.10 22.10 11.305914 1.124 1.4 7.2 5.6 601 2.8BOD5, TSS, alk. cancelledRX-30-M LE 04/16/031.3 2.00 0.10 19.30 1.80 21.10 8.2886 592 0.32 0.3 7.4 8.0 565 6.3BOD5 is est.RX-30-M LE 06/18/030.04 9.86 1.20 11.06 12.00437.2 6.3 505 12.7RX-30-MLE08/20/030.05 6.24 1.60 7.84 13.00502 0.34 0.6 7.3 6.0 532 12.4RX-30-MLE10/20/031.8 3.00 0.04 13.20 1.50 14.70 12.70 102 532 0.36 0.8 7.4 9.1 561 10.3RX-30-MMW Drain 2031 11/13/000.00 0.47 0.10 0.57 0.1822 0.32 0.3 7.4 3.6 108 6.7 12.89TKN <0.2RX-30-M MW Drain 2031 12/12/000.0 3.00 0.03 0.40 0.10 0.50 0.1849 22 0.32 0.3 6.8 5.3 108 6.5 14.97TKN <0.2RX-30-M MW Drain 2031 01/16/011.0 0.00 0.03 0.43 0.10 0.53 0.1846 22 0.32 0.3 7.3 4.6 110 6.8BOD5 is estimate. QA duplicate; TKN <0.2RX-30-M MW Drain 2031 01/16/011.0 1.00 0.02 0.45 0.10 0.55 0.1846 22 0.32 0.3 7.3 4.6 110 6.8 14.91TKN <0.2RX-30-M MW Drain 2031 02/13/010.0 1.00 0.03 0.44 0.10 0.54 0.1845 22 0.32 0.3 6.8 5.4 109 7.4QA duplicate; TKN <0.2RX-30-M MW Drain 2031 02/13/010.0 2.00 0.03 0.45 0.10 0.55 0.1845 22 0.32 0.3 6.8 5.4 109 7.4 14.97BOD5 is estimate; TKN <0.2RX-30-M MW Drain 2031 03/20/010.0 0.00 0.02 0.46 0.10 0.56 0.1844 22 0.32 0.3 6.5 9.7 119 7.1 14.93TKN <0.2RX-30-M MW Drain 2031 04/18/010.0 0.00 0.03 0.54 0.10 0.64 0.1945 22 0.32 0.3 6.7 5.2 105 7.3 14.99TKN <0.2RX-30-M MW Drain 2031 04/18/010.0 0.00 0.04 0.54 0.10 0.64 0.1846 22 0.32 0.3 6.7 5.2 105 7.3QA duplicate; TKN <0.2RX-30-M MW Drain 2031 05/16/010.0 0.00 0.02 0.64 0.10 0.74 0.1847 22 0.32 0.3 6.6 6.6 109 7.3 15.00TKN <0.2RX-30-M MW Drain 2031 05/16/010.0 0.00 0.02 0.68 0.10 0.78 0.1846 22 0.32 0.3 6.6 6.6 109 7.3QA duplicate; TKN <0.2RX-30-M MW Drain 2031 06/19/011.0 1.00 0.02 0.73 0.20 0.93 0.1749 22 0.32 0.3 6.2 7.3 108 7.6 15.28RX-30-MMW Drain 2031 07/24/010.0 1.00 0.03 0.69 0.10 0.79 0.1848 21 0.01 0.0 6.9 8.0 112 7.5 15.29TKN <0.2RX-30-M MW Drain 2031 07/24/010.0 0.00 0.04 0.69 0.10 0.79 0.1848 21 0.01 0.0 6.9 8.0 112 7.5 15.29QA duplicate; TKN <0.2RX-30-M MW Drain 2031 08/21/010.0 0.00 0.00 0.56 0.10 0.66 0.1848 27.1 5.8 111 7.5 15.12TKN <0.2RX-30-M MW Drain 2031 08/28/012 0.32 0.3 7.1 6.1 110 7.6 13.20Bacteria Re-sampleRX-30-M MW Drain 2031 08/28/012 0.32 0.3 7.1 6.1 110 7.6 13.20Bacteria Re-sample QA Duplicate;RX-30-M MW Drain 2031 09/18/010.0 0.00 0.02 0.55 0.10 0.65 0.1848 22 0.32 0.3 6.8 9.4 111 7.6 15.18TKN <0.2RX-30-M MW Drain 2031 09/18/010.0 0.00 0.02 0.57 0.10 0.67 0.1848 22 0.32 0.3 6.8 9.4 111 7.6QA Duplicate; TKN <0.2RX-30-M MW Drain 2031 10/16/010.0 1.00 0.02 0.58 0.10 0.68 0.1949 22 0.32 0.3 6.8 7.6 101 7.7 15.33TKN <0.2RX-30-M MW Drain 2031 10/16/010.0 6.00 0.00 0.58 0.10 0.68 0.1949 22 0.32 0.3 6.8 7.6 101 7.7QA Duplicate; TKN <0.2RX-30-M MW Drain 2031 12/10/010.5 0.50 0.00 1.40 0.10 1.50 0.2048 31 0.01 0.0 6.7 5.1 120 7.5 15.30TKN <0.2 est.; BOD5 <1.0RX-30-M MW Drain 2031 12/10/010.5 0.50 0.00 1.40 0.10 1.50 0.2046 31 0.01 0.0 6.7 5.1 120 7.5QA duplicateRX-30-M MW Drain 2031 02/20/020.5 2.00 0.00 6.10 0.10 6.20 0.2043 77.0 6.2 155 7.8 15.91BOD5 <1, TKN <0.2RX-30-M MW Drain 2031 02/26/022 0.32 0.3 6.8 5.5 174 7.6Bacteria Re-sampleRX-30-M MW Drain 2031 02/26/022 0.32 0.3 6.8 5.5 174 7.6QA Duplicate; Bacteria re-sampleRX-30-M MW Drain 2031 04/15/020.5 0.50 0.01 5.53 0.10 5.63 0.1643 82 0.32 0.3 7.2 8.7 174 7.3 15.28TSS <1; NH4 <0.02; TKN <0.2RX-30-M MW Drain 2031 04/15/020.5 0.50 0.01 5.53 0.10 5.63 0.1642 82 0.32 0.3 7.2 8.7 174 7.3QA Duplicate; TSS <1; NH4 <0.02RX-30-M MW Drain 2031 06/19/020.50 0.02 5.50 0.10 5.6042 81 0.01 0.0 7.0 5.6 154 7.4 15.25TKN <0.2, TSS <1RX-30-M MW Drain 2031 08/20/020.5 0.50 0.01 4.72 0.10 4.8244 72 0.32 0.3 6.9 6.4 149 7.5 15.32TKN <0.2 est., TSS <1, BOD5 <1, NH4 <0.02RX-30-M MW Drain 2031 10/14/020.5 2.00 0.01 8.06 0.20 8.2646 121 0.01 0.0 7.0 6.0 190 7.8 15.24BOD5<1.0, NH4 <0.02, Chloride is est.RX-30-M MW Drain 2031 10/29/022 0.32 0.3 6.8 5.5 213 7.7Bacteria Re-sampleRX-30-M MW Drain 2031 12/10/020.5 0.50 0.01 10.90 0.30 11.2044 182 0.32 0.3 7.1 7.3 262 7.7 14.04NH4 <0.02, BOD5 <1.0, TSS <1RX-30-M MW Drain 2031 12/10/020.5 0.50 0.01 11.00 0.20 11.2044 182 0.32 0.314.04QA Duplicate; NH4 <0.02, BOD5 <1.0, TSS <1RX-30-M MW Drain 2031 02/19/030.5 1.00 0.01 15.50 0.10 15.6042 262 0.32 0.3 6.9 7.3 334 7.5 15.28BOD5<1.0, NH4AsN <0.02, TKN <0.2RX-30-M MW Drain 2031 02/19/030.5 2.00 0.01 15.50 0.10 15.6042 262 0.32 0.3QA Duplicate; BOD5<1.0, NH4AsN <0.02, TKN <0.2RX-30-M MW Drain 2031 04/14/030.5 0.50 0.01 13.90 0.10 14.0044 251 0.01 0.0 6.8 5.5 328 7.6 15.27TSS <1, NH4 <0.02, TKN <0.2RX-30-M MW Drain 2031 06/17/030.5 0.50 0.03 12.40 0.20 12.6051 251 0.01 0.0 6.8 5.8 411 9.1 14.70BOD5<1.0, TSS <1RX-30-M MW Drain 2031 08/19/030.5 0.50 0.02 8.58 0.10 8.6861 201 0.01 0.0 6.9 6.6 402 7.5 15.28BOD5<1.0, TSS<1, TKN<0.2RX-30-M MW Drain 2031 10/20/030.5 0.50 0.01 7.16 0.10 7.2662 206.8 8.5 364 8.5 14.25BOD5<1.0, TSS<1, NH4AsN<0.02, TKN<0.2RX-30-M MW Drain 2031 10/28/032 0.32 0.3 6.8 7.3 342 8.6Bacteria Re-sampleRX-30-M STE 03/26/0122.0 16.00 30.00 12.60 38.00 50.60 11.40 2002.50 2,000 3.3 2,000 3.3 7.7 1.9 694 9.6 Oil & Grease <5Appendix B: Innovative System Field Test DataPage B-59
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesRX-30-MSTE04/16/0124.0 10.00 3.30 29.30 11.00 40.30 13.40 432.50 420 2.642 1.6 6.8 0.8 573 10.0 Oil & Grease <5RX-30-M STE 05/14/0114.0 8.00 6.10 30.50 13.00 43.50 15.20 762.50 180 2.3 240 2.4 6.8 1.1 689 12.5 Oil & Grease <5RX-30-M STE 06/18/0153.0 21.00 0.50 36.50 7.70 44.20 16.20 42 57 2.50 840 2.9 1,300 3.1 6.2 3.9 705 15.0 oil & grease <5RX-30-M STE 07/23/017.0 8.00 2.60 21.40 8.10 29.50 13.80 93 47 2.50 1,300 3.1 1,300 3.1 7.4 1.8 581 17.4 Oil & Grease <5RX-30-M STE 08/20/0133.0 42.00 11.00 13.20 18.00 31.20 13.90 119 54 2.50 6,400 3.8 8,400 3.9 8.0 1.1 612 17.5 BOD5 is <5; Oil & Grease <5RX-30-M STE 09/17/0113.2 11.00 1.90 5.02 5.40 10.42 15.70 116 72 2.504 0.64 0.6 7.1 1.6 552 15.1BOD est. (poss. toxic interference); oil & grease<5.RX-30-M STE 10/15/0131.0 20.00 10.80 16.00 17.00 33.00 9.90 102 60 2.50 36,000 4.6 50,000 4.7 7.4 0.7 544 13.4 Oil & Grease is <5.RX-30-M STE 12/10/0120.0 14.00 4.70 13.30 12.00 25.30 11.80 89 47 1.00 4,200 3.6 3,200 3.5 7.1 1.0 533 7.9 TKN is est.RX-30-M STE 02/19/0225.0 24.00 4.70 11.30 12.00 23.30 11.60 92 52 2.50 400 2.6 200 2.3 7.1 2.5 496 6.5 Oil & Grease <5RX-30-M STE 04/15/027.8 12.00 3.00 5.46 8.60 14.06 13.90 108 61 2.50 12,000 4.1 13,000 4.1 7.6 1.2 552 8.6O&G <5RX-30-M STE 06/17/0226.0 16.00 2.90 5.87 7.00 12.87 11.70 130 41 2.50 200 2.3 200 2.3 7.7 1.2 485 15.7 O&G <5RX-30-M STE 08/20/0263.0 180.00 0.88 4.74 9.50 14.24 14.00 144 42 2.50 260 2.4 100 2.0 7.7 1.6 535 16.5O&G <5RX-30-M STE 10/14/027.2 0.50 2.70 6.76 8.50 15.26 11.60 136 53 2.50 360 2.6 420 2.6 7.3 1.8 517 12.1TSS <1.0, Chloride is est., O&G <5RX-30-M STE 12/09/029.5 2.00 2.80 9.40 6.30 15.70 10.70 119 57 2.50 190 2.3 170 2.2 7.6 1.8 605 8.5O&G <5RX-30-M STE 02/18/031.7 5.00 1.16 20.10 4.10 24.20 12.20 77 54 2.50 18 1.316 1.2 7.4 2.3 580 7.9O&G <5RX-30-M STE 04/16/0347.0 47.00 5.40 2.39 10.00 12.39 12.20 156 54 2.50 2,700 3.4 2,860 3.5 7.8 1.2 569 10.9O&G <5RX-30-M STE 06/18/035.7 7.00 1.16 2.46 3.30 5.76 14.00 145 41 2.50 40 1.628 1.4 7.5 1.5 524 15.1O&G<5RX-30-M STE 08/20/03480.0 1200.00 0.87 1.87 5.30 7.17 13.30 184 42 2.50 60 1.836 1.6 7.6 0.8 530 17.4BOD5 is est., O&G <5 est.RX-30-M STE 10/20/034.5 3.00 2.40 6.72 6.30 13.02 11.40 118 47 2.50 110 2.092 2.0 7.5 1.1 513 15.4O&G<5RX-30-M TFEC 11/13/00210.0 60.00 54.00 0.02 71.00 71.02 19.00 319 33 37.00 200,000 5.3 250,000 5.4 8.7 2.1 873 12.3RX-30-MTFEC12/12/005.0 3.00 0.17 37.30 4.70 42.00 22.20 44 382,000 3.3 2,000 3.3 7.1 5.9 642 5.6RX-30-MTFEC12/12/007.0 10.00 0.60 35.10 6.20 41.30 22.20 45 43 2.50 2,000 3.3 4,000 3.6 6.8 5.5 648 5.8Oil & Grease <5RX-30-M TFEC 01/16/012.0 0.00 0.11 28.30 2.40 30.70 19.30 50120 2.1 120 2.1 7.5 5.0 573 5.7RX-30-MTFEC01/16/017.0 7.00 0.83 26.30 4.20 30.50 19.60 442.50 12,000 4.1 20,000 4.3 6.9 4.2 568 6.5Oil & Grease <5RX-30-M TFEC 02/13/013.0 1.00 0.47 35.50 3.40 38.90 21.10 1832 1.532 1.5 6.6 6.2 606 7.2RX-30-MTFEC02/13/018.0 6.00 2.10 32.50 5.70 38.20 21.60 332.50 9,000 4.0 9,000 4.0 6.6 2.3 611 7.2Oil & Grease <5RX-30-M TFEC 03/26/0113.0 7.00 29.00 16.70 30.00 46.70 11.00 17120 1.320 1.3 7.8 4.3 752 10.4RX-30-MTFEC04/16/0114.0 9.00 3.10 33.50 6.90 40.40 13.10 3050 1.760 1.8 6.9 4.0 676 10.5RX-30-MTFEC05/14/013.4 3.00 4.80 35.10 8.10 43.20 15.70 5620 1.312 1.1 6.8 3.2 698 12.0RX-30-MTFEC06/18/013.1 4.00 0.07 37.70 4.30 42.00 16.10 35 58200 2.3 160 2.2 6.6 5.1 697 15.2RX-30-MTFEC07/23/010.0 0.00 0.12 26.10 2.10 28.20 13.80 64 4750 1.750 1.7 7.5 4.8 575 17.3RX-30-MTFEC08/20/010.0 0.00 0.05 24.60 1.90 26.50 13.60 38 532 0.32 0.3 7.5 5.3 552 17.3RX-30-MTFEC09/17/0121.0 82.00 0.90 21.60 5.80 27.40 18.60 67 709,000 4.0 6,400 3.8 7.4 5.1 680 13.5RX-30-MTFEC10/15/011.7 0.00 0.20 28.70 2.60 31.30 9.5220 57320 2.5 260 2.4 6.9 3.6 489 11.9 BOD5 estimate; depletion requirement not met.RX-30-M TFEC 12/10/010.5 0.50 0.05 21.70 1.80 23.50 11.70 26 464 0.62 0.3 7.4 6.6 502 7.1BOD5 <1.0, TKN is est.; TSS is <1RX-30-M TFEC 02/19/022.8 2.00 1.32 17.40 3.60 21.00 11.20 58 5210 1.010 1.0 7.4 6.8 485 5.7BOD is estimate.RX-30-M TFEC 02/19/022.6 0.50 1.30 17.40 3.40 20.80 11.10 59 5220 1.340 1.6 7.4 6.8 485 5.7QA dupl - BOD5 is estimate; TSS <1RX-30-M TFEC 04/15/023.0 1.00 0.10 9.71 2.70 12.41 13.30 90 5830 1.554 1.7 7.7 6.1 540 7.7RX-30-MTFEC06/17/021.5 0.50 0.03 9.81 1.70 11.51 11.50 110 412 0.32 0.3 8.0 5.2 472 14.8 BOD is est.; TSS <1RX-30-M TFEC 06/17/022.4 2.00 0.03 9.80 1.50 11.30 11.20 104 412 0.32 0.3 8.0 5.2 472 14.8QA Duplicate; BOD5 is est.RX-30-M TFEC 08/20/023.9 8.00 0.13 6.38 3.60 9.98 14.20 132 422 0.32 0.3 7.9 4.2 524 15.8QA Duplicate; TKN is est.RX-30-M TFEC 08/20/023.0 5.00 0.10 6.41 3.50 9.91 14.00 133 416 0.86 0.8 7.9 4.2 524 15.8TKN is est.RX-30-M TFEC 10/14/020.5 0.50 0.07 11.70 2.10 13.80 11.60 114 5312 1.18 0.9 6.8 5.1 257 6.5BOD5, TSS <1.0, Chloride is est.RX-30-M TFEC 12/09/021.7 0.50 0.04 15.10 1.40 16.50 10.80 92 546 0.82 0.3 7.6 5.2 598 7.7BOD5 is est., TSS <1RX-30-M TFEC 02/18/031.0 2.00 0.10 25.10 2.30 27.40 11.60 54 552 0.32 0.3 7.6 6.1 581 6.8BOD5 is est.RX-30-M TFEC 04/16/031.7 0.50 0.06 11.20 1.60 12.80 11.901 542 0.32 0.3 7.9 6.3 543 10.4BOD5 is est., TSS <1. alk. <1RX-30-M TFEC 06/18/031.4 2.00 0.06 4.87 1.80 6.67 13.60 131 4116 1.24 0.6 8.1 6.0 508 15.6BOD5 is est.RX-30-M TFEC 08/20/033.9 2.00 0.04 5.59 1.40 6.99 11.80 132 422 0.38 0.9 8.0 7.4 515 14.7BOD5 is est.RX-30-M TFEC 10/20/031.1 0.50 0.02 11.80 1.20 13.00 11.20 92 476 0.82 0.3 7.9 7.8 508 14.7BOD5 is est., TSS<1RX-30-M TFEP 11/13/0016.0 4.00 12.10 33.30 15.00 48.30 16.00 76 6050 1.721 1.3 7.2 4.9 628 7.4RX-30-MTFEP12/12/004.0 2.00 0.13 36.00 4.20 40.20 22.70 46 384,000 3.6 2,000 3.3 7.1 5.4 323 5.2RX-30-MTFEP01/16/016.0 19.00 0.17 28.40 2.70 31.10 19.00 51 4466 1.874 1.9 7.4 5.5 583 5.5RX-30-MTFEP02/13/013.0 1.00 1.20 36.00 3.70 39.70 21.20 18 4754 1.742 1.6 6.6 7.0 598 6.8RX-30-MTFEP03/19/0114.0 4.00 18.00 56.50 22.00 78.50 15.50 10 491,000 3.0 1,000 3.0 6.7 6.7 797 7.0No samples due to low levels.RX-30-M TFEP 03/26/0113.0 7.00 28.00 16.20 29.00 45.20 10.40 168 392,000 3.3 2,000 3.3 7.7 4.5 714 9.2RX-30-MTFEP03/26/0114.0 7.00 26.00 15.60 31.00 46.60 11.00 171 392,000 3.3 2,000 3.3 7.7 4.5 714 9.2QA duplicateRX-30-M TFEP 04/16/0113.0 8.00 2.00 33.50 6.10 39.60 13.20 32 5260 1.844 1.6 6.7 4.0 568 8.9RX-30-MTFEP05/14/013.3 1.00 4.10 35.60 6.90 42.50 15.70 54 5218 1.324 1.4 6.9 3.7 688 12.0QA duplicateRX-30-M TFEP 05/14/013.7 1.00 4.40 35.70 6.70 42.40 15.40 53 5220 1.320 1.3 6.9 3.7 688 12.0RX-30-MTFEP06/18/014.4 4.00 0.15 40.70 4.10 44.80 15.60 17 57110 2.092 2.0 5.9 3.014.0field EC "void"RX-30-R LE 12/12/000.05 9.96 2.00 11.96 10.701001,000 3.0 1,000 3.0 7.6 2.7 639 7.7RX-30-RLE01/16/010.06 22.20 2.00 24.20 10.601401,300 3.1 1,200 3.1 6.9 4.1 827 3.0RX-30-RLE02/13/012.0 0.00 0.04 26.10 1.80 27.90 11.40 105 78980 3.0 920 3.0 8.4 8.2 745 3.3RX-30-RLE03/12/013.4 5.00 0.06 31.50 2.30 33.80 10.90 80 55116 2.1 140 2.1 6.9 7.6 693 4.4Appendix B: Innovative System Field Test DataPage B-60
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesRX-30-RLE04/09/014.8 4.00 0.07 23.50 2.60 26.10 11.30 172 56840 2.9 960 3.0 8.0 4.6 633 6.7RX-30-RLE05/07/012.6 3.00 0.05 22.40 1.70 24.10 12.30 164 53200 2.3 230 2.4 7.1 4.5 765 11.0BOD estimate. LE sample collected over 4 daysRX-30-R LE 07/16/011.1 4.00 0.07 6.03 1.80 7.83 12.70 260 69280 2.4 140 2.1 7.7 5.2 839 17.2BOD5 is estimateRX-30-R LE 08/13/014.5 2.00 0.05 5.54 1.60 7.14 13.00 247 70360 2.6 460 2.7 7.4 5.1 796 18.7RX-30-RLE09/10/011.4 3.00 0.03 9.30 2.10 11.40 13.40 320 561,200 3.1 860 2.9 7.5 5.7 894 16.7RX-30-RLE10/08/011.60 25.20 5.50 30.70 11.70657.2 3.8 1074 11.4RX-30-RLE12/03/010.06 13.10 1.90 15.00 9.0055620 2.8 960 3.0 7.1 3.1 707 4.9TKN is est.RX-30-R LE 04/09/025.2 3.00 0.25 12.10 2.70 14.80 11.40 134 48500 2.7 340 2.5 7.2 7.8 596 10.1RX-30-RLE06/11/0216.00 0.05 15.80 2.20 18.00 13.50 86 4086 1.960 1.8 7.2 5.6 441 15.7RX-30-RLE08/12/020.5 3.00 0.04 6.84 1.70 8.54 15.40 214 7958 1.856 1.7 7.6 5.5 742 17.0TKN is est., BOD5 <1RX-30-R LE 10/07/021.2 15.00 0.05 16.90 1.90 18.80 9.09 102 65360 2.6 400 2.6 7.2 5.2 555 10.3BOD5 and chloride are estimates.RX-30-R LE 12/02/023.6 11.00 0.04 7.38 1.80 9.18 15.80 262 8656 1.746 1.7 7.4 7.0 890 3.9BOD5 is est.RX-30-R LE 02/10/032.1 30.00 0.06 9.42 1.40 10.82 15.50 196 8954 1.744 1.6 7.6 9.0 377 2.4BOD5, cond. is est.RX-30-R LE 04/09/031.8 2.00 0.04 9.07 1.60 10.67 15.00 174 89520 2.7 700 2.8 7.4 7.0 785 8.0BOD5 is est.RX-30-R LE 06/11/032.8 11.00 0.03 9.25 1.40 10.65 15.70 164 8614 1.116 1.2 7.2 5.4 742 15.1BOD5 is est.RX-30-R LE 08/11/032.9 8.00 0.04 8.50 1.50 10.00 16.10 196 808 0.94 0.6 7.5 4.5 776 16.9BOD5 is est.RX-30-R LE 10/08/031.4 16.00 0.01 34.20 1.20 35.40 12.30 166 7610 1.06 0.8 7.0 5.2 797 13.7NH4AsN<0.02RX-30-R MW Drain 2210 05/09/010.0 2.00 0.00 3.59 0.20 3.79 0.1046 102 0.32 0.3 7.3 5.9 161 10.3 11.75RX-30-RMW Drain 2210 06/13/010.0 20.00 0.03 2.50 0.30 2.80 0.1147 132 0.32 0.3 6.7 7.1 165 9.1 12.11RX-30-RMW Drain 2210 07/17/010.0 7.00 0.00 4.89 0.20 5.09 0.1044 211 0.01 0.0 6.6 7.2 205 8.4 12.01RX-30-RMW Drain 2210 08/14/010.0 0.00 0.00 5.91 0.20 6.11 0.1044 241 0.01 0.0 7.0 6.0 227 8.9 12.21RX-30-RMW Drain 2210 09/11/010.0 6.00 0.02 6.74 0.10 6.84 0.1143 301 0.01 0.0 6.6 5.9 224 8.8 12.11TKN <0.2RX-30-R MW Drain 2210 09/11/010.0 245.00 0.00 6.75 0.10 6.85 0.1042 301 0.01 0.0 6.6 5.9 224 8.8QA Duplicate; TKN <0.2RX-30-R MW Drain 2210 10/09/010.0 0.00 0.00 6.19 0.10 6.29 0.1143 291 0.01 0.0 6.8 5.3 221 9.2 12.95TKN <0.2RX-30-R MW Drain 2210 12/03/010.5 0.50 0.00 10.50 0.30 10.80 0.1039 431 0.01 0.0 6.8 4.2 345 9.4 12.34TKN is est.RX-30-R MW Drain 2210 03/13/020.5 10.00 0.00 12.60 0.30 12.90 0.1048 471 0.01 0.0 6.7 4.9 368 7.1 11.66BOD5 <1RX-30-R MW Drain 2210 04/09/020.5 9.00 0.01 11.30 0.10 11.40 0.1050 511 0.01 0.0 6.7 5.3 386 8.3 10.90NH4 <0.02, BOD5 <1.0, TKN <0.2RX-30-R MW Drain 2210 04/09/020.5 4.00 0.01 11.30 0.10 11.40 0.1050 501 0.01 0.0 6.7 5.3 386 8.3QA Duplicate; NH4 <0.02, BOD5 <1.0, TKN <0.2RX-30-R MW Drain 2210 06/12/023.00 0.01 8.55 0.30 8.8554 431 0.01 0.0 6.7 7.9 355 8.7QA Duplicate; NH4 <0.02RX-30-R MW Drain 2210 06/12/025.00 0.01 8.56 0.60 9.1655 461 0.01 0.0 6.7 7.9 355 8.7 11.24NH4 <0.02RX-30-R MW Drain 2210 08/14/020.5 3.00 0.01 5.62 0.40 6.0255 361 0.01 0.0 6.7 5.3 274 8.9 11.54TKN is est., BOD5 <1, NH4 <0.02RX-30-R MW Drain 2210 08/14/020.5 4.00 0.01 5.49 0.40 5.8956 361 0.01 0.0 6.7 5.3 274 8.9QA Duplicate; TKN is est., BOD5 <1, NH4 <0.02RX-30-R MW Drain 2210 09/11/020.5 5.00 0.02 4.10 0.10 4.2057 301 0.01 0.0 6.7 3.7 259 9.2 11.73BOD5<1.0, TKN<0.2RX-30-R MW Drain 2210 09/11/020.5 5.00 0.02 4.16 0.20 4.3657 321 0.01 0.0 6.7 3.7 259 9.2QA Duplicate - BOD5<1.0RX-30-R MW Drain 2210 10/07/020.5 3.00 0.03 2.24 0.60 2.8456 261 0.01 0.0 6.6 4.8 206 9.7 12.69BOD5 <1; chloride is est.RX-30-R MW Drain 2210 12/02/020.5 2.00 0.01 4.11 0.30 4.4158 331 0.01 0.0 6.7 5.1 290 9.5 12.76BOD5 <1.0 NH4 <0.02RX-30-R MW Drain 2210 02/11/030.5 13.00 0.01 7.77 0.10 7.8772 521 0.01 0.0 6.7 3.9 406 9.0 11.16BOD5<1.0, NH4AsN <0.02, TKN <0.2RX-30-R MW Drain 2210 03/11/030.5 1.00 0.01 7.84 0.30 8.1478 521 0.01 0.0 6.7 3.7 418 8.7 12.03BOD5<1.0, NH4AsN <0.02RX-30-R MW Drain 2210 03/11/030.5 5.00 0.01 7.84 0.30 8.1478 521 0.01 0.0QA Duplicate; BOD5<1.0, NH4AsN <0.02RX-30-R MW Drain 2210 04/08/030.5 6.00 0.01 7.80 0.30 8.1077 521 0.01 0.0 6.8 4.4 413 8.4 10.68BOD5<1.0, NH4 <0.02RX-30-R MW Drain 2210 04/08/030.5 8.00 0.01 7.80 0.40 8.2077 521 0.01 0.0QA Duplicate; NH4 <0.02RX-30-R MW Drain 2210 06/11/030.5 7.00 0.01 7.18 0.10 7.1876 491 0.01 0.0 6.7 4.4 395 8.3 11.88BOD5<1.0, NH4<0.02, TKN<0.2RX-30-R MW Drain 2210 06/11/030.5 7.00 0.01 7.20 0.10 7.3076 491 0.01 0.0QA Duplicate; BOD5<1.0, NH4<0.02, TKN<0.2RX-30-R MW Drain 2210 08/12/030.5 5.00 0.01 6.03 0.10 6.1373 481 0.01 0.0 6.7 5.1 373 8.5 11.91BOD5<1.0 NH4<0.02, TKN<0.2RX-30-R MW Drain 2210 08/12/030.5 6.00 0.01 6.04 0.10 6.1474 481 0.01 0.0QA Duplicate; BOD5<1.0 NH4<0.02, TKN<0.2RX-30-R MW Drain 2210 09/02/030.5 8.00 0.01 6.00 0.10 6.1074 451 0.01 0.0 6.8 6.4 367 9.4 11.86BOD5<1.0, NH4AsN<0.02, TKN<0.2RX-30-R MW Drain 2210 10/06/030.5 0.50 0.01 2.41 1.90 4.3162 261 0.01 0.0 6.6 4.9 230 10.1 13.01BOD5 <1.0, TSS<1, NH4AsN<0.02RX-30-R STE 11/13/0074.0 81.00 2.40 9.59 15.00 24.59 16.00 170 57 7.00 1.2E+06 6.1 200,000 5.3 8.3 2.9 687 10.5RX-30-RSTE12/12/0018.0 43.00 2.80 9.25 10.00 19.25 11.70 147 100 5.00 720,000 5.9 660,000 5.8 7.7 2.8 705 8.9RX-30-RSTE01/16/0167.0 63.00 7.60 14.40 16.00 30.40 11.70 1437.00 260,000 5.4 350,000 5.5 7.5 1.7 866 11.1RX-30-RSTE02/13/0155.0 58.00 5.00 21.60 16.00 37.60 13.00 13810.00 1.1E+06 6.0 1.6E+06 6.2 8.7 1.4 722 10.3RX-30-RSTE03/12/0129.0 44.00 3.60 23.10 9.90 33.00 11.30 1159.00 86,000 4.9 86,000 4.9 7.4 1.3 637 11.8RX-30-RSTE04/09/0130.0 53.00 1.70 17.40 7.70 25.10 11.70 21110.00 42,000 4.6 40,000 4.6 7.8 1.4 751 12.4RX-30-RSTE05/07/0122.0 41.00 5.70 13.50 14.00 27.50 12.30 2586.00 120,000 5.1 62,000 4.8 8.2 0.8 764 15.3RX-30-RSTE06/11/0117.0 23.00 0.62 4.62 5.00 9.62 13.40 247 49 2.50 24,000 4.4 11,000 4.0 7.6 1.3 667 16.3Oil & Grease <5RX-30-R STE 07/16/0148.0 68.00 4.70 0.03 13.00 13.03 13.30 293 69 6.00 160,000 5.2 140,000 5.1 7.6 1.1 819 19.0RX-30-RSTE08/13/01320.0 26.00 4.80 0.00 11.00 11.00 13.60 281 70 10.00 1.5E+06 6.2 1.2E+06 6.1 7.5 0.8 795 20.3RX-30-RSTE09/10/0125.0 12.00 11.20 0.02 15.00 15.02 14.00 399 54 2.50 320,000 5.5 120,000 5.1 7.5 1.0 927 19.4oil & grease <5RX-30-R STE 10/08/0140.0 37.00 4.00 6.31 16.00 22.31 11.60 325 70 3.00 200,000 5.3 110,000 5.0 7.7 0.7 923 16.6RX-30-RSTE12/03/0177.0 40.00 15.00 0.00 23.00 23.00 10.80 271 58 15.00 520,000 5.7 640,000 5.8 6.7 0.8 810 11.8TKN is est.RX-30-R STE 02/12/0245.0 41.00 9.30 9.90 18.00 27.90 13.40 178 72 6.00 740,000 5.9 580,000 5.8 7.6 1.8 689 9.9RX-30-RSTE04/09/0236.0 27.00 6.60 3.13 14.00 17.13 12.10 232 57 2.50 110,000 5.0 130,000 5.1 7.8 1.5 569 12.6O&G <5RX-30-R STE 06/11/0235.0 39.00 3.00 9.58 9.30 18.88 15.60 185 73 2.50 7,200 3.9 7,400 3.9 7.7 1.5 728 15.1O&G <5RX-30-R STE 08/12/0211.0 7.00 0.81 3.05 4.30 7.35 16.30 222 76 2.50 4,200 3.6 4,000 3.6 7.6 0.7 717 16.2TKN is est., O&G <5Appendix B: Innovative System Field Test DataPage B-61
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesRX-30-RSTE10/07/0230.0 16.00 6.20 8.61 16.00 24.61 11.30 172 74 2.50 240,000 5.4 200,000 5.3 7.4 0.8 624 15.6Oil & grease <5; chloride is est.RX-30-R STE 12/02/0268.0 48.00 13.10 0.02 23.00 23.02 16.80 345 90 5.00 62,000 4.8 46,000 4.7 7.5 1.2 999 12.5RX-30-RSTE02/10/0330.0 16.00 10.70 0.02 18.00 18.02 16.00 268 84 6.00 220,000 5.3 200,000 5.3 7.5 0.8 847 12.2RX-30-RSTE04/09/0352.0 25.00 9.40 0.01 14.00 14.01 15.30 261 85 2.50 100,000 5.0 720,000 5.9 7.4 0.9 831 12.6O&G <5RX-30-R STE 06/11/0319.0 16.00 9.00 0.02 15.00 15.02 15.90 250 89 6.00 30,000 4.5 34,000 4.5 7.1 0.4 837 18.0RX-30-RSTE08/11/0328.0 50.00 7.20 0.02 12.00 12.02 16.20 268 78 6.00 4,000 3.6 2,200 3.3 7.6 0.9 834 19.3RX-30-RSTE10/08/0338.0 15.00 40.00 0.01 46.00 46.01 13.00 385 64 9.00 1.2E+06 6.1 1.1E+06 6.0 7.2 0.7 1000 18.9NH4AsN is est.RX-30-R TFEC 11/13/0019.0 6.00 0.17 13.90 4.80 18.70 14.00 130 581,200 3.1 1,500 3.2 7.9 5.2 653 9.0RX-30-RTFEC12/12/003.0 2.00 0.15 12.20 3.30 15.50 9.49 120 10032,000 4.5 14,000 4.1 7.6 2.7 639 7.7RX-30-RTFEC01/16/013.0 0.00 0.36 22.20 2.60 24.80 10.60 91 1306,800 3.8 6,300 3.8 7.4 3.4 859 7.6RX-30-RTFEC02/13/013.0 3.00 0.17 26.70 2.50 29.20 11.90 96 80720 2.9 780 2.9 8.5 3.0 710 9.4RX-30-RTFEC03/12/014.2 2.00 0.18 30.50 2.90 33.40 10.90 80 545,200 3.7 7,800 3.9 7.4 5.4 497 11.1RX-30-RTFEC04/09/012.9 2.00 0.09 21.10 2.70 23.80 11.80 192 531,600 3.2 1,400 3.1 7.8 4.0 730 10.4QA duplicate;RX-30-R TFEC 04/09/012.0 2.00 0.10 21.20 2.80 24.00 11.70 184 531,900 3.3 1,700 3.2 7.8 4.0 730 10.4 NO3 Est: Nitrate is equal to or less than 21.1 mg/LRX-30-R TFEC 05/07/013.0 4.00 0.20 19.40 2.60 22.00 11.40 200 442,800 3.4 2,400 3.4 7.7 3.2 746 14.4QA duplicate; Nitrate = or < 19.4 mg/L.RX-30-R TFEC 05/07/015.1 4.00 0.23 19.70 2.40 22.10 12.00 204 454,400 3.6 2,400 3.4 7.7 3.2 746 14.4RX-30-RTFEC06/11/011.0 2.00 0.11 5.44 2.10 7.54 12.50 242 481,400 3.1 600 2.8 7.8 2.4 702 15.9RX-30-RTFEP11/13/0017.0 4.00 0.20 17.00 4.10 21.10 14.00 120 574,400 3.6 3,800 3.6 7.9 3.7 667 10.4RX-30-RTFEP12/12/003.0 1.00 0.09 15.00 3.10 18.10 10.30 152 10020,000 4.3 16,000 4.2 7.6 5.8 766 8.7RX-30-RTFEP01/16/012.0 1.00 0.32 24.30 2.60 26.90 10.80 866,200 3.8 8,300 3.9 7.5 4.4 831 9.9RX-30-RTFEP02/13/013.0 5.00 0.46 29.50 2.90 32.40 12.30 90960 3.0 660 2.8 8.4 5.1 767 8.4RX-30-RTFEP03/12/014.8 4.00 0.32 30.40 3.00 33.40 11.40 8112,000 4.1 15,000 4.2 7.5 6.2 675 10.5RX-30-RTFEP04/09/011.2 1.00 0.09 21.30 2.20 23.50 11.40 1861,100 3.0 900 3.0 7.7 4.2 705 10.7BOD5 Estimate: Depletion requirement not metRX-30-R TFEP 05/07/013.4 4.00 0.34 20.50 2.70 23.20 11.60 2044,000 3.6 2,000 3.3 7.8 3.5 740 15.2RX-30-RTFEP06/11/011.4 2.00 0.09 7.18 2.00 9.18 13.60 238 502,800 3.4 2,400 3.4 7.6 3.4 729 16.5BOD-5 is estimate.RX-30-R TFEP 07/16/012.4 3.00 0.27 4.16 2.00 6.16 12.40 251 67400 2.6 440 2.6 7.8 3.4 792 18.7BOD5 is estimate.RX-30-R TFEP 07/16/013.7 2.00 0.30 4.11 2.00 6.11 12.70 247 67500 2.7 190 2.3 7.8 3.4 792 18.7QA Duplicate; BOD5 is estimate.RX-30-R TFEP 08/13/0111.0 18.00 1.30 1.60 4.50 6.10 13.20 261 69760 2.9 760 2.9 7.8 3.2 785 20.2QA Duplicate;RX-30-R TFEP 08/13/019.8 9.00 1.40 1.49 4.80 6.29 12.80 263 6912,000 4.1 13,000 4.1 7.8 3.2 785 20.2RX-30-RTFEP09/10/018.5 5.00 6.70 0.63 9.50 10.13 14.10 382 546,000 3.8 4,800 3.7 7.4 1.6 980 19.0RX-30-RTFEP10/08/0128.0 21.00 1.70 11.40 6.50 17.90 12.20 293 7215,000 4.2 12,000 4.1 7.6 2.8 738 15.9QA Duplicate;RX-30-R TFEP 10/08/0130.0 20.00 1.90 11.50 6.10 17.60 12.10 295 7018,000 4.3 11,000 4.0 7.6 2.8 738 15.9RX-30-RTFEP12/03/0174.0 10.00 8.50 0.13 14.00 14.13 9.80 261 5862,000 4.8 84,000 4.9 6.8 0.9 885 12.2TKN is est.RX-30-R TFEP 12/03/0119.0 7.00 8.50 0.10 17.00 17.10 9.90 251 5762,000 4.8 72,000 4.9 6.8 0.9 885 12.2QA duplicate - TKN is est.RX-30-R TFEP 02/12/0290.0 44.00 5.80 14.50 18.00 32.50 15.20 140 7164,000 4.8 82,000 4.9 7.6 3.7 692 8.1RX-30-RTFEP04/09/0251.0 17.00 3.20 8.25 8.20 16.45 12.20 210 557,000 3.8 6,600 3.8 7.8 4.7 552 11.3RX-30-RTFEP06/11/0214.0 7.00 0.20 14.50 2.90 17.40 14.50 153 74520 2.7 550 2.7 7.9 4.9 721 14.6RX-30-RTFEP08/12/0217.0 43.00 0.30 5.49 2.90 8.39 15.40 212 75620 2.8 620 2.8 7.8 2.6 726 18.0QA, TKN, BOD5 is est.RX-30-R TFEP 08/12/0225.0 31.00 0.29 5.49 2.60 8.09 15.30 211 751,800 3.3 1,300 3.1 7.8 2.6 726 18.0TKN, BOD5 is est.RX-30-R TFEP 10/07/0212.0 6.00 1.90 15.70 5.40 21.10 11.00 116 7410,000 4.0 12,000 4.1 7.4 3.5 619 14.1chloride is est.RX-30-R TFEP 12/02/0217.0 8.00 6.40 1.43 11.00 12.43 16.70 312 923,000 3.5 3,400 3.5 7.1 3.7 978 10.1RX-30-RTFEP12/02/0214.0 4.00 6.00 1.59 10.00 11.59 16.30 315 905,600 3.7 4,200 3.6 7.4 3.6 980 11.7QA DuplicateRX-30-R TFEP 02/10/037.6 9.00 4.20 2.30 5.60 7.90 15.30 230 902,300 3.4 2,000 3.3 7.5 2.4 809 9.8RX-30-RTFEP04/09/0311.0 5.00 4.40 0.28 6.90 7.18 15.00 245 8656,000 4.7 54,000 4.7 7.5 1.3 805 13.0RX-30-RTFEP04/09/030.5 3.00 4.50 0.28 7.00 7.28 15.10 245 8694,000 5.0 70,000 4.8 7.5 1.3 793 13.3QA Duplicate; BOD5<1.0RX-30-R TFEP 06/11/038.2 8.00 7.20 2.24 10.00 12.24 14.60 220 88500 2.7 420 2.6 7.3 2.8 817 17.3RX-30-RTFEP08/11/033.0 3.00 3.50 1.26 5.50 6.76 15.40 244 7826 1.412 1.1 7.7 1.8 827 18.6BOD5 is est.RX-30-R TFEP 10/08/0318.0 3.00 35.00 1.18 41.00 42.18 13.20 358 65390,000 5.6 360,000 5.6 7.4 2.4 970 18.1Standard-HLE04/22/0237.00 0.04 64.00 64.04 10.007.7 0.9 819 11.7Standard-HLE10/23/0217.0 13.00 54.00 18.00 53.00 71.00 0.70 722 685,000 3.7 2,400 3.4 7.8 4.5 1584 11.0Standard-HLE11/11/0226.0 120.00 24.00 132.00 26.00 158.00 0.55 210 67140 2.198 2.0 7.5 2.0 1519 8.1BOD5 >58Standard-H LE 12/16/0231.0 41.00 0.23 186.00 0.10 186.10 1.8824 73400 2.6 220 2.3 6.7 4.5 1712 6.2BOD5 is est., TKN<0.2Standard-H LE 01/13/031.0 6.00 0.79 141.00 1.00 142.00 0.8712 7440 1.62 0.3 6.5 5.2 1392 6.4BOD5 & pH are est.Standard-H LE 02/24/033.9 6.00 1.05 58.30 2.70 61.00 5.39 190 8123,000 4.4 32,000 4.5 7.3 5.3 1081 5.0Standard-HLE03/24/031.30 60.90 4.80 65.70 7.987.5 5.5 1105 7.9Standard-HLE04/14/031.8 5.00 0.07 67.20 0.10 67.30 4.2492 8540 1.630 1.5 7.3 5.6 992 8.1BOD5 is est., TKN <0.2Standard-H LE 05/12/0337.0 50.00 4.40 52.10 4.80 56.90 5.53 118 92640,000 5.8 540,000 5.7 7.3 0.6 974 8.6Standard-HLE06/23/038.1 17.00 0.96 84.50 3.30 87.80 3.2529 966 0.87 0.8 6.7 1.8 1094 12.7Standard-HLE07/28/034.4 6.00 0.41 48.00 2.00 50.00 1.6346 1407,800 3.9 4,400 3.6 7.0 1.1 1014 16.4Standard-HLE08/25/0313.0 20.00 27.00 30.10 31.00 61.10 7.34 248 220200,000 5.3 58,000 4.8 7.0 0.7 1512 16.1Standard-HLE09/08/038.7 8.00 23.00 45.50 24.00 69.50 9.36 197 240130 2.1 110 2.0 7.2 1.6 1491 14.0TKN is est.Standard-H LE 10/15/034.6 9.00 0.18 50.70 0.10 50.80 1.7235 20013,000 4.1 8,000 3.9 6.6 2.8 1180 11.1TKN<0.2Standard-H LE 01/26/048.5 11.00 18.00 52.10 16.00 68.10 5.48 136 2208,800 3.9 6,600 3.8 7.4 0.7 1438 4.2TKN is est.Standard-H LE 04/12/0430.0 28.00 41.00 4.38 46.00 50.38 14.80 354 2002,600 3.4 1,000 3.0 7.2 0.5 1353 7.9Appendix B: Innovative System Field Test DataPage B-62
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesStandard-HLE07/14/04130.0 150.00 36.00 2.50 46.00 48.50 17.20 480 837.4 2.1 1164 13.2fecal, e.coli cancelledStandard-H LE 10/18/042.0 2.00 1.60 38.30 3.40 41.70 6.099 1000110 2.0 120 2.1 6.8 3.1 2587 10.7Standard-HMW Drain 2222 05/09/020.03 8.50 0.30 8.80127.0 7.1 228 8.0 27.40Well DevelopmentStandard-H MW Drain 2222 05/09/020.03 8.47 0.40 8.87127.0 7.1 228 8.0QA Duplicate; Well DevelopmentStandard-H MW Drain 2222 05/20/020.5 1.00 0.01 9.27 0.30 9.5730 111 0.01 0.0 7.0 6.8 236 8.3 27.38NH4 <0.02; BOD <1Standard-H MW Drain 2222 06/24/020.5 0.50 0.03 9.89 0.10 9.9931 101 0.01 0.0 7.1 8.3 208 8.9 27.42TKN <0.2, TSS <1, BOD5<1.0Standard-H MW Drain 2222 07/30/020.5 0.50 0.03 8.49 0.10 8.5935 91 0.01 0.0 7.1 8.6 196 8.5 21.46TKN <0.2, bod5 <1.0, tss <1Standard-H MW Drain 2222 07/30/020.5 0.50 0.02 8.82 0.20 9.0235 81 0.01 0.0 7.1 8.6 196 8.5QA Duplicate; bod5 <1.0, tss <1Standard-H MW Drain 2222 09/25/020.5 0.50 0.02 7.38 0.10 7.4837 71 0.01 0.0 7.1 7.9 176 8.5 27.45BOD5 <1; TKN < 0.2; TSS <1Standard-H MW Drain 2222 09/25/020.5 0.50 0.01 7.28 0.10 7.3837 71 0.01 0.0 7.1 7.9 176 8.5QA Duplicate; NH4 < 0.02; BOD<1; TKN <0.2; TSS <1Standard-H MW Drain 2222 10/22/020.5 1.00 0.01 7.57 0.30 7.8740 81 0.01 0.0 7.1 6.9 172 8.5 26.28BOD5<1.0, NH4 <0.02Standard-H MW Drain 2222 11/12/020.5 0.50 0.03 7.83 0.20 8.0340 81 0.01 0.0 6.9 7.1 177 7.8 26.32BOD5 <1.0, TSS <1Standard-H MW Drain 2222 12/17/020.5 0.50 0.01 6.57 0.10 6.6740 91 0.01 0.0 6.9 5.4 192 7.6 27.44BOD5<1.0, TSS<1, NH4<0.02, TKN<0.2Standard-H MW Drain 2222 12/17/020.5 0.50 0.01 6.38 0.10 6.4840 91 0.01 0.0QA Duplicate; BOD<1.0, TSS<1, NH4<0.02, TKN<0.2Standard-H MW Drain 2222 01/13/030.5 0.50 0.01 6.39 0.10 6.4942 111 0.01 0.0 6.8 8.3 196 7.5 27.50BOD5 <1.0, TSS <1, NH4 <0.02, TKN <0.2; pH is est.Standard-H MW Drain 2222 02/24/030.5 5.00 0.04 6.11 0.30 6.4142 131 0.01 0.0 7.0 7.7 199 6.9 27.50BOD5<1.0Standard-H MW Drain 2222 03/25/030.5 1.00 0.01 6.84 0.10 6.9441 161 0.01 0.0 6.5 9.4 216 7.7 26.54BOD5<1.0, NH4AsN <0.02, TKN <0.2Standard-H MW Drain 2222 04/14/030.5 0.50 0.01 7.33 0.10 7.4342 161 0.01 0.0 7.1 7.1 220 8.0 27.47BOD5<1.0, TSS <1, NH4 <0.02, TKN <0.2Standard-H MW Drain 2222 05/13/030.5 0.50 0.05 10.70 0.10 10.8041 201 0.01 0.0 6.7 8.1 255 8.3 26.63BOD5<1.0, TSS <1, TKN <0.2Standard-H MW Drain 2222 06/24/030.5 0.50 0.01 16.30 0.10 16.4040 241 0.01 0.0 6.9 5.0 304 8.5 27.43BOD5<1.0, TSS <1, NH4<0.02, TKN<0.2Standard-H MW Drain 2222 07/28/030.5 0.50 0.05 20.30 2.00 22.3039 261 0.01 0.0 7.0 7.3 344 8.7 27.44BOD5<1.0, TSS<1Standard-H MW Drain 2222 08/26/030.5 0.50 0.01 25.00 0.10 25.1038 271 0.01 0.0 7.0 7.8 381 8.6 27.51BOD5<1.0, TSS<1, NH4AsN<0.02, TKN<0.2Standard-H MW Drain 2222 09/08/030.5 0.50 0.01 26.60 0.10 26.7037 261 0.01 0.0 7.0 8.9 389 8.9 27.51TKN<0.2, NH4AsN<0.02, TSS<1, BOD5<1Standard-H MW Drain 2222 10/14/030.5 0.50 0.01 29.60 0.10 29.7036 271 0.01 0.0 7.0 7.3 417 8.3 27.50BOD5<1, TSS<1, NH4<0.02, TKN<0.2Standard-H MW Drain 2222 01/26/040.02 41.50 0.10 41.60291 0.01 0.0 6.9 9.1 528 7.5 27.38TKN<0.2Standard-H MW Drain 2222 04/12/040.04 45.40 0.10 45.50331 0.01 0.0 6.8 5.7 555 9.1 27.38TKN<0.2Standard-H MW Drain 2222 07/14/040.01 43.10 0.10 43.20391 0.01 0.0 6.9 4.6 579 9.4 27.44NH4<0.02, TKN<0.2Standard-H MW Drain 2222 07/14/040.02 43.60 0.10 43.70381 0.01 0.0QA Duplicate; TKN<0.2Standard-H MW Drain 2222 10/18/040.01 42.40 0.20 42.60451 0.01 0.0 6.7 5.2 560 9.9 27.67NH4 <0.02Standard-H STE 03/26/01370.0 87.00 66.00 0.04 84.00 84.04 14.20 395 51 40.00 540,000 5.7 620,000 5.8 7.9 1.1 1155 13.8 Nitrate value equal to less than 0.0359Standard-H STE 04/23/01220.0 72.00 61.00 0.02 95.00 95.02 14.80 408 45 28.00 280,000 5.4 560,000 5.7 8.1 0.4 964 14.0Standard-HSTE05/21/01200.0 110.00 56.00 0.00 70.00 70.00 12.10 307 42 26.00 48,000 4.7 10,000 4.0 7.6 0.8 789 17.2Standard-HSTE06/25/01630.0 49.00 88.00 0.00 100.00 100.00 17.90 496 95 30.00 1.8E+06 6.3 1.5E+06 6.2 7.1 0.6 1219 20.9Standard-HSTE07/30/01690.0 71.00 39.00 0.00 52.00 52.00 10.90 308 36 15.00 140,000 5.1 150,000 5.2 6.2 0.6 874 16.6Standard-HSTE08/27/011000.0 200.00 64.00 0.02 96.00 96.02 14.30 548 49 52.00 18,000 4.3 38,000 4.6 6.1 0.5 1321 20.1BOD5 toxic interferenceStandard-H STE 09/24/01420.0 67.00 72.00 0.02 85.00 85.02 14.40 455 58 21.00 44,000 4.6 36,000 4.6 6.9 0.5 1090 18.8Standard-HSTE10/22/01360.0 58.00 71.00 0.00 85.00 85.00 13.90 480 49 24.00 22,000 4.3 26,000 4.4 7.6 0.4 1208 14.1Standard-HSTE11/19/01330.0 75.00 57.00 0.00 70.00 70.00 11.20 391 3788,000 4.9 74,000 4.9 7.4 0.8 1058 14.3Standard-HSTE03/25/02420.0 73.00 69.00 0.00 89.00 89.00 11.70 350 42 26.00 1.4E+06 6.1 1.2E+06 6.1 7.0 0.8 1088 10.2Standard-HSTE04/22/02460.0 55.00 27.00 0.06 74.00 74.06 9.48 340 42 20.00 640,000 5.8 52,000 4.7 6.9 6.5 991 13.9Standard-HSTE05/20/02600.0 48.00 72.00 0.01 90.00 90.01 11.90 395 45 16.00 5.2E+06 6.7 700,000 5.8 6.6 0.3 1209 14.5 BOD5 is est.Standard-H STE 06/24/02440.0 60.00 95.00 0.02 93.00 93.02 14.60 458 52 20.00 3.5E+07 7.5 1.1E+07 7.0 6.9 0.6 1251 16.9Standard-HSTE06/24/02440.0 60.00 95.00 0.02 93.00 93.02 14.60 458 52 20.00 3.5E+07 7.5 1.1E+07 7.0 6.9 0.6 1251 16.9Standard-HSTE07/29/02430.0 42.00 81.00 0.02 96.00 96.02 15.10 425 65 46.00 8.4E+07 7.9 7.4E+07 7.9 6.7 0.6 1137 20.9Standard-HSTE09/23/02400.0 70.00 85.00 0.01 98.00 98.01 16.80 581 72 28.007.3 0.5 1364 17.9E. coli, fecal coliform VOIDStandard-H STE 09/25/022.2E+08 8.3 8.4E+07 7.9 7.6 0.9 1509 18.7Bacteria re-sampleStandard-H STE 10/23/02410.0 72.00 96.00 0.01 100.00 100.01 19.80 752 78 24.00 3.7E+08 8.6 1.3E+08 8.1 8.0 0.8 1691 14.7TSS is est.Standard-H STE 11/11/02320.0 35.00 80.00 0.01 100.00 100.01 18.00 832 82 2.50 7.6E+06 6.9 980,000 6.0 8.3 0.8 1656 14.0O&G <5Standard-H STE 12/16/02500.0 86.00 73.00 0.04 76.00 76.04 18.90 679 75 40.00 9.0E+07 8.0 5.0E+07 7.7 7.4 0.9 1740 12.2Standard-HSTE01/13/03310.0 52.00 80.00 0.03 90.00 90.03 18.60 538 73 26.00 140,000 5.1 200,000 5.3 7.1 0.6 1467 11.0pH is est.Standard-H STE 02/24/03340.0 70.00 73.00 0.04 78.00 78.04 16.10 569 78 20.00 1.0E+06 6.0 920,000 6.0 8.2 0.6 1461 11.8Standard-HSTE03/24/03430.0 56.00 83.00 0.02 94.00 94.02 18.10 584 86 28.00 2.1E+06 6.3 1.7E+06 6.2 7.1 0.9 1558 12.1Standard-HSTE04/14/03420.0 58.00 86.00 0.02 99.00 99.02 17.70 511 96 19.00 7.6E+07 7.9 4.2E+07 7.6 7.0 0.7 1418 12.3Standard-HSTE05/12/03460.0 75.00 81.00 0.01 98.00 98.01 16.80 430 95 24.00 186,000 5.3 142,000 5.2 5.7 1.0 1300 12.5Standard-HSTE06/23/03270.0 110.00 53.00 0.01 66.00 66.01 13.30 425 110 32.00 1.9E+06 6.3 1.4E+06 6.1 7.0 0.8 1277 16.2Standard-HSTE07/28/03280.0 56.00 73.00 0.02 91.00 91.02 15.90 441 170 48.00 840,000 5.9 900,000 6.0 6.6 0.7 1548 18.1Standard-HSTE08/25/03220.0 16.00 76.00 0.01 84.00 84.01 18.00 485 240 33.00 2.9E+06 6.5 2.2E+06 6.3 6.6 0.7 1797 17.3O&G is est.Standard-H STE 09/08/03260.0 23.00 68.00 0.01 73.00 73.01 14.90 405 240 22.00 390,000 5.6 190,000 5.3 6.6 0.6 1681 15.9Standard-HSTE10/15/03240.0 64.00 72.00 0.01 83.50 83.51 17.80 475 220 22.00 3.4E+07 7.5 1.8E+07 7.3 6.8 1.1 1720 12.3Standard-HSTE01/26/04350.0 78.00 70.00 0.01 84.00 84.01 17.70 415 150 22.00 1.0E+06 6.0 660,000 5.8 6.9 1.4 1434 7.4Standard-HSTE04/12/04270.0 71.00 61.00 0.00 73.00 73.00 13.30 338 180 35.00 5.2E+06 6.7 1.4E+06 6.1 6.8 0.8 1339 11.6nitrite<0.0050Standard-H STE 07/14/04380.0 100.00 52.00 0.02 71.00 71.02 16.30 490 68 57.00 6.1E+07 7.8 4.9E+07 7.7 7.2 1.1 1359 16.8Standard-HSTE10/18/04210.0 35.00 51.00 0.01 68.00 68.01 12.40 310 180 16.00 7.8E+06 6.9 5.0E+06 6.7 6.8 1.1 1444 14.6Standard-PALE04/22/028.4 28.00 38.00 0.36 37.00 37.36 3.23 248 2636,000 4.6 38,000 4.6 7.5 2.2 654 8.0Appendix B: Innovative System Field Test DataPage B-63
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesStandard-PALE04/29/025.5 9.00 34.00 6.80 34.00 40.80 2.84 210 2310,000 4.0 8,200 3.9 7.9 4.2 654 7.9Standard-PALE06/03/023.6 7.00 13.20 43.30 13.00 56.30 1.6526 181,700 3.2 1,600 3.2 6.5 3.9 501 13.1Standard-PALE07/15/027.2 8.00 1.60 7.50 5.10 12.60 2.6285 2042,000 4.6 40,000 4.6 6.7 2.2 324 16.1Standard-PALE08/05/026.1 18.00 14.70 25.20 16.00 41.20 3.8190 26200 2.3 240 2.4 6.8 1.7 373 14.8cond. is est.Standard-PA LE 09/09/027.9 10.00 4.00 39.70 5.70 45.40 2.828 25460 2.790 2.0 6.1 1.4 448 13.5Standard-PALE09/30/025.4 7.00 3.30 44.30 3.90 48.20 3.561 228 0.94 0.6 5.2 3.5 437 11.2alk. <1Standard-PA LE 10/29/0210.0 4.00 3.40 46.50 4.10 50.60 4.041 2636 1.622 1.3 5.9 4.5 475 7.1alk. <1Standard-PA LE 11/18/023.4 1.00 5.50 23.10 7.00 30.10 3.9920 252,600 3.4 260 2.4 6.1 5.3 344 6.0Standard-PALE01/21/032.8 1.00 9.20 29.90 9.80 39.70 5.9579 241,800 3.3 1,800 3.3 6.6 4.1 557 4.2Standard-PALE02/05/031.4 1.00 12.50 37.30 15.00 52.30 5.1580 25260 2.4 190 2.3 6.8 7.2 597 3.0BOD5 is est.Standard-PA LE 03/03/031.8 1.00 14.00 39.50 16.00 55.50 5.0468 2666 1.824 1.4 6.8 5.6 586 3.1Standard-PALE03/31/031.8 10.00 7.50 36.10 8.30 44.40 4.5146 2928 1.414 1.1 6.9 3.5 512 6.8Standard-PALE05/21/034.3 14.00 4.10 28.20 5.30 33.50 5.3718 26140 2.1 400 2.6 6.1 4.5 368 10.2Standard-PALE06/04/031.5 4.00 7.90 32.70 8.00 40.70 5.6336 25106 2.070 1.8 6.5 5.4 462 12.6BOD5 is est.Standard-PA LE 07/07/032.1 6.00 3.30 33.30 4.70 38.00 4.523 2716 1.26 0.8 5.5 4.3 414 16.3Standard-PALE08/04/032.2 5.00 2.30 30.10 3.60 33.70 4.786 2613,000 4.1 13,000 4.1 5.9 2.0 402 17.3Standard-PALE09/08/0389.0 50.00 1.40 33.50 5.90 39.40 5.818 292 0.32 0.3 6.1 2.1 424 14.0Standard-PALE09/29/0340.0 100.00 2.80 120.00 3.70 123.70 2.2316 3540 1.660 1.8 6.4 2.6 1161 13.9Standard-PALE04/12/042.5 8.00 17.00 49.40 18.00 67.40 4.682 1401,400 3.120 1.3 5.8 5.5 944 7.8BOD5 is est.Standard-PA LE 07/14/043.5 19.00 7.20 24.20 9.70 33.90 8.661 12046,000 4.7 34,000 4.5 5.7 3.5 666 17.0Standard-PALE10/18/042.0 4.00 9.80 56.90 13.00 69.90 4.791 1302 0.32 0.3 4.6 4.3 1026 9.1alk.<1Standard-PA MW Drain 2042 03/06/010.0 5.00 0.00 2.96 0.10 3.06 0.2060 12 0.32 0.3 7.6 6.6 163 8.5 12.87TKN <0.2Standard-PA MW Drain 2042 04/03/010.0 2.00 0.00 0.78 0.10 0.88 0.2167 12 0.32 0.3 7.1 5.3 143 7.2 12.70TKN <0.2Standard-PA MW Drain 2042 05/01/010.0 0.00 0.00 0.62 0.10 0.72 0.2067 12 0.32 0.3 7.1 6.9 135 7.0 12.85TKN <0.2Standard-PA MW Drain 2042 06/05/011.0 3.00 0.00 0.56 0.10 0.66 0.2162 32 0.32 0.3 7.4 8.0 141 8.2 13.24BOD-5 is estimate; TKN <0.2Standard-PA MW Drain 2042 07/10/010.0 2.00 0.00 0.75 0.10 0.85 0.2059 71 0.01 0.0 6.8 8.5 153 11.8 13.64TKN <0.2Standard-PA MW Drain 2042 08/07/010.0 2.00 0.00 1.63 0.10 1.73 0.2059 81 0.01 0.0 7.0 7.8 162 14.9 13.88TKN <0.2Standard-PA MW Drain 2042 10/30/010.03 1.640.2251 0.01 0.0 7.2 7.3 148 11.7 14.20TKN cancelled, samples were dumpedStandard-PA MW Drain 2042 03/05/020.5 0.50 0.00 19.30 0.20 19.50 0.2048 211 0.01 0.0 7.0 8.8 332 8.3 14.10BOD5 <1, TSS <1Standard-PA MW Drain 2042 04/22/020.5 2.00 0.01 36.60 0.10 36.7036 311 0.01 0.0 6.8 8.3 531 10.4 13.67NH4 <0.02; BOD <1; TKN<0.2Standard-PA MW Drain 2042 04/29/020.5 0.50 0.01 36.00 0.40 36.4041 291 0.01 0.0 6.9 7.8 516 9.6 13.70TSS <1; NH4 <0.02; BOD <1Standard-PA MW Drain 2219 05/10/020.05 1.40 0.10 1.5041 0.01 0.0 7.2 1.8 137 8.1 13.91TKN <0.2Standard-PA MW Drain 2219 05/10/020.04 1.39 0.20 1.5941 0.01 0.0 7.2 1.8 137 8.1QA Duplicate; well developmentStandard-PA MW Drain 2219 06/03/020.5 5.00 0.03 2.12 0.40 2.5243 41 0.01 0.0 7.1 2.9 130 8.1 13.98BOD5 <1.0Standard-PA MW Drain 2219 07/15/020.5 2.00 0.04 2.27 0.10 2.3746 51 0.01 0.0 7.5 3.5 128 8.5 14.34TKN <0.2, BOD5<1.0Standard-PA MW Drain 2219 08/06/021.2 2.00 0.01 2.44 0.10 2.5442 41 0.01 0.0 7.1 3.1 128 8.2 14.53TKN <0.2, NH4 <0.02, bod5 is est.Standard-PA MW Drain 2219 09/09/020.5 3.00 0.01 2.40 0.10 2.5043 41 0.01 0.0 6.9 2.9 126 8.5 14.80BOD5<1.0, TKN<0.2, NH4<0.02Standard-PA MW Drain 2219 09/09/020.5 4.00 0.01 2.39 0.10 2.4943 41 0.01 0.0 6.9 2.9 126 8.5QA Duplicate; BOD5<1.0, TKN<0.2Standard-PA MW Drain 2219 09/30/020.5 2.00 0.03 2.28 0.10 2.3845 41 0.01 0.0 6.9 3.4 125 8.4 14.85BOD5 <1; TKN < 0.2Standard-PA MW Drain 2219 09/30/020.5 2.00 0.03 2.30 0.10 2.4046 41 0.01 0.0QA Duplicate; BOD5 <1.0, TKN <0.2Standard-PA MW Drain 2219 10/28/020.5 1.00 0.01 2.17 0.10 2.2746 41 0.01 0.0 7.1 3.0 120 8.9 14.88BOD5<1.0, NH4 <0.02, TKN <0.2Standard-PA MW Drain 2219 11/19/020.5 0.50 0.01 2.24 0.10 2.3446 41 0.01 0.0 7.0 3.6 138 8.8 15.02BOD5 <1.0, TSS<1 NH4 <0.02, TKN <0.2Standard-PA MW Drain 2219 11/19/020.5 0.50 0.01 2.24 0.10 2.3446 41 0.01 0.0QA Duplicate; BOD<1.0, TSS<1 NH4 <0.02, TKN <0.2Standard-PA MW Drain 2219 01/21/030.5 0.50 0.01 1.99 0.10 2.0945 51 0.01 0.0 7.1 2.7 134 8.6 14.90BOD5 <1.0, TSS <1, NH4 <0.02, TKN <0.2Standard-PA MW Drain 2219 02/03/030.5 2.00 0.01 2.44 0.10 2.5444 51 0.01 0.0 7.1 3.3 140 8.4 14.88BOD5<1.0, NH4AsN <0.02, TKN <0.2Standard-PA MW Drain 2219 03/03/030.5 3.00 0.01 2.82 0.10 2.9245 41 0.01 0.0 7.0 2.7 139 8.3 14.82BOD5<1.0, NH4AsN <0.02, TKN <0.2Standard-PA MW Drain 2219 03/03/030.5 1.00 0.01 2.81 0.10 2.9145 51 0.01 0.0QA Duplicate; BOD<1.0, NH4AsN <0.02, TKN <0.2Standard-PA MW Drain 2219 03/31/031.1 2.00 0.03 2.67 0.30 2.9745 41 0.01 0.0 7.1 2.7 138 8.4 14.86BOD5 is est.Standard-PA MW Drain 2219 05/21/030.5 2.00 0.01 4.16 0.10 4.2645 51 0.01 0.0 6.8 7.9 152 8.4 14.99BOD5<1.0, NH4<0.02, TKN<0.2Standard-PA MW Drain 2219 06/04/030.5 1.00 0.01 3.96 0.10 4.0646 51 0.01 0.0 7.2 4.3 149 7.9 15.07BOD5<1.0, NH4<0.02, TKN<0.2Standard-PA MW Drain 2219 06/04/030.5 2.00 0.01 3.96 0.10 4.0646 51 0.01 0.0QA Duplicate; BOD5<1.0, NH4<0.02, TKN<0.2Standard-PA MW Drain 2219 07/07/030.5 1.00 0.01 4.43 0.10 4.5346 51 0.01 0.0 7.0 3.9 156 9.9 15.23BOD5<1.0, NH4<0.02, TKN<0.2Standard-PA MW Drain 2219 08/04/030.5 0.50 0.01 3.77 0.10 3.8746 51 0.01 0.0 7.2 3.7 153 8.3 15.53BOD5<1.0, TSS<1 NH4<0.02, TKN<0.2Standard-PA MW Drain 2219 08/04/030.5 1.00 0.01 3.79 0.10 3.8946 51 0.01 0.0QA Duplicate; BOD5<1.0 NH4<0.02, TKN<0.2Standard-PA MW Drain 2219 09/08/030.5 0.50 0.01 3.68 0.10 3.7846 51 0.01 0.0 7.1 5.6 152 8.2 15.71TKN<0.2, NH4AsN<0.02, TSS<1, BOD5<1Standard-PA MW Drain 2219 09/08/030.5 0.50 0.01 3.69 0.10 3.7946 61 0.01 0.0QA Duplicate; TKN<0.2, NH4<0.02, TSS<1, BOD5<1Standard-PA MW Drain 2219 09/30/030.5 2.00 0.03 3.39 0.10 3.4946 51 0.01 0.0 7.1 4.7 149 8.3 15.78TKN<0.2, BOD5<1Standard-PA MW Drain 2219 09/30/030.5 1.00 0.02 3.38 0.10 3.4846 51 0.01 0.0QA Duplicate; TKN<0.2, BOD5<1Standard-PA MW Drain 2219 01/26/040.01 2.62 0.10 2.7251 0.01 0.0 7.0 6.5 143 8.2 15.86NH4<0.02, TKN<0.2Standard-PA MW Drain 2219 04/12/040.01 5.74 0.10 5.8471 0.01 0.0 7.0 3.7 176 8.7 15.05NH4<0.02, TKN<0.2Standard-PA MW Drain 2219 07/12/040.01 4.00 0.10 4.1067.2 4.8 157 8.8 15.60NH4<0.02, TKN<0.2Standard-PA MW Drain 2219 10/18/040.01 2.60 0.10 2.7051 0.01 0.0 7.2 4.0 149 8.5 15.99NH4 <0.02, TKN<0.2Standard-PA MW Drain 2219 10/18/040.01 2.59 0.10 2.6951 0.01 0.0QA Duplicate; NH4 <0.02, TKN<0.2Standard-PA STE 03/05/01360.0 510.00 51.00 0.00 126.00 126.00 37.40 257 44 53.00 5.0E+06 6.7 2.8E+06 6.4 7.0 1.0 730 8.6Appendix B: Innovative System Field Test DataPage B-64
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesStandard-PASTE04/02/01120.0 79.00 54.00 0.02 68.00 68.02 11.10 266 52 16.00 150,000 5.2 12,000 4.1 7.7 0.3 762 5.9Standard-PASTE04/30/01170.0 310.00 48.00 0.02 63.00 63.02 6.15 237 60 28.00 1.3E+07 7.1 400,000 5.6 7.8 2.0 700 11.3ST pumped 4/6/2001Standard-PA STE 06/04/01120.0 340.00 64.00 0.07 78.00 78.07 9.14 346 39 13.00 3.3E+07 7.5 4.7E+07 7.7 8.2 1.4 877 13.6Standard-PASTE07/09/01200.0 310.00 50.00 0.02 74.00 74.02 13.10 412 38 20.00 58,000 4.8 80,000 4.9 7.7 1.4 444 16.2Standard-PASTE08/06/01260.0 420.00 48.00 0.02 95.00 95.02 12.30 381 41 29.00 540,000 5.7 820,000 5.9 7.8 0.8 880 18.2Standard-PASTE09/04/0174.0 180.00 48.00 0.12 68.00 68.12 9.38 369 30 10.00 860,000 5.9 340,000 5.5 8.1 1.4 873 18.4Standard-PASTE10/01/01141.0 200.00 42.00 0.25 67.00 67.25 8.48 316 33 8.00 760,000 5.9 400,000 5.6 7.8 1.4 703 12.0Standard-PASTE10/29/01110.0 120.00 52.00 0.20 64.00 64.20 9.99 346 24 13.00 460,000 5.7 320,000 5.5 8.0 1.9 807 11.2Standard-PASTE03/04/0272.0 46.00 40.00 0.40 49.00 49.40 6.30 266 22 12.00 6.2E+06 6.8 5.8E+06 6.8 8.0 0.9 677 8.0Standard-PASTE04/22/02230.0 300.00 51.00 0.07 63.00 63.07 8.82 285 25 16.00 1.1E+07 7.0 1.8E+06 6.3 8.0 2.8 725 8.4Standard-PASTE04/29/02400.0 230.00 45.00 0.05 110.00 110.05 11.00 280 24 29.00 3.4E+07 7.5 2.5E+07 7.4 7.8 2.0 756 8.1Standard-PASTE06/03/0255.0 60.00 45.00 0.04 55.00 55.04 6.02 250 17 56.00 1.0E+06 6.0 700,000 5.8 7.8 3.5 627 15.0Standard-PASTE07/15/0251.0 36.00 52.00 0.04 60.00 60.04 7.02 311 19 7.00 2.2E+08 8.3 2.1E+08 8.3 7.9 0.8 725 18.6Standard-PASTE08/05/02140.0 240.00 56.00 0.02 69.00 69.20 8.39 309 25 6.00 160,000 5.2 150,000 5.2 7.9 1.3 562 16.1TSS est, cond. is est.Standard-PA STE 09/09/0286.0 190.00 50.00 0.10 69.00 69.10 9.35 290 26 16.00 1.4E+07 7.1 5.6E+06 6.7 7.7 1.5 704 19.3TSS, NH4 is est.Standard-PA STE 09/30/0256.0 55.00 55.00 0.11 59.00 59.10 8.81 312 23 7.00 1.3E+07 7.1 640,000 5.8 7.5 2.1 686 12.3Standard-PASTE10/29/0265.0 83.00 55.00 0.10 65.00 65.10 9.17 298 28 6.00 640,000 5.8 74,000 4.9 7.8 2.2 705 8.4TSS is est.Standard-PA STE 11/18/0229.0 26.00 44.00 0.10 60.00 60.10 7.41 273 25 2.50 1.7E+08 8.2 1.4E+07 7.1 7.9 3.4 730 6.2O&G <5Standard-PA STE 01/21/0330.0 120.00 32.00 0.02 50.00 50.02 6.91 302 25 13.00 900,000 6.0 320,000 5.5 8.1 2.4 734 4.9Standard-PASTE02/05/0350.0 200.00 39.00 0.05 63.00 63.05 7.07 302 25 6.00 50,000 4.7 38,000 4.6 7.9 6.0 730 3.1Standard-PASTE03/03/03150.0 260.00 56.00 0.02 69.00 69.02 9.32 312 27 7.00 1.6E+06 6.2 54,000 4.7 7.9 4.0 768 3.1Standard-PASTE03/31/0334.0 39.00 6.60 0.04 53.00 53.04 6.65 345 28 6.00 160,000 5.2 26,000 4.4 7.9 2.8 828 7.2Standard-PASTE05/21/03130.0 220.00 44.00 0.03 60.00 60.03 7.46 296 25 20.00 1.6E+06 6.2 820,000 5.9 6.9 1.1 628 12.2Standard-PASTE06/04/03260.0 226.00 51.00 0.09 71.00 71.09 7.90 306 27 17.00 142,000 5.2 114,000 5.1 7.8 2.2 731 13.5Standard-PASTE07/07/03110.0 300.00 51.00 0.11 58.00 58.11 8.41 305 28 20.00 240,000 5.4 68,000 4.8 7.5 2.1 735 18.0Standard-PASTE08/04/0356.0 116.00 43.00 0.13 60.00 60.13 9.65 280 28 19.00 6.2E+06 6.8 4.6E+06 6.7 7.7 1.7 684 18.9Standard-PASTE09/08/0368.0 160.00 51.00 0.24 60.00 60.24 10.30 294 35 23.00 840,000 5.9 540,000 5.7 7.7 2.0 732 14.7Standard-PASTE09/29/03230.0 119.00 39.00 0.04 44.00 44.04 9.11 250 33 28.00 1.1E+06 6.0 220,000 5.3 7.0 1.0 1240 16.9O&G est.Standard-PA STE 01/26/0497.0 860.00 56.00 0.13 66.00 66.13 9.47 326 34 9.00 194,000 5.3 150,000 5.2 7.9 3.5 800 5.2Standard-PASTE04/12/0476.00 0.24 86.00 86.24 12.30150 5.00 72,000 4.9 62,000 4.8 7.7 1.9 1230 9.0BOD, TSS, alk.cancelled -bottle broken during transitStandard-PA STE 07/14/04490.0 1900.00 61.00 0.18 160.00 160.18 16.60 360 1105.1E+07 7.7 3.9E+07 7.6 8.1 0.8 1086 18.7O&G voidStandard-PA STE 10/18/04630.0 1100.00 51.00 0.21 100.00 100.21 12.50 380 110 24.00 80,000 4.9 70,000 4.8 7.6 0.5 932 10.7BOD5 is est.Standard-PE MW Drain 2074 03/21/010.0 15.00 0.03 2.07 0.30 2.37 0.1260 222 0.32 0.3 7.4 9.5 252 8.0 11.45Standard-PEMW Drain 2074 04/17/010.0 7.00 0.06 0.93 0.40 1.33 0.1288 252 0.32 0.3 6.8 6.2 284 7.3 11.40Standard-PEMW Drain 2074 05/15/010.0 4.00 0.04 0.54 0.10 0.64 0.11 106 322 0.32 0.3 6.7 5.9 355 6.9 11.49TKN <0.2Standard-PE MW Drain 2074 06/19/010.0 14.00 0.06 2.01 0.30 2.31 0.11 102 342 0.32 0.3 7.5 9.0 334 11.0 11.86Standard-PEMW Drain 2074 09/19/010.0 8.00 0.02 31.40 0.30 31.70 0.0865 331 0.01 0.0 7.2 8.5 515 12.3 12.48Standard-PEMW Drain 2074 10/17/010.0 1.00 0.04 51.80 0.10 51.90 0.0659 62 0.32 0.3 7.1 7.7 615 9.0 12.60TKN <0.2Standard-PE MW Drain 2074 11/14/010.0 1.00 0.00 52.10 0.30 52.40 0.0755 291 0.01 0.0 7.1 7.6 607 9.9 12.65Standard-PEMW Drain 2074 12/11/011.4 0.00 0.01 49.90 0.30 50.20 0.0741 291 0.01 0.0 7.0 5.8 633 5.8 12.72NH4-N <0.02, TKN est.Standard-PE MW Drain 2074 03/18/020.5 9.00 0.00 0.40 0.10 0.50 0.1087 301 0.01 0.0 7.0 9.2 300 7.9 12.31TKN <0.2, BOD5 <1.0Standard-PE MW Drain 2074 05/22/020.5 5.00 0.01 29.00 0.10 29.1090 261 0.01 0.0 7.0 7.9 536 8.8 12.43TKN <0.2, BOD5<1.0 est., NH4 <0.02Standard-PE MW Drain 2074 06/18/029.00 0.03 47.10 0.30 47.4071 241 0.01 0.0 7.1 7.6 598 11.6 12.65BOD5 voidStandard-PE MW Drain 2074 07/08/020.5 2.00 0.01 52.20 0.40 52.6073 261 0.01 0.0 7.2 6.5 587 14.7 12.79BOD5<1.0, NH4 <0.02Standard-PE MW Drain 2074 09/16/020.5 2.00 0.01 86.10 0.30 86.4051 281 0.01 0.0 7.0 7.8 830 14.9 13.24BOD5<1.0, NH4 <0.02, TKN est.Standard-PE MW Drain 2074 11/13/020.01 63.20 0.10 63.30291 0.01 0.0 7.2 8.0 621 9.9 13.34NH4 <0.02, TKN <0.2Standard-PE MW Drain 2074 12/10/020.5 4.00 0.01 48.20 0.10 48.3050 281 0.01 0.0 7.2 7.2 628 7.5 13.40NH4 <0.02, BOD5 <1.0, TKN <0.2Standard-PE MW Drain 2074 01/13/030.5 8.00 0.03 42.40 0.50 42.9046 251 0.01 0.0 7.1 8.7 539 6.6 13.44BOD5 <1.0; pH is est.Standard-PE MW Drain 2074 03/17/030.5 31.00 0.02 56.40 0.10 56.5046 281 0.01 0.0 7.2 6.4 439 10.8 13.37BOD5<1.0, TKN <0.2Standard-PE MW Drain 2074 05/13/030.5 2.00 0.01 24.30 0.10 24.4047 281 0.01 0.0 7.1 5.8 404 17.8 13.46BOD5<1.0 NH4 <0.02, TKN <0.2Standard-PE MW Drain 2074 06/17/030.04 30.80 0.10 30.90311 0.01 0.0 7.3 3.4 472 21.6 13.59TKN<0.2Standard-PE MW Drain 2074 07/28/030.01 38.70 0.10 38.80431 0.01 0.0 7.2 2.9 548 26.5 13.79NH4<0.02, TKN<0.2Standard-PE MW Drain 2074 09/09/030.01 40.00 0.10 40.10401 0.01 0.0 7.2 6.3 586 13.1 13.93TKN<0.2, NH4AsN<0.02Standard-PE STE 03/19/01200.0 52.00 53.00 0.00 63.00 63.00 0.13 236 39 44.00 1.1E+06 6.0 8.1E+06 6.9 6.7 0.9 702 17.2Standard-PESTE04/16/01240.0 50.00 50.00 0.00 58.00 58.00 6.03 243 46 30.00 860,000 5.9 340,000 5.5 6.6 0.9 709 15.1Standard-PESTE05/14/01300.0 33.00 59.00 0.02 69.00 69.02 8.10 273 47 14.00 1.5E+06 6.2 7.5E+06 6.9 6.9 0.6 766 17.1Standard-PESTE06/18/01280.0 32.00 84.00 0.03 95.00 95.03 10.10 302 58 18.00 1.6E+06 6.2 2.3E+06 6.4 6.7 0.9 824 18.9Standard-PESTE07/23/01260.0 59.00 54.00 0.03 62.00 62.03 4.84 255 43 27.00 190,000 5.3 9,000 4.0 6.9 1.0 753 18.6Standard-PESTE08/20/01250.0 44.00 46.00 0.02 57.00 57.02 5.78 274 39 21.00 3.7E+06 6.6 3.8E+06 6.6 6.8 1.1 768 17.9Standard-PESTE09/17/01210.0 33.00 76.00 0.02 90.00 90.02 7.66 283 50 16.00 140,000 5.1 110,000 5.0 7.1 0.7 630 19.6Standard-PESTE10/15/01200.0 64.00 32.00 0.01 43.00 43.01 4.16 194 35 31.00 94,000 5.0 68,000 4.8 7.2 0.7 533 15.9Standard-PESTE11/13/01250.0 48.00 74.00 0.02 80.00 80.02 8.14 335 60 16.00 660,000 5.8 440,000 5.6 7.1 0.8 844 15.2Standard-PESTE03/18/02140.0 90.00 23.00 0.10 29.00 29.10 3.60 160 22 61.00 5.4E+06 6.7 4.6E+06 6.7 7.3 0.7 447 10.9Standard-PESTE06/17/02170.0 36.00 41.00 0.02 47.00 47.02 5.03 245 31 25.00 170,000 5.2 110,000 5.0 7.1 0.5 664 18.8Appendix B: Innovative System Field Test DataPage B-65
La Pine National Decentralized Wastewater Treatment Demonstration ProjectSystem ID Point IDDEQ Well IDSample DateBOD-5 (mg/L)TSS (mg/L)NH4-N (mg/L)Nitrate-Nitrite as N (mg/L)TKN (mg/L)TN (mg/L)Total P (mg/L)Alkalinity as CaCO3 (mg/L)Chloride (mg/L)Oil & Grease (mg/L)Fecal ColiformLog Fecal E. coliLog E. coli pHDissolved Oxygen (mg/L)EC (mmhos/ cm)Temp (C)Depth To Water Table (ft) NotesStandard-PESTE07/09/02100.0 24.00 38.00 0.024.54 240 32 21.00 130,000 5.1 110,000 5.0 7.2 0.5 613 22.3TKN "void"Standard-PE STE 09/18/0237.0 29.00 24.00 0.01 28.00 28.01 2.74 154 22 14.00 1.1E+06 6.0 1.3E+06 6.1 7.5 1.0 412 15.3Standard-PESTE11/12/0267.0 32.00 37.00 0.02 47.00 47.02 4.84 222 36 19.00 540,000 5.7 400,000 5.6 6.9 0.9 576 15.0Standard-PESTE01/15/0372.0 32.00 43.00 0.02 54.00 54.02 5.36 272 40 19.00 140,000 5.1 88,000 4.9 7.2 0.9 753 12.3Standard-PESTE03/17/03130.0 24.00 37.00 0.02 45.00 45.02 5.30 229 36 15.00 294,000 5.5 270,000 5.4 7.3 1.0 618 12.9Standard-PESTE05/12/0390.0 92.00 38.00 0.02 53.00 53.02 5.38 248 39 14.00 72,000 4.9 48,000 4.7 7.3 0.6 706 15.5Standard-PESTE07/28/0365.0 210.00 39.00 0.02 47.00 47.02 4.77 230 37 19.00 96,000 5.0 54,000 4.7 7.1 0.8 643 22.3Standard-PESTE09/10/0372.0 59.00 32.00 0.30 39.00 39.30 4.77 183 29 22.00 4.3E+06 6.6 3.5E+06 6.5 7.7 0.9 517 15.5Appendix B: Innovative System Field Test DataPage B-66
La Pine National Decentralized Wastewater Treatment Demonstration Project
Appendix C: Monitoring well statistics and data Page C-1
Appendix C
Drainfield monitoring well statistics and
Network and drainfield monitoring well data
Table Document Page
C-1. Amphidrome system drainfield monitoring wells................................................................................................. C-2
C-2 AX-20 system drainfield monitoring wells........................................................................................................... C-3
C-3 Biokreisel system drainfield monitoring wells...................................................................................................... C-4
C-4 Bottomless sand filter system monitoring wells.................................................................................................... C-5
C-5 Dyno2 system drainfield monitoring wells. .......................................................................................................... C-6
C-6 EnviroServer system drainfield monitoring wells................................................................................................. C-7
C-7 FAST system drainfield monitoring wells. ........................................................................................................... C-8
C-8 IDEA BESTEP system drainfield monitoring wells. ............................................................................................ C-9
C-9 Nayadic system drainfield monitoring wells....................................................................................................... C-10
C-10 NiteLess system drainfield monitoring wells...................................................................................................... C-11
C-11 NITREX system drainfield monitoring wells...................................................................................................... C-12
C-12 Puraflo system drainfield monitoring wells......................................................................................................... C-12
C-13 Pressure distribution system drainfield monitoring wells.................................................................................... C-13
C-14 RX-30 system drainfield monitoring wells. ........................................................................................................ C-14
C-15 Innovative trench design A drainfield monitoring wells..................................................................................... C-15
C-16 Innovative trench design B drainfield monitoring wells. .................................................................................... C-16
C-17 Standard system drainfield monitoring wells...................................................................................................... C-17
C-18 Network and monitoring well data...................................................................................................................... C-18
LEGEND
Acronym Definition
MW Monitoring Well
MW Drain Monitoring Well in or downgradient of the drainfield
NAME-X Site identifier, for example the different sand filter sites are identified as Bottomless Sand
Filter-A, Bottomless Sand Filter-B, etc.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page C-2 Appendix C: Monitoring well statistics and data
Table C-1. Amphidrome system drainfield monitoring wells.
AMPH-P MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 0.6 3.4 7.2 28 54 N/A N/A 7.8 9.1
Geometric Mean 0.5 1.7 6.4 23 53 N/A N/A 7.7 9.1
Median 0.5 2.0 6.5 21 56 N/A N/A 7.6 9.4
Standard Deviation 0.4 5.9 3.5 18 9.9 N/A N/A 1.0 0.4
Minimum ND ND 1.2 8.8 18 ND ND 5.8 8.2
Maximum 1.7 25 15 63 67 ND ND 9.5 9.5
Count 16 16 20 19 21 19 19 21 21
95% Confidence Level 0.2 3.2 1.6 8.8 4.5 N/A N/A 0.5 0.2
99% Confidence Level 0.3 4.4 2.2 12 6.2 N/A N/A 0.6 0.3
AMPH-AD MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean N/A 3.5 1.5 17 10 N/A N/A 0.5 9.5
Geometric Mean N/A 1.9 1.5 16 10 N/A N/A 0.5 9.5
Median N/A 2.0 1.5 18 10 N/A N/A 0.6 9.9
Standard Deviation N/A 3.7 0.4 7.9 0.8 N/A N/A 0.2 0.8
Minimum ND 0.5 0.9 6.3 9.0 ND ND 0.3 7.3
Maximum ND 12 2.7 37 12 ND ND 0.9 10
Count 15 15 20 18 20 18 18 20 20
95% Confidence Level N/A 2.1 0.2 3.9 0.4 N/A N/A 0.09 0.4
99% Confidence Level N/A 2.9 0.3 5.4 0.5 N/A N/A 0.13 0.5
AMPH-AG MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean N/A 1.1 10 34 26 N/A N/A 7.4 15
Geometric Mean N/A 1.0 8.9 33 24 N/A N/A 7.3 15
Median N/A 1.0 7.7 35 20 N/A N/A 7.3 15
Standard Deviation N/A 0.7 6.2 8.7 13 N/A N/A 1.1 0.6
Minimum ND 0.5 5.0 13 18 ND ND 5.5 14
Maximum ND 2 24 51 68 ND ND 9.5 16
Count 14 14 19 16 19 17 17 19 19
95% Confidence Level N/A 0.4 3.0 4.7 6.1 N/A N/A 0.5 0.3
99% Confidence Level N/A 0.6 4.1 6.4 8.4 N/A N/A 0.7 0.4
ND = non detect
N/A = statistic not calculable
WTS = wastewater treatment system
No phosphorus data taken at these sites
La Pine National Decentralized Wastewater Treatment Demonstration Project
Appendix C: Monitoring well statistics and data Page C-3
Table C-2. AX-20 system drainfield monitoring wells.
AX20-M MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean N/A 2.8 0.6 11 0.3 0.7 N/A N/A 0.2 13.0
Geometric Mean N/A 1.6 0.6 11 0.3 0.6 N/A N/A 0.1 13.0
Median ND 1.5 0.6 9.4 0.3 0.6 ND ND 0.1 13.0
Standard Deviation 0.1 4.0 0.1 3.7 0.0 0.2 N/A N/A 0.2 0.0
Minimum ND ND 0.5 7.8 0.3 0.3 ND ND 0.05 13
Maximum 1.1 17 0.8 24 0.3 1.0 ND ND 1.0 13
Count 18 18 21 28 4.0 22 21 21 23 22
95% Confidence Level 0.07 2.0 0.04 1.4 0.0 0.08 N/A N/A 0.10 0.02
99% Confidence Level 0.10 2.7 0.06 1.9 0.0 0.10 N/A N/A 0.14 0.03
AX20-T MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean N/A 14 2.7 24 0.2 6.2 N/A N/A 7.9 10.9
Geometric Mean N/A 7.5 2.3 23 0.2 4.6 N/A N/A 7.9 10.9
Median ND 9.0 2.2 23 0.2 3.9 ND ND 7.8 10.9
Standard Deviation N/A 12 2.1 8.5 0.1 7.1 N/A N/A 1.0 0.3
Minimum ND ND 1.0 9.7 0.2 2.0 ND ND 6.2 10.1
Maximum ND 40 12 39 0.4 35 ND ND 10 11.6
Count 18 19 23 25 5.0 23 22 22 23 23
95% Confidence Level N/A 5.8 0.9 3.5 0.1 3.1 N/A N/A 0.4 0.1
99% Confidence Level N/A 8.0 1.2 4.8 0.2 4.2 N/A N/A 0.6 0.2
AX20-I MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 0.6 7.9 8.4 17 0.4 21 N/A N/A 8.1 8.6
Geometric Mean 0.6 4.7 4.8 16 0.2 16 N/A N/A 7.9 8.6
Median ND 5.0 7.1 15 0.2 14 N/A N/A 8.5 8.5
Standard Deviation 0.3 10 7.4 9.4 0.5 14 N/A N/A 1.5 0.4
Minimum ND 0.5 0.3 8.5 0.1 2.3 ND ND 4 8.0
Maximum 1.8 41 24 44 1.2 44 ND ND 10 9.3
Count 16 17 21 22 4.0 21 20 20 21 22
95% Confidence Level 0.2 5.1 3.4 4.2 0.9 6.4 N/A N/A 0.7 0.2
99% Confidence Level 0.3 7.1 4.6 5.7 1.6 8.7 N/A N/A 0.9 0.3
ND = non detect
N/A = statistic not calculable
WTS = wastewater treatment system
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page C-4 Appendix C: Monitoring well statistics and data
Table C-3. Biokreisel system drainfield monitoring wells.
BKE-H MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. Coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 0.9 2.4 13 16 0.2 20 N/A N/A 7.2 6.2
Geometric Mean N/A N/A 10 14 0.2 19 N/A N/A 6.9 6.2
Median ND 2.0 14 14 0.2 19 ND ND 7.7 6.1
Standard Deviation 0.6 2.5 6.1 10 0.03 6.9 N/A N/A 1.9 0.6
Minimum ND ND 1.0 7.4 0.2 5.6 ND ND 2.4 5.4
Maximum 2.0 8.0 22 56 0.2 30 ND ND 9.2 7.2
Count 11 11 15 20 6 15 15 15 16 17
95% Confidence Level 0.4 1.7 3.4 4.8 0.03 3.8 N/A N/A 1.0 0.3
99% Confidence Level 0.6 2.4 4.7 6.5 0.04 5.3 N/A N/A 1.4 0.4
BKE-G MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. Coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean ND 2.1 7.9 12 0.1 14 N/A N/A 7.4 7.1
Geometric Mean ND N/A 5.3 12 0.1 13 N/A N/A 7.3 7.1
Median ND 2.0 6.8 12 0.1 15 ND ND 7.7 7.2
Standard Deviation N/A 2.2 7.2 3.1 0.04 6.3 N/A N/A 1.4 0.6
Minimum ND ND 0.7 4.7 0.1 4.5 ND ND 4.0 5.6
Maximum 1.2 9.0 32 17 0.2 28 ND ND 9.1 7.8
Count 26 26 25 20 14 26 26 26 27 26
95% Confidence Level N/A 0.9 3.0 1.5 0.02 2.6 N/A N/A 0.5 0.3
99% Confidence Level N/A 1.2 4.0 2.0 0.03 3.5 N/A N/A 0.7 0.3
BKE-M MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. Coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean N/A 0.6 1.8 14 0.1 9.5 N/A N/A 0.5 9.9
Geometric Mean N/A N/A 1.2 13 0.1 8.6 N/A N/A 0.4 9.9
Median N/A N/A 1.1 15 0.1 8.5 ND ND 0.4 10.3
Standard Deviation N/A 0.6 1.6 4.6 0.03 4.3 N/A N/A 0.3 0.9
Minimum ND ND 0.2 4.8 0.1 4.4 ND ND 0.2 8.4
Maximum 1.2 2.0 6.2 23 0.2 21 ND ND 1.3 10.9
Count 25 26 26 20 13 26 27 27 28 27
95% Confidence Level N/A 0.2 0.7 2.2 0.015 1.7 N/A N/A 0.1 0.3
99% Confidence Level N/A 0.3 0.9 2.9 0.021 2.3 N/A N/A 0.2 0.5
ND = non detect
N/A = statistic not calculable
WTS = wastewater treatment system
La Pine National Decentralized Wastewater Treatment Demonstration Project
Appendix C: Monitoring well statistics and data Page C-5
Table C-4. Bottomless sand filter system monitoring wells.
BSF-H3 MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. Coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean N/A 2.9 3.2 48 0.1 5.4 N/A N/A 5.6 12.1
Geometric Mean N/A N/A 3.0 46 0.1 5.1 N/A N/A 5.4 12.1
Median ND 0.8 2.9 50 0.1 5.3 N/A N/A 5.6 12.1
Standard Deviation 0.4 4.8 1.3 12 0.01 2.0 N/A N/A 1.5 0.5
Minimum ND ND 1.5 26 0.1 3.0 ND ND 3.4 11.0
Maximum 2.0 22 6.6 66 0.1 12 ND ND 9.2 12.8
Count 26 26 26 23 14 26 26 26 26 25
95% Confidence Level 0.18 1.9 0.5 5.2 0.004 0.8 N/A N/A 0.6 0.2
99% Confidence Level 0.24 2.6 0.7 7.1 0.005 1.1 N/A N/A 0.8 0.3
BSF-B MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. Coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 0.4 1.8 9.3 44 0.3 16 N/A N/A 4.8 10.8
Geometric Mean N/A N/A 4.4 45 0.3 12 N/A N/A 4.4 10.8
Median ND 1.0 6.6 46 0.3 13 N/A N/A 4.8 11.1
Standard Deviation 0.4 2.3 9.6 16 0.1 11 N/A N/A 1.8 0.8
Minimum ND ND 0.1 0.0 0.1 0.8 ND ND 1.0 8.9
Maximum 2.0 8.0 38 68 0.6 45 ND ND 7.9 12.0
Count 27 27 27 19 16 27 28 28 28 26
95% Confidence Level 0.17 0.9 3.8 7.9 0.07 4.5 N/A N/A 0.7 0.3
99% Confidence Level 0.23 1.2 5.2 11 0.09 6.1 N/A N/A 0.9 0.4
BSF-A MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. Coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 0.5 2.0 50 81 0.1 40 N/A N/A 7.2 15.7
Geometric Mean N/A N/A 31 76 0.1 36 N/A N/A 7.2 15.7
Median ND ND 62 79 0.1 46 N/A N/A 7.3 15.9
Standard Deviation 0.4 4.0 29 29 0.02 16 N/A N/A 1.1 1.0
Minimum ND ND 2.0 45 0.1 7.2 ND ND 4.9 11.4
Maximum 1.7 20 88 151 0.1 63 ND ND 9.0 16.8
Count 24 25 24 17 12 25 25 25 27 27
95% Confidence Level 0.18 1.6 12 15 0.011 6.7 N/A N/A 0.4 0.4
99% Confidence Level 0.24 2.2 17 21 0.015 9.1 N/A N/A 0.6 0.5
ND = non detect
N/A = statistic not calculable
WTS = wastewater treatment system
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page C-6 Appendix C: Monitoring well statistics and data
Table C-5. Dyno2 system drainfield monitoring wells.
Dyno2-E MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 1.1 10 0.5 35 0.3 4.6 N/A N/A 7.0 13.0
Geometric Mean 0.6 3.6 0.4 34 0.3 4.6 N/A N/A 6.9 12.9
Median ND 3.0 0.4 34 0.3 4.5 ND ND 7.0 12.9
Standard Deviation 2.4 22 0.2 11 0.03 0.6 N/A N/A 0.8 0.05
Minimum ND ND 0.3 19 0.3 3.7 ND ND 5.5 12.9
Maximum 11 83 1.2 55 0.3 6.3 ND ND 8.3 13.0
Count 19 19 23 29 3 24 23 23 24 24
95% Confidence Level 1.2 11 0.09 4.2 0.07 0.3 N/A N/A 0.3 0.02
99% Confidence Level 1.6 15 0.12 5.7 0.17 0.4 N/A N/A 0.4 0.03
Dyno2-C MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 0.5 12 1.6 48 0.2 23 N/A N/A 6.9 9.4
Geometric Mean 0.5 4.0 1.0 42 0.2 17 N/A N/A 6.8 9.4
Median ND 5.0 1.0 46 0.2 17 ND ND 6.9 9.5
Standard Deviation 0.2 19 2.6 21 0.0 20 N/A N/A 0.8 0.2
Minimum ND ND 0.1 10 0.2 4.2 ND ND 5.7 8.3
Maximum 1.2 68 13 77 0.3 73 ND ND 9.1 9.7
Count 19 19 23 26 4 23 23 23 25 25
95% Confidence Level 0.08 9.1 1.1 8.7 0.04 8.5 N/A N/A 0.3 0.10
99% Confidence Level 0.11 12 1.5 12 0.07 12 N/A N/A 0.4 0.14
Dyno2-N MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 0.7 5.0 2.5 70 0.1 8.4 N/A N/A 2.1 9.0
Geometric Mean 0.6 3.5 2.2 67 0.1 7.8 N/A N/A 1.9 9.0
Median ND 4.0 2.0 69 0.1 7.0 ND ND 1.8 9.2
Standard Deviation 0.5 4.1 1.4 20 0.0 4.1 N/A N/A 0.9 0.5
Minimum ND ND 1.0 34 0.1 4.8 ND ND 1.1 7.1
Maximum 2.6 15 6.1 125 0.1 24 ND ND 4.3 9.4
Count 19 20 24 25 5 25 24 24 25 24
95% Confidence Level 0.2 1.9 0.6 8.4 0.000 1.7 N/A N/A 0.4 0.2
99% Confidence Level 0.3 2.6 0.8 11 0.000 2.3 N/A N/A 0.5 0.3
ND = non detect
N/A = statistic not calculable
WTS = wastewater treatment system
La Pine National Decentralized Wastewater Treatment Demonstration Project
Appendix C: Monitoring well statistics and data Page C-7
Table C-6. EnviroServer system drainfield monitoring wells.
EnviroServer-M MW
Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. Coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean N/A 3.0 2.2 40 0.2 5.1 N/A N/A 2.8 11.8
Geometric Mean N/A 1.5 1.4 39 0.2 4.7 N/A N/A 2.4 11.8
Median ND 1.0 1.6 38 0.2 4.1 ND ND 2.9 12.0
Standard Deviation 0.2 5.5 2.3 8.3 0.0 2.3 N/A N/A 1.8 0.4
Minimum ND ND 0.2 23 0.2 2.9 ND ND 0.7 10.4
Maximum 1.2 26 8.5 56 0.2 11 ND ND 8.5 12.1
Count 21 21 21 30 5.0 21 21 21 20 19
95% Confidence Level 0.07 2.5 1.1 3.1 0.0 1.0 N/A N/A 0.8 0.2
99% Confidence Level 0.09 3.4 1.5 4.2 0.0 1.4 N/A N/A 1.2 0.3
EnviroServer-H MW
Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. Coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 1.0 4.4 15 24 0.1 72 N/A N/A 7.7 6.3
Geometric Mean 0.6 3.4 8.2 23 0.1 56 N/A N/A 7.5 6.3
Median ND 3.0 9.9 25 0.1 60 ND ND 7.7 6.7
Standard Deviation 1.9 2.9 14 8.4 0.1 49 N/A N/A 1.5 0.9
Minimum ND ND 0.8 8.3 0.1 15 ND ND 4.6 4.8
Maximum 8.7 10 45 36 0.3 160 ND ND 10 7.4
Count 18 18 18 28 4.0 18 19 19 19 19
95% Confidence Level 1.0 1.5 6.7 3.3 0.2 24 N/A N/A 0.7 0.4
99% Confidence Level 1.3 2.0 9.3 4.4 0.3 33 N/A N/A 1.0 0.6
ND = non detect
N/A = statistic not calculable
WTS = wastewater treatment system
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page C-8 Appendix C: Monitoring well statistics and data
Table C-7. FAST system drainfield monitoring wells.
FAST-J MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. Coli
DO
(mg/L)
Depth to
Water
Table (ft)
Mean ND 2.3 52 68 0.1 34 ND ND 6.7 6.9
Geometric Mean ND 2.0 45 64 0.1 32 ND ND 6.5 6.8
Median ND 2.0 53 66 0.1 30 ND ND 6.7 6.9
Standard Deviation N/A 1.9 25 20 0.03 13 N/A N/A 1.7 0.6
Minimum ND 1.0 9.2 24 0.0 15 ND ND 3.4 5.5
Maximum 1.2 11 86 100 0.1 53 ND ND 9.1 7.8
Count 27 29 31 21 5.0 31 31 31 26 20
95% Confidence Level 0.06 0.7 9.0 9.2 0.04 4.6 N/A N/A 0.7 0.3
99% Confidence Level 0.09 1.0 12 13 0.06 6.2 N/A N/A 0.9 0.4
FAST-P MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. Coli
DO
(mg/L)
Depth to
Water
Table (ft)
Mean 0.6 2.3 0.4 33 0.3 12 1.5E+03 2.2E+03 5.5 4.9
Geometric Mean N/A N/A 0.3 31 0.3 11 ND ND 4.5 4.8
Median ND 0.8 0.3 32 0.3 10 ND ND 6.2 5.2
Standard Deviation N/A 6.1 0.5 8.9 0.01 4.7 8.5E+03 1.2E+04 2.5 0.9
Minimum ND ND 0.02 17 0.3 7.1 ND ND 0.6 2.9
Maximum 2.0 35 2.4 49 0.3 24 4.8E+04 7.0E+04 8.9 5.8
Count 32 32 31 20 18 32 32 32 30 26
95% Confidence Level 0.2 2.2 0.18 4.2 0.004 1.7 3.1E+03 4.5E+03 0.9 0.4
99% Confidence Level 0.3 3.0 0.24 5.7 0.01 2.3 4.1E+03 6.0E+03 1.3 0.5
FAST-R MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. Coli
DO
(mg/L)
Depth to
Water
Table (ft)
Mean 1.8 3.7 29 38 0.0 24 N/A N/A 8.5 7.8
Geometric Mean 0.7 2.9 24 37 N/A 22 ND ND 8.4 0.2
Median ND 2.5 31 39 0.0 24 ND ND 8.4 7.7
Standard Deviation 5.6 2.5 9.9 10 0.04 7.5 N/A N/A 0.9 8.2
Minimum ND ND 0.7 22 0.0 4.2 ND ND 6.4 0.5
Maximum 26 10 44 57 0.1 36 ND ND 11 8.4
Count 21 20 23 19 6.0 22 24 24 24 171
95% Confidence Level 2.5 1.2 4.3 4.8 0.04 3.3 N/A N/A 0.4 0.3
99% Confidence Level 3.4 1.6 5.8 6.5 0.06 4.5 N/A N/A 0.5 0.4
ND = non detect
N/A = statistic not calculable
WTS = wastewater treatment system
The high mean fecal and E. coli count for FAST-P caused by one high result.
La Pine National Decentralized Wastewater Treatment Demonstration Project
Appendix C: Monitoring well statistics and data Page C-9
Table C-8. IDEA BESTEP system drainfield monitoring wells.
IDEA-H MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. Coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean N/A N/A 0.1 134 0.4 3.0 N/A N/A 0.2 15.5
Geometric Mean N/A N/A 0.1 33 0.4 3.0 N/A N/A 0.2 15.4
Median ND ND 0.1 27 0.4 3.1 ND ND 0.1 15.8
Standard Deviation N/A N/A 0.1 353 0.00 0.4 N/A N/A 0.2 1.2
Minimum ND ND 0.1 4.2 0.4 2.6 ND ND 0.1 10.7
Maximum ND ND 0.3 1400 0.4 4.0 ND ND 0.8 15.9
Count 16 17 17 15 4 18 17 17 18 18
95% Confidence Level N/A N/A 0.03 195 0.00 0.18 N/A N/A 0.11 0.6
99% Confidence Level N/A N/A 0.04 271 0.00 0.24 N/A N/A 0.15 0.8
IDEA-Y MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. Coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 0.6 2.7 2.3 99 0.3 4.6 N/A N/A 6.5 14.2
Geometric Mean 0.5 1.2 2.0 80 0.3 4.2 N/A N/A 6.4 14.1
Median ND 0.8 2.5 93 0.3 3.6 ND ND 6.4 14.1
Standard Deviation 0.2 4.8 0.6 61 0.00 2.2 N/A N/A 0.8 1.0
Minimum ND ND 0.1 7.9 0.3 2.6 ND ND 4.9 11.2
Maximum 1.5 20 2.9 280 0.3 9.3 ND ND 7.7 16.8
Count 18 18 17 15 3 18 17 17 19 18
95% Confidence Level 0.1 2.4 0.3 34 0.00 1.1 N/A N/A 0.4 0.5
99% Confidence Level 0.2 3.3 0.5 47 0.00 1.5 N/A N/A 0.5 0.7
IDEA-L MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. Coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 2.2 60 0.3 6.9 N/A N/A 7.5 23.6
Geometric Mean 1.1 26 0.2 3.2 N/A N/A 7.5 23.6
Median 0.6 29 0.3 1.4 ND ND 7.9 23.8
Standard Deviation 3.1 78 0.2 8.4 N/A N/A 0.9 0.6
Minimum 0.4 3.7 0.1 1.2 ND ND 5.8 22.5
Maximum 7.2 250 0.4 20 ND ND 8.7 24.6
Count 0 0 8 16 2 9 7 7 10 12
95% Confidence Level 2.6 42 1.9 6.5 N/A N/A 0.7 0.4
99% Confidence Level 3.8 57 9.5 9.4 N/A N/A 1.0 0.6
ND = non detect
N/A = statistic not calculable
WTS = wastewater treatment system
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page C-10 Appendix C: Monitoring well statistics and data
Table C-9. Nayadic system drainfield monitoring wells.
NDE-D MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 0.6 2.7 0.2 38 0.2 2.1 N/A N/A 0.2 11.1
Geometric Mean N/A 1.9 0.2 40 0.2 2.1 N/A N/A 0.1 11.1
Median 0.5 2.0 0.2 40 0.2 2.1 N/A N/A 0.1 11.1
Standard Deviation 0.4 2.2 0.1 12 0.01 0.3 N/A N/A 0.1 0.1
Minimum ND 0.5 0.2 18 0.2 1.8 ND ND 0.05 11.0
Maximum 1.8 9.0 0.5 65 0.2 3.1 ND ND 0.5 11.2
Count 20 20 23 26 5 23 23 23 23 23
95% Confidence Level 0.2 1.0 0.03 4.9 0.01 0.1 N/A N/A 0.06 0.02
99% Confidence Level 0.3 1.4 0.04 6.6 0.02 0.2 N/A N/A 0.08 0.03
NDE-M MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 0.5 3.4 8.9 36 0.1 26 N/A N/A 5.1 9.5
Geometric Mean 0.5 2.3 4.8 32 0.1 20 N/A N/A 4.9 9.5
Median 0.5 3.0 4.3 27 0.1 16 N/A N/A 5.1 10.1
Standard Deviation 0.3 3.6 11 22 0.03 22 N/A N/A 1.6 1.0
Minimum ND 0.5 1.0 5.9 0.1 8.8 ND ND 2.7 6.4
Maximum 1.7 18 37 101 0.1 68 ND ND 9.9 10.2
Count 21 22 24 26 5 24 24 24 25 25
95% Confidence Level 0.1 1.6 4.6 8.8 0.03 9.1 N/A N/A 0.7 0.4
99% Confidence Level 0.2 2.2 6.3 12 0.05 12 N/A N/A 0.9 0.6
NDE-B MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean N/A 3.1 3.9 38 0.1 7.1 N/A N/A 5.3 8.0
Geometric Mean N/A 2.0 3.5 32 0.1 6.3 N/A N/A 5.1 8.0
Median N/A 2.0 3.9 45 0.1 7.2 N/A N/A 5.5 8.2
Standard Deviation N/A 3.8 1.5 17 0.01 3.3 N/A N/A 1.4 0.7
Minimum ND 0.5 0.8 8.9 0.1 2.3 ND ND 2.7 6.1
Maximum ND 17 6.4 63 0.1 13 ND ND 7.5 8.9
Count 19 20 23 28 5 23 23 23 23 24
95% Confidence Level N/A 1.8 0.6 6.7 0.01 1.4 N/A N/A 0.6 0.3
99% Confidence Level N/A 2.4 0.9 9.1 0.02 2.0 N/A N/A 0.8 0.4
ND = non detect
N/A = statistic not calculable
WTS = wastewater treatment system
La Pine National Decentralized Wastewater Treatment Demonstration Project
Appendix C: Monitoring well statistics and data Page C-11
Table C-10. NiteLess system drainfield monitoring wells.
NiteLess-P MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean N/A 3.0 9.5 67 0.1 41 N/A N/A 7.5 9.8
Geometric Mean N/A 2.0 8.9 64 0.1 32 N/A N/A 7.3 9.8
Median ND 2.0 9.2 74 0.1 30 ND ND 7.1 9.9
Standard Deviation N/A 2.9 3.3 21 0.02 27 N/A N/A 1.7 0.4
Minimum ND ND 3.5 35 0.1 7.3 ND ND 4.3 8.8
Maximum 1.2 10 17 100 0.1 94 ND ND 11.6 10.3
Count 20 20 20 19 3 21 20 20 22 20
95% Confidence Level N/A 1.4 1.6 10 0.04 12 N/A N/A 0.8 0.2
99% Confidence Level N/A 1.9 2.1 14 0.10 17 N/A N/A 1.0 0.3
NiteLess-L MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean N/A 5.6 17 53 0.3 19 N/A N/A 6.6 9.1
Geometric Mean N/A 2.7 10 50 0.3 17 N/A N/A 6.6 9.0
Median ND 3.0 14 57 0.3 16 ND ND 6.6 8.6
Standard Deviation N/A 11 13 15 0.05 9.2 N/A N/A 0.7 1.5
Minimum ND ND 1.4 27 0.3 3.6 ND ND 5.5 6.8
Maximum ND 48 37 80 0.4 35 ND ND 7.9 11.2
Count 19 19 19 20 4 20 19 19 21 20
95% Confidence Level N/A 5.1 6.5 6.9 0.08 4.3 N/A N/A 0.3 0.7
99% Confidence Level N/A 7.0 8.8 9.4 0.15 5.9 N/A N/A 0.4 0.9
NiteLess-T MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean N/A 4.5 41 63 0.1 28 N/A N/A 6.8 6.5
Geometric Mean N/A 3.0 40 62 0.1 27 N/A N/A 6.7 6.4
Median ND 3.0 40 61 0.1 27 ND ND 7.0 6.4
Standard Deviation N/A 5.0 7.4 16 0.03 3.5 N/A N/A 1.2 0.7
Minimum ND ND 29 47 0.1 23 ND ND 4.5 5.2
Maximum 1.4 22 61 120 0.2 34 ND ND 9.4 7.9
Count 20 20 20 23 4 20 20 20 22 21
95% Confidence Level N/A 2.4 3.4 7.0 0.04 1.6 N/A N/A 0.5 0.3
99% Confidence Level N/A 3.2 4.7 9.5 0.07 2.2 N/A N/A 0.7 0.4
ND = non detect
N/A = statistic not calculable
WTS = wastewater treatment system
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page C-12 Appendix C: Monitoring well statistics and data
Table C-11. NITREX system drainfield monitoring wells.
NITREX-F MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. Coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean N/A 10 0.7 2.1 0.1 5.5 N/A N/A 7.2 9.6
Geometric Mean N/A 4.6 0.5 2.3 0.1 4.7 N/A N/A 6.5 9.5
Median ND 4.0 0.5 1.8 0.1 5.1 ND ND 7.9 10.2
Standard Deviation 0.3 14 0.5 1.1 0.01 3.1 N/A N/A 2.0 1.4
Minimum ND ND 0.1 0.9 0.1 0.9 ND ND 0.5 7.3
Maximum 1.0 57 1.7 5.0 0.1 16 ND ND 9.3 11.2
Count 19 19 20 19 6 20 19 19 20 20
95% Confidence Level 0.1 6.9 0.2 0.5 0.009 1.5 N/A N/A 0.9 0.6
99% Confidence Level 0.2 9.5 0.3 0.7 0.014 2.0 N/A N/A 1.3 0.9
NITREX-S MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. Coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean N/A 1.7 3.7 2.8 0.3 9.4 N/A N/A 2.9 8.5
Geometric Mean N/A N/A 3.6 2.5 0.3 9.4 N/A N/A 2.7 8.5
Median ND 1.0 3.9 1.6 0.3 9.8 ND ND 2.6 8.8
Standard Deviation 0.3 1.8 0.5 2.6 0.01 1.1 N/A N/A 1.5 1.0
Minimum ND ND 2.6 0.8 0.3 7.4 ND ND 1.3 6.8
Maximum 1.0 7.0 4.4 8.7 0.3 11 ND ND 9.0 10.0
Count 27 27 27 19 14 27 27 27 26 26
95% Confidence Level 0.1 0.7 0.2 1.2 0.008 0.4 N/A N/A 0.6 0.4
99% Confidence Level 0.2 0.9 0.3 1.7 0.011 0.6 N/A N/A 0.8 0.5
ND = non detect
N/A = statistic not calculable
WTS = wastewater treatment system
Table C-12. Puraflo system drainfield monitoring wells.
Puraflo-F MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean ND 0.9 1.3 43 0.2 7.1 N/A N/A 6.1 14.8
Geometric Mean ND 0.7 0.6 42 0.2 7.0 N/A N/A 6.0 14.8
Median ND ND 0.4 43 0.2 6.7 ND ND 6.1 14.9
Standard Deviation 0.2 0.7 2.0 9.1 0.01 1.6 N/A N/A 1.3 0.4
Minimum ND ND 0.2 29 0.2 5.5 ND ND 3.5 12.8
Maximum 1.2 3.0 8.6 57 0.2 13 ND ND 8.7 15.0
Count 19 20 24 20 5 24 24 24 25 24
95% Confidence Level 0.08 0.3 0.8 4.3 0.01 0.7 N/A N/A 0.5 0.2
99% Confidence Level 0.11 0.4 1.1 5.8 0.02 0.9 N/A N/A 0.7 0.3
Puraflo-S MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 0.7 2.9 35 65 34 N/A N/A 2.5 10.9
Geometric Mean 0.6 2.2 20 45 29 N/A N/A 2.2 10.9
Median ND 3.0 39 63 36 ND ND 2.7 11.1
Standard Deviation 0.8 1.9 21 11 15 N/A N/A 1.0 0.7
Minimum ND ND 0.7 51 5.0 ND ND 0.2 9.7
Maximum 3.7 7.0 62 91 55 ND ND 4.4 11.9
Count 17 17 22 16 No data 22 20 20 24 22
95% Confidence Level 0.4 1.0 9.4 6.0 6.7 N/A N/A 0.4 0.3
99% Confidence Level 0.6 1.4 13 8.3 9.1 N/A N/A 0.6 0.4
ND = non detect
N/A = statistic not calculable
WTS = wastewater treatment system
La Pine National Decentralized Wastewater Treatment Demonstration Project
Appendix C: Monitoring well statistics and data Page C-13
Table C-13. Pressure distribution system drainfield monitoring wells.
LPD-L MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 0.6 1.1 0.7 62 0.2 4.5 N/A N/A 7.0 17.0
Geometric Mean 0.5 N/A 0.4 61 0.2 4.4 N/A N/A 6.9 17.0
Median ND 0.5 0.3 62 0.2 4.3 ND ND 7.1 17.0
Standard Deviation 0.2 1.0 1.0 6.3 0.04 0.9 N/A N/A 1.1 0.2
Minimum ND ND 0.2 50 0.1 3.6 ND ND 5.1 16.6
Maximum 1.2 4.0 4.6 74 0.2 8.2 ND ND 8.6 18.0
Count 24 25 29 21 7 28 27 27 26 23
95% Confidence Level 0.08 0.4 0.4 2.9 0.04 0.4 N/A N/A 0.4 0.10
99% Confidence Level 0.11 0.6 0.5 3.9 0.06 0.5 N/A N/A 0.6 0.13
LPD-C MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean N/A 2.2 0.3 46 0.1 24 N/A N/A 2.2 11.3
Geometric Mean N/A N/A 0.2 45 0.1 23 N/A N/A N/A 11.2
Median ND 1.0 0.2 46 0.1 24 ND ND 1.4 11.5
Standard Deviation 0.4 1.9 0.2 6.3 0.02 6.6 N/A N/A 2.3 0.8
Minimum ND ND 0.01 31 0.1 11 ND ND 0 9.1
Maximum 1.4 7.0 1.2 55 0.2 36 ND ND 7.8 12.6
Count 41 41 44 29 17 46 46 46 41 32
95% Confidence Level 0.1 0.6 0.06 2.4 0.009 1.9 N/A N/A 0.7 0.3
99% Confidence Level 0.2 0.8 0.09 3.2 0.012 2.6 N/A N/A 1.0 0.4
LPD-R MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 0.3 1.9 5.3 69 0.1 8.5 N/A N/A 7.3 21.9
Geometric Mean N/A N/A 5.3 68 0.1 8.5 N/A N/A 7.2 21.9
Median ND 2.0 5.3 71 0.1 8.1 ND ND 7.7 21.9
Standard Deviation 0.4 1.6 0.6 11 0.01 1.1 N/A N/A 1.4 0.8
Minimum ND ND 4.3 45 0.1 7.3 ND ND 3.9 20.4
Maximum 1.7 7.0 6.7 87 0.1 11 ND ND 9.7 23.0
Count 21 22 24 19 14 24 23 23 24 20
95% Confidence Level 0.2 0.7 0.3 5.4 0.005 0.5 N/A N/A 0.6 0.4
99% Confidence Level 0.3 0.9 0.4 7.4 0.006 0.7 N/A N/A 0.8 0.5
ND = non detect
N/A = statistic not calculable
WTS = wastewater treatment system
La Pine National Decentralized Wastewater Treatment Demonstration Project
Page C-14 Appendix C: Monitoring well statistics and data
Table C-14. RX-30 system drainfield monitoring wells.
RX30-H2 MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean N/A N/A 8.6 15 0.1 32 N/A N/A 6.4 7.9
Geometric Mean N/A N/A 7.8 15 0.1 29 N/A N/A 6.2 7.8
Median ND ND 7.4 14 0.1 32 ND ND 6.7 7.7
Standard Deviation N/A N/A 4.6 4.9 0.02 12 N/A N/A 1.7 1.0
Minimum ND ND 4.6 8.4 0.1 12 ND ND 2.9 6.7
Maximum 1.8 1.0 24 29 0.1 59 600 300 9.6 11.8
Count 27 27 27 28 15 24 27 27 28 23
95% Confidence Level N/A N/A 1.8 1.9 0.008 5.1 N/A N/A 0.6 0.4
99% Confidence Level N/A N/A 2.5 2.6 0.012 7.0 N/A N/A 0.9 0.6
RX30-M MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean N/A 0.8 4.5 25 0.2 8 N/A N/A 6.5 14.9
Geometric Mean N/A N/A 2.2 21 0.2 5 N/A N/A 6.3 14.9
Median ND ND 1.2 27 0.2 2.5 ND ND 6.2 15.2
Standard Deviation N/A 0.8 4.9 13 0.01 8.7 N/A N/A 1.5 0.7
Minimum ND ND 0.5 6.7 0.2 1.9 ND ND 3.6 12.9
Maximum 1.0 3.0 16 47 0.2 26 ND ND 9.7 15.9
Count 25 23 24 29 15 24 25 25 28 25
95% Confidence Level N/A 0.3 2.1 4.8 0.006 3.7 N/A N/A 0.6 0.3
99% Confidence Level N/A 0.5 2.8 6.5 0.008 5.0 N/A N/A 0.8 0.4
RX30-R MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS
TN
(mg/L)
Total
Phosphorus
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean N/A 5.4 6.7 16 0.1 36 N/A N/A 5.3 11.9
Geometric Mean N/A N/A 6.2 14 0.1 33 N/A N/A 5.2 11.9
Median ND 5.0 6.1 14 0.1 36 ND ND 5.1 11.9
Standard Deviation N/A 4.9 2.7 9.6 0.01 13 N/A N/A 1.2 0.6
Minimum ND ND 2.8 6.1 0.1 9.6 ND ND 3.7 10.7
Maximum ND 20 13 42 0.1 52 ND ND 7.9 13.0
Count 20 21 21 31 9 21 21 21 21 21
95% Confidence Level N/A 2.2 1.2 3.5 0.004 6.1 N/A N/A 0.5 0.3
99% Confidence Level N/A 3.0 1.7 4.7 0.006 8.3 N/A N/A 0.7 0.4
ND = non detect
N/A = statistic not calculable
WTS = wastewater treatment system
La Pine National Decentralized Wastewater Treatment Demonstration Project
Appendix C: Monitoring well statistics and data Page C-15
Table C-15. Innovative trench design A drainfield monitoring wells.
Innovative trench A-K
MW Drain
BOD5
(mg/L)
TSS
(mg/L)
TN
(mg/L)
WTS TN
(mg/L)
Chloride
(mg/L)
Fecal
Coliform E. Coli
Dissolved
Oxygen
(mg/L)
Depth to
Water
Table (ft)
Mean 0.6 4.3 6.8 53 28 N/A N/A 4.5 19.0
Geometric Mean 0.6 2.2 5.9 51 26 N/A N/A 4.1 19.0
Median ND 2.0 5.0 54 24 N/A N/A 5.3 19.0
Standard Deviation 0.2 5.1 4.1 12 13 N/A N/A 2.0 0.5
Minimum ND ND 3.1 30 15 ND ND 1.0 18.1
Maximum 1.2 20 17 69 68 ND ND 8.5 19.7
Count 16 16 19 16 19 18 18 19 19
95% Confidence Level 0.1 2.7 2.0 6.6 6.3 N/A N/A 0.9 0.2
99% Confidence Level 0.2 3.7 2.7 9.1 8.7